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คำนำ

หนังสือเล่มนี้จะนำพาคุณดำดิ่งสู่การสร้างสรรค์เว็บ
แอปพลิเคชันที่น่าทึ่งด้วย Jaspr เฟรมเวิร์กที่ทรงพลังและ

ยืดหยุ่นแห่งยุค ไม่ว่าคุณจะเป็นนักพัฒนาที่เคยสัมผัส
ประสบการณ์กับ Flutter มาก่อน หรือเพิ่งเริ่มต้นในเส้นทางสาย

เว็บ Jaspr จะเป็นกุญแจสำคัญที่ปลดล็อกศักยภาพของคุณ ให้

ทุกวิสัยทัศน์กลายเป็นจริงบนโลกออนไลน์

เราจะพาคุณสำรวจแก่นแท้ของ Jaspr ตั้งแต่การเริ่มต้นโปร
เจกต์แรก การทำความเข้าใจโครงสร้างสถาปัตยกรรม การสร้าง

คอมโพเนนต์แบบโต้ตอบ ไปจนถึงการจัดการสถานะที่ซับซ้อน
และการ Deploy แอปพลิเคชัน นอกจากนี้ เรายังจะเจาะลึก

ความสัมพันธ์ระหว่าง Jaspr และ Flutter เพื่อให้คุณเห็นภาพที่
ชัดเจนว่าเฟรมเวิร์กทั้งสองทำงานร่วมกันอย่างไร และเมื่อใดที่

แต่ละตัวคือตัวเลือกที่ดีที่สุดสำหรับงานของคุณ

เป้าหมายสูงสุดของเราคือการให้ความรู้ และแรงบันดาลใจ

เพื่อให้คุณสามารถเนรมิตเว็บแอปพลิเคชันที่สวยงาม
ประสิทธิภาพสูง และใช้งานง่ายด้วย Jaspr เราเชื่อมั่นว่าการ
เรียนรู้  Jaspr จะเปิดประตูสู่โอกาสใหม่ๆ ในโลกของการพัฒนา



เว็บ และเราตื่นเต้นที่จะได้เป็นส่วนหนึ่งในการเดินทาง
สร้างสรรค์ของคุณ

ขอให้มีความสุขกับการเขียนโค้ด!
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แนะนำ Jaspr

Jaspr คือเฟรมเวิร์กเว็บสมัยใหม่สำหรับการพัฒนาเว็บไซต์
ด้วยภาษา Dart ที่รองรับทั้งการเรนเดอร์ฝั่ งไคลเอนต์ (Client-

side Rendering) และฝั่ งเซิร์ฟเวอร์ (Server-side Rendering)

เว็บไซต์ jaspr.site

แนวคิดเบื้องหลัง Jaspr

Jaspr ถูกออกแบบขึ้นจากแนวคิดในการสร้างเว็บเฟรมเวิร์ก
ที่ให้ประสบการณ์การพัฒนาและรูปแบบการเขียนโค้ดที่ใกล้
เคียงกับ Flutter มากที่สุด แต่ยังคงเรนเดอร์ผลลัพธ์ออกมาเป็น

HTML และ CSS มาตรฐาน ซึ่งสอดคล้องกับธรรมชาติของเว็บ
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ทำให้เหมาะสำหรับการพัฒนาเว็บไซต์จริงในเชิงโปรดักชัน โดย
เฉพาะในกรณีที่ Flutter Web อาจไม่ตอบโจทย์ทั้งหมด

เฟรมเวิร์กนี้มุ่งเน้นไปที่นักพัฒนา Flutter ที่ต้องการขยาย
ขอบเขตการทำงานของตนเองไปสู่การสร้างเว็บไซต์หลากหลาย

รูปแบบ ไม่ว่าจะเป็นเว็บไซต์ทั่วไป เว็บไซต์ที่เน้นเนื้อหา หรือ
ระบบที่ไม่จำเป็นต้องใช้สถาปัตยกรรมแบบแอปเต็มรูปแบบของ

Flutter Web

เป้าหมายสำคัญของ Jaspr คือการขยายขีดความสามารถ

ของภาษา Dart ให้ครอบคลุมทั้งฝั่ งเว็บและฝั่ งเซิร์ฟเวอร์ ผ่าน
การเป็น Full-stack Web Framework ที่ออกแบบมาอย่าง

รอบคอบ และพัฒนาด้วย Dart ตั้งแต่ต้นจนจบ เพื่อให้นัก
พัฒนาสามารถใช้ภาษาเดียวสร้างเว็บแอปพลิเคชันได้อย่างครบ

วงจร

คุณสมบัติหลัก

Jaspr ออกแบบมาให้เริ่มต้นใช้งานได้อย่างเป็นธรรมชาติ

สำหรับนักพัฒนาที่คุ้นเคยกับ Flutter ด้วยโมเดลคอมโพเนนต์ที่
มีแนวคิดและโครงสร้างคล้ายกับ Widget ทำให้สามารถเรียนรู้

และนำไปใช้ได้ทันทีโดยแทบไม่ต้องปรับตัวมากนัก ขณะ
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เดียวกันก็มีความทรงพลังด้วยการรองรับ Server-side
Rendering มาให้ตั้งแต่ต้น ช่วยให้เว็บไซต์พร้อมใช้งานและเป็น

มิตรกับ SEO โดยไม่ต้องเสียเวลาในการตั้งค่าเพิ่มเติม

ในด้านการใช้งาน Jaspr ช่วยลดความซับซ้อนของการ

พัฒนาเว็บด้วยการซิงก์สถานะของคอมโพเนนต์ระหว่างฝั่ ง
เซิร์ฟเวอร์และไคลเอนต์ให้อัตโนมัติ นักพัฒนาไม่จำเป็นต้อง

จัดการ state ด้วยตนเองมากนัก ส่งผลให้โค้ดอ่านง่ายและดูแล

รักษาได้ดีขึ้น นอกจากนี้ยังทำงานได้อย่างรวดเร็วด้วยการ

อัปเดต DOM เฉพาะส่วนที่มีการเปลี่ยนแปลงจริง ช่วยเพิ่ม
ประสิทธิภาพและความลื่นไหลในการใช้งาน

อีกหนึ่งจุดเด่นคือความยืดหยุ่นสูง Jaspr สามารถรันได้ทั้ง
บนฝั่ งเซิร์ฟเวอร์ ฝั่ งไคลเอนต์ หรือทำงานร่วมกันทั้งสองฝั่ ง

พร้อมรองรับทั้งการตั้งค่าแบบอัตโนมัติสำหรับผู้ที่ต้องการความ
สะดวก และการปรับแต่งแบบกำหนดเองสำหรับกรณีที่ต้องการ

ควบคุมพฤติกรรมของระบบอย่างละเอียด

ทดลองใช้งานใน JasprPad

Jaspr ได้รับแรงบันดาลใจจาก DartPad และมีเครื่องมือ

แก้ไขโค้ดออนไลน์ของตัวเองในชื่อ JasprPad
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playground.jaspr.site

JasprPad ช่วยให้คุณสามารถ

ดูตัวอย่างโค้ด (Samples)

เรียนรู้ ผ่านบทเรียน (Tutorial)
ทดลองใช้งาน Jaspr ได้ทันทีผ่านเบราว์เซอร์

เมื่อคุณต้องการพัฒนาต่อในเครื่องของตนเอง ก็สามารถ
ดาวน์โหลดไฟล์ทั้งหมดออกมาเป็น โปรเจกต์ Dart ที่พร้อมใช้

งานทันที ได้อย่างสะดวก

ที่สำคัญ JasprPad เองก็ถูกพัฒนาด้วย Jaspr เช่นกัน คุณ

จึงสามารถศึกษาซอร์สโค้ดเพื่อทำความเข้าใจการใช้งาน Jaspr
ในแอปพลิเคชันขนาดใหญ่ได้โดยตรง
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Jaspr เหมาะสำหรับนักพัฒนาที่เขียนภาษา Dart และ
Flutter ที่ต้องการสร้างเว็บไซต์ที่ Flutter Web ไม่สามารถ

ทำได้ เช่น เว็บไซต์ที่เน้นเนื้อหา หรือเว็บไซต์ต้องการทำ SEO
Jaspr ยังใช้ภาษา Dart เป็นภาษาในการพัฒนา คุณสามารถใช้

ภาษา Dart พัฒนาได้ทั้งส่วน web และ server ได้ตามต้องการ
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Jaspr และ Flutter Web ความเหมือนที่

แตกต่าง

สำหรับนักพัฒนาที่ใช้ภาษา Dart ในการสร้างเว็บ

แอปพลิเคชัน คำถามสำคัญที่มักเกิดขึ้นคือ: ควรเลือกใช้ Jaspr
หรือ Flutter Web? แม้ว่าทั้งสองจะเป็นเฟรมเวิร์กที่ยอดเยี่ยม

และมีรากฐานมาจาก Dart เหมือนกัน แต่ทั้งสองถูกออกแบบมา
เพื่อวัตถุประสงค์ที่แตกต่างกันอย่างชัดเจน

บทนี้จะพาคุณไปสำรวจความแตกต่างที่สำคัญระหว่าง

Jaspr และ Flutter Web ตั้งแต่ปรัชญาการออกแบบไปจนถึง
กรณีการใช้งานจริง เพื่อช่วยให้คุณตัดสินใจได้อย่างมั่นใจว่า

เครื่องมือใดจะตอบโจทย์โปรเจกต์เว็บของคุณได้ดีที่สุด

ความแตกต่างในกรณีการใช้งาน

Jaspr

Jaspr ถูกออกแบบมาเพื่อเป็นเฟรมเวิร์กสำหรับการพัฒนา
เว็บไซต์ด้วยภาษา Dart ในทุกรูปแบบ ไม่ว่าจะเป็น
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เว็บไซต์แบบสถิต (Static Websites)
เว็บไซต์ที่เรนเดอร์ฝั่ งเซิร์ฟเวอร์ (Server-Rendered

Websites)
Single-Page Applications (SPA)

Jaspr ให้ประสบการณ์การพัฒนาที่ได้รับแรงบันดาลใจจาก
Flutter แต่ทำงานบนเทคโนโลยีเว็บมาตรฐานอย่าง HTML,

DOM และ CSS โดยตรง ทำให้การสร้างเว็บไซต์มีความเป็น
ธรรมชาติและสอดคล้องกับแพลตฟอร์มเว็บอย่างแท้จริง

Flutter Web

ทีมพัฒนา Flutter ได้ให้คำจำกัดความไว้อย่างชัดเจนว่า

Flutter Web ถูกออกแบบมาเพื่อสร้าง “Web App” ไม่ใช่
“Web Site”

กล่าวคือ Flutter Web เป็นเทคโนโลยีที่ยอดเยี่ยมสำหรับ
การขยายแอปพลิเคชันที่มีอยู่ให้สามารถทำงานบนเว็บได้

(Cross-platform) แต่ไม่ได้ถูกออกแบบมาเพื่อทดแทน
เทคโนโลยีเว็บแบบดั้งเดิมทั้งหมด
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เอกสารอย่างเป็นทางการของ Flutter ระบุไว้ว่า

ในปัจจุบัน Flutter ยังไม่เหมาะกับการใช้งาน HTML ทุก

ประเภท ตัวอย่างเช่น เนื้อหาที่เน้นข้อความเป็นหลัก จัดเรียง
ตามการไหลของเนื้อหา และเป็นเนื้อหาแบบคงที่อย่าง

บทความบล็อก จะทำงานได้ดีกว่าบนแนวคิดแบบเอกสารของ
เว็บโดยตรง มากกว่าการใช้แนวคิดแบบแอปที่เฟรมเวิร์ก UI

อย่าง Flutter ออกแบบมาเพื่อรองรับ

ตัวอย่างการใช้งานจริง

เว็บไซต์ dart.dev และ docs.flutter.dev ซึ่งเป็นเว็บไซต์
ทางการของ Dart และ Flutter ล้วนพัฒนาขึ้นด้วย Jaspr ทั้ง

สองเป็นตัวอย่างที่ดีของการใช้ Jaspr เพื่อสร้างเว็บไซต์ที่มี
เนื้อหาเป็นข้อความจำนวนมาก (Content-heavy) และเป็นแบบ

สแตติกด้วยภาษา Dart
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