


วิถีแห่ง SpecKit:จากสเปกสู่โค้ด

ปลดล็อกประสิทธิภาพและความแม่นยำ

ในทุกขั้นตอนการพัฒนา

แองเจล่า เหงียน

อนุชิต ชโลธร



คำนำสำนักพิมพ์

การเดินทางของเราในโลกของ Spec-Driven Development เริ่มต้น

จากหนังสือ Spec Driven Development ที่เน้นวางรากฐานทาง

ความคิดและทฤษฎีอย่างเจาะลึก แต่หลังจากหนังสือเล่มนั้นเผยแพร่

ออกไป เสียงตอบรับจากผู้อ่านหลายท่าน โดยเฉพาะข้อเสนอแนะอัน

ทรงคุณค่าชิ้นหนึ่ง ได้จุดประกายให้เราเห็นว่า ผู้อ่านต้องการหนังสือที่

นำไป “ลงมือทำได้จริง” ไม่ใช่แค่ทฤษฎีบนหิ้ง

เราน้อมรับฟัง และนำคำแนะนำนั้นมาเป็นจุดเริ่มต้นของการ

สร้างสรรค์ครั้งใหม่

หนังสือ “วิถีแห่ง SpecKit: จากสเปกสู่โค้ด” เล่มนี้ คือผลลัพธ์ของการ
รับฟังและต่อยอด เราตั้งใจออกแบบให้เป็นคู่มือปฏิบัติ ที่จะพาคุณ

ข้ามจากโลกของแนวคิดไปสู่การลงมือทำจริง ด้วยเครื่องมือที่จับต้อง

ได้อย่าง SpecKit เครื่องมือที่จะเป็นสะพานเชื่อมระหว่าง “สเปก”

และ “โค้ด” ทำให้การพัฒนาแบบ Spec-Driven กลายเป็นเรื่องที่คุณ

ทำได้จริงในทุกวันทำงาน

เราขอขอบคุณผู้อ่านทุกท่านที่เป็นแรงบันดาลใจและมอบคำแนะนำให้

เราเสมอมา หนังสือเล่มนี้เกิดขึ้นได้เพราะเสียงของพวกคุณ และเรา

หวังว่ามันจะเป็นเพื่อนร่วมทางที่ช่วยให้คุณสร้างสรรค์ซอฟต์แวร์ที่ดี



กว่าเดิม พร้อมเดินไปบนเส้นทางการพัฒนาอย่างมั่นคงและมีเป้า

หมายที่ชัดเจน



คำนำผู้เขียน

ในยุคที่ซอฟต์แวร์ซับซ้อนขึ้นทุกวัน ช่องว่างระหว่าง “สิ่งที่เราคิดจะ

สร้าง” กับ “สิ่งที่เราสร้างขึ้นมาจริงๆ” กลับกลายเป็นปัญหาใหญ่ที่สุด

อย่างหนึ่งของการพัฒนาซอฟต์แวร์

หลายทีมพยายามใช้เอกสารอย่าง PRD, ADR หรือ Confluence

Note เพื่อบันทึกรายละเอียดของระบบ แต่สุดท้ายเอกสารเหล่านั้นก็

มักจะ “ล้าสมัย” กว่าซอร์สโค้ดเสมอ ความไม่ตรงกันนี้เองที่นำไปสู่บั๊ก

ความเข้าใจที่คลาดเคลื่อน และการสูญเสียเวลาอย่างน่าเสียดาย

SpecKit ถือกำเนิดขึ้นเพื่อแก้ปัญหานี้โดยเฉพาะ มันไม่ใช่แค่เครื่อง

มือ แต่คือ “กระบวนทัศน์ใหม่” ในการพัฒนาที่เรียกว่า Spec-Driven
Development (SDD) ซึ่งมีหัวใจสำคัญคือ “สเปก” (Specification)

ในโลกของ SDD สเปกไม่ใช่แค่เอกสารอธิบายระบบ แต่เป็น “สัญญา

ระหว่างมนุษย์และเครื่องจักร” เป็นจุดศูนย์กลางของการสื่อสาร

ระหว่างทีมพัฒนา, AI Agent และเครื่องมืออัตโนมัติต่างๆ ที่ทำงาน

ร่วมกัน

SpecKit จึงเป็นสะพานที่เชื่อมระหว่าง “แนวคิด” กับ “การลงมือทำ”

ตั้งแต่การนิยามระบบ การวางแผน ไปจนถึงการเขียนโค้ด โดยมี

เครื่องมือ CLI ที่ชื่อว่า specify เป็นศูนย์กลางของกระบวนการ



ทั้งหมด ไม่ว่าคุณจะเป็นนักพัฒนา ผู้จัดการโครงการ หรือสถาปนิก

ซอฟต์แวร์ SpecKit จะช่วยให้ทุกคนมองภาพเดียวกัน ผ่านภาษาที่

ทั้งคนและเครื่องจักรเข้าใจตรงกัน

หนังสือเล่มนี้จะพาคุณไปรู้ จัก SpecKit ตั้งแต่พื้นฐานจนถึงการ

ประยุกต์ใช้จริง เริ่มตั้งแต่การติดตั้ง specify การสร้าง “ธรรมนูญ”

(Constitution) ของโครงการ การออกแบบสเปก ไปจนถึงการนำ AI

Agent เข้ามาช่วยในแต่ละขั้นตอน นอกจากนี้ยังมีตัวอย่างโครงร่าง

สเปกและแนวคิดเบื้องหลังที่คุณสามารถนำไปปรับใช้กับทีมของคุณ

ได้ทันที

เราหวังว่าหนังสือเล่มนี้จะไม่เพียงสอนให้คุณ “ใช้ SpecKit เป็น” แต่

จะช่วยให้คุณ “คิดแบบ Spec-Driven” ได้ นั่นคือการมองซอฟต์แวร์

เป็นระบบที่สามารถอธิบาย ทำความเข้าใจ และพัฒนาได้อย่างมี

แบบแผนและสื่อสารได้ชัดเจนยิ่งขึ้น

เพราะ SpecKit ไม่ได้เปลี่ยนแค่เครื่องมือที่คุณใช้ แต่จะเปลี่ยนวิธีที่

คุณและทีมคิดในการพัฒนาซอฟต์แวร์ไปตลอดกาล



สารบัญ

บทที่ 1: รู้ จักกับ SpecKit 1

ทำไมต้องใช้ SpecKit? 1

Spec-Driven Development คืออะไร? 2

ปัญหาที่ SpecKit เข้ามาแก้ 3

ภาพรวมกระบวนการพัฒนาด้วย SpecKit 4

สถาปัตยกรรมและส่วนประกอบหลัก 5

บทที่ 2: ปรัชญาและแนวคิดเบื้องหลัง SpecKit 7

ปรัชญาของ SpecKit: 3 เสาหลักสู่การสร้างซอฟต์แวร์แนวใหม่ 7

SpecKit กับแนวทางปฏิบัติอื่นๆ 8

เทียบกับ Product Requirements Document (PRD) 9

เทียบกับ Architecture Decision Record (ADR) 9

เทียบกับ C4 Model 9

การเดินทางของ SpecKit: บทเรียนและเป้าหมาย 10

บทที่ 3: เริ่มต้นใช้งาน 12

การติดตั้ง Specify CLI 12

การติดตั้งแบบถาวร (Permanent Installation) 12

การใช้งานแบบชั่วคราว (Temporary Execution) 13

ตรวจสอบความพร้อมของระบบ 14



สร้างโปรเจกต์แรกของคุณ 15

เจาะลึกคำสั่ง Specify CLI 16

คำสั่งหลัก 16

ตัวเลือกที่ใช้บ่อยของ specify init 17

ตัวอย่างการใช้งาน 17

โครงสร้างโปรเจกต์ SpecKit 18

หัวใจของโปรเจกต์: ไฟล์ constitution.md 18

สร้าง “ธรรมนูญ” ของโปรเจกต์ 19

ตัวอย่างไฟล์ธรรมนูญ 20

บทที่ 4: การสร้างสเปก 23

หลักการออกแบบสเปกที่ดี 23

สร้างสเปกฉบับร่างด้วย AI Agent 24

ขัดเกลาสเปกให้เฉียบคม 25

ความสัมพันธ์ระหว่าง “สเปก” และ “ธรรมนูญ” 26

ตัวอย่าง spec.md 26

บทที่ 5: การวางแผนและจัดการงาน 32

สร้างแผนเชิงเทคนิค (Technical Plan) 32

ตัวอย่าง plan.md 33

แปลงสเปกเป็นรายการงาน (Tasks) 36

ตัวอย่าง tasks.md 37

วงจรการทำงานร่วมกันระหว่างคนกับ AI 40



บทที่ 6: การลงมือพัฒนาจากสเปก 42

Workflow การพัฒนาที่ขับเคลื่อนด้วย AI 42

ตัวอย่าง: การใช้ AI Agent พัฒนา API 43

การทดสอบคือหัวใจสำคัญ 44

วงจรการปรับปรุง 44

บทที่ 7: การทวนสอบและตรวจสอบคุณภาพ 46

สร้าง Checklist อัตโนมัติด้วย /speckit.checklist 46

วิเคราะห์โค้ดเทียบกับสเปกด้วย /speckit.analyze 47

บทที่ 8: กระบวนการทำงานครบวงจร 49

ภาพรวม Workflow ของ SpecKit 49

วางรากฐานของโปรเจกต์ 50

วงจรการพัฒนาฟีเจอร์ 51

การทวนสอบและรับฟีดแบ็ก 52

ฟีดแบ็กคือหัวใจของความยืดหยุ่น 53

บทที่ 9: กรณีศึกษา พลิกโฉม Legacy Code ด้วย

SpecKit
54

บริบท: การ Refactor ระบบ E-commerce รุ่ นเก๋า 54

สภาพก่อนใช้ SpecKit (The “Before” State) 54

ภารกิจ: Refactor ระบบโปรโมชัน 56

กระบวนการพลิกโฉมด้วย SpecKit 56



สภาพหลังใช้ SpecKit 59

บทสรุปจากกรณีศึกษา 61

บทที่ 10: การทำงานร่วมกับเครื่องมืออื่น 63

สเปกคือ API ของทีม 63

เชื่อมต่อกับเครื่องมือจัดการโปรเจกต์ (Jira, Asana, GitHub

Issues)
64

ตัวอย่าง: สร้าง GitHub Issues จากไฟล์ tasks.md 64

ผนวกรวมเข้ากับ CI/CD Pipeline 66

ตัวอย่าง: ตรวจสอบความครอบคลุมของเทสต์เทียบกับสเปก

ใน GitHub Actions
66

สร้างเอกสารอัตโนมัติ (Automated Documentation) 68

ตัวอย่าง: สร้าง API Reference (OpenAPI/Swagger) จาก
สเปก

68

บทที่ 11: การใช้ AI Agents ใน SpecKit 71

AI Agents ที่ SpecKit รองรับ 71

แนวคิด “Bring Your Own Agent” (BYOA) 72

Workshop: การเชื่อมต่อกับ Agent ที่ไม่รองรับโดยตรง 73

การใช้ AI ช่วยในแต่ละเฟสของ SpecKit 75

บทที่ 12: คู่มืออ้างอิงคำสั่ง 78

รูปแบบคำสั่งมาตรฐาน 78

กลุ่มคำสั่งสำหรับ Specification 78



/speckit.constitution 79

/speckit.specify 79

/speckit.clarify 80

กลุ่มคำสั่งสำหรับ Planning 80

/speckit.plan 81

/speckit.tasks 81

กลุ่มคำสั่งสำหรับ Implementation & Verification 81

/speckit.implement 81

/speckit.checklist 82

/speckit.analyze 82

การสร้าง Custom Commands 83

ตัวอย่าง: สร้างคำสั่ง /speckit.docgen 83

Best Practices ในการใช้คำสั่ง 84

บทที่ 13: เทคนิคขั้นสูง 86

การบริหารจัดการ Constitution ขั้นสูง 86

ใครคือผู้ดูแลไฟล์ธรรมนูญ? 86

การจัดการเวอร์ชันของไฟล์ธรรมนูญ 87

วิธีที่ดีและวิธีที่ควรหลีกเลี่ยงในการเขียนสเปก 88

วิธีที่ดี 88

วิธีที่ควรหลีกเลี่ยง 89

เจาะลึกการสร้าง Custom Commands 90



ตัวอย่าง: สร้างคำสั่ง /speckit.refactor 90

บทที่ 14: การแก้ปัญหาและคำถามที่พบบ่อย 93

การแก้ปัญหา 93

ปัญหาเกี่ยวกับการติดตั้ง 93

ปัญหาเกี่ยวกับ AI Agent 94

คำถามที่พบบ่อย 96

ตัวอย่าง: สร้างเว็บไซต์บริษัทด้วย Next.js และ

shadcn/ui
99

วางรากฐานของโปรเจกต์ 99

สร้างข้อกำหนดของฟีเจอร์ 100

ขจัดความคลุมเครือ 102

จากไอเดียสู่สเปกที่จับต้องได้ 103

ตัวอย่าง: สร้าง API สำหรับค้นหาสินค้า ด้วย Node.js 105

วางรากฐานของโปรเจกต์ 105

นิยามฟีเจอร์ให้คมชัด 105

User Scenarios 106

Technical Requirements 106

วางแผนการพัฒนาอย่างเป็นระบบ 107

Tech Stack & Project Setup 107

Project Structure 107

Generated Artifacts 108



แปลงแผนสู่รายการงานที่ชัดเจน 108

เปลี่ยนสเปกให้เป็นโค้ด 109

ผลลัพธ์สุดท้าย 110

ตัวอย่าง: การสร้างเว็บไซต์จากงานออกแบบ 112

การสร้างงานออกแบบด้วย Stich 112

วางรากฐานของโปรเจกต์ 115

สร้างข้อกำหนดของฟีเจอร์ 116

วางแผนการพัฒนาอย่างเป็นระบบ 119

แปลงแผนสู่รายการงานที่ชัดเจน 119

เปลี่ยนสเปกให้เป็นโค้ด 120

จากไอเดียเป็นสเปกที่นำไปพัฒนาต่อได้จริง 120

บทส่งท้าย 121

สรุปการเดินทางกับ SpecKit 121

อนาคตของ Spec-Driven Development 122

ก้าวต่อไปของคุณ 123

SpecKit ไม่ใช่ยาวิเศษ 123

ดาวน์โหลดซอร์สโค้ด 125



บทที่ 1: รู้ จักกับ SpecKit

ยินดีต้อนรับสู่โลกของการพัฒนาซอฟต์แวร์ที่ขับเคลื่อนด้วยสเปก หรือ

Spec-Driven Development (SDD) บทนี้จะพาคุณไปทำความรู้ จัก

กับ SpecKit ว่ามันคืออะไร ถูกสร้างขึ้นมาเพื่อแก้ปัญหาใด และ

แนวคิดเบื้องหลังของมันจะเข้ามาเปลี่ยนวิธีที่ทีมของคุณสร้าง

ซอฟต์แวร์ไปตลอดกาลได้อย่างไร

ทำไมต้องใช้ SpecKit?

SpecKit ไม่ได้เป็นเพียง “เครื่องมือ” ชิ้นหนึ่งเท่านั้น แต่ถูกออกแบบ

ขึ้นมาเพื่อแก้ “ปัญหาใหญ่” ที่ทีมพัฒนาซอฟต์แวร์ทั่วโลกต้องเจอ

เหมือนกันเสมอ นั่นคือ ช่องว่างระหว่างความคิด เอกสาร และโค้ด ซึ่ง

มักไม่สอดคล้องกันและเดินสวนทางอยู่บ่อยครั้ง

ลองนึกภาพการทำงานตามปกติ

1. Product Manager เขียนเอกสาร PRD อธิบายฟีเจอร์ใหม่

2. Software Architect ออกแบบระบบ และจัดทำเอกสาร ADR

3. Developer อ่านเอกสารทั้งหมด แล้วลงมือเขียนโค้ด

4. QA Tester กลับไปอ่านเอกสารเหล่านั้นอีกครั้ง เพื่อสร้าง Test

Case

1


