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คำนำสำนักพิมพ์

การเดินทางของเราในโลกของ Spec-Driven Development เริ่มต้น

จากหนังสือ Spec Driven Development ที่เน้นวางรากฐานทาง

ความคิดและทฤษฎีอย่างเจาะลึก แต่หลังจากหนังสือเล่มนั้นเผยแพร่

ออกไป เสียงตอบรับจากผู้อ่านหลายท่าน โดยเฉพาะข้อเสนอแนะอัน

ทรงคุณค่าชิ้นหนึ่ง ได้จุดประกายให้เราเห็นว่า ผู้อ่านต้องการหนังสือที่

นำไป “ลงมือทำได้จริง” ไม่ใช่แค่ทฤษฎีบนหิ้ง

เราน้อมรับฟัง และนำคำแนะนำนั้นมาเป็นจุดเริ่มต้นของการ

สร้างสรรค์ครั้งใหม่

หนังสือ “วิถีแห่ง SpecKit: จากสเปกสู่โค้ด” เล่มนี้ คือผลลัพธ์ของการ
รับฟังและต่อยอด เราตั้งใจออกแบบให้เป็นคู่มือปฏิบัติ ที่จะพาคุณ

ข้ามจากโลกของแนวคิดไปสู่การลงมือทำจริง ด้วยเครื่องมือที่จับต้อง

ได้อย่าง SpecKit เครื่องมือที่จะเป็นสะพานเชื่อมระหว่าง “สเปก”

และ “โค้ด” ทำให้การพัฒนาแบบ Spec-Driven กลายเป็นเรื่องที่คุณ

ทำได้จริงในทุกวันทำงาน

เราขอขอบคุณผู้อ่านทุกท่านที่เป็นแรงบันดาลใจและมอบคำแนะนำให้

เราเสมอมา หนังสือเล่มนี้เกิดขึ้นได้เพราะเสียงของพวกคุณ และเรา

หวังว่ามันจะเป็นเพื่อนร่วมทางที่ช่วยให้คุณสร้างสรรค์ซอฟต์แวร์ที่ดี



กว่าเดิม พร้อมเดินไปบนเส้นทางการพัฒนาอย่างมั่นคงและมีเป้า

หมายที่ชัดเจน



คำนำผู้เขียน

ในยุคที่ซอฟต์แวร์ซับซ้อนขึ้นทุกวัน ช่องว่างระหว่าง “สิ่งที่เราคิดจะ

สร้าง” กับ “สิ่งที่เราสร้างขึ้นมาจริงๆ” กลับกลายเป็นปัญหาใหญ่ที่สุด

อย่างหนึ่งของการพัฒนาซอฟต์แวร์

หลายทีมพยายามใช้เอกสารอย่าง PRD, ADR หรือ Confluence

Note เพื่อบันทึกรายละเอียดของระบบ แต่สุดท้ายเอกสารเหล่านั้นก็

มักจะ “ล้าสมัย” กว่าซอร์สโค้ดเสมอ ความไม่ตรงกันนี้เองที่นำไปสู่บั๊ก

ความเข้าใจที่คลาดเคลื่อน และการสูญเสียเวลาอย่างน่าเสียดาย

SpecKit ถือกำเนิดขึ้นเพื่อแก้ปัญหานี้โดยเฉพาะ มันไม่ใช่แค่เครื่อง

มือ แต่คือ “กระบวนทัศน์ใหม่” ในการพัฒนาที่เรียกว่า Spec-Driven
Development (SDD) ซึ่งมีหัวใจสำคัญคือ “สเปก” (Specification)

ในโลกของ SDD สเปกไม่ใช่แค่เอกสารอธิบายระบบ แต่เป็น “สัญญา

ระหว่างมนุษย์และเครื่องจักร” เป็นจุดศูนย์กลางของการสื่อสาร

ระหว่างทีมพัฒนา, AI Agent และเครื่องมืออัตโนมัติต่างๆ ที่ทำงาน

ร่วมกัน

SpecKit จึงเป็นสะพานที่เชื่อมระหว่าง “แนวคิด” กับ “การลงมือทำ”

ตั้งแต่การนิยามระบบ การวางแผน ไปจนถึงการเขียนโค้ด โดยมี

เครื่องมือ CLI ที่ชื่อว่า specify เป็นศูนย์กลางของกระบวนการ



ทั้งหมด ไม่ว่าคุณจะเป็นนักพัฒนา ผู้จัดการโครงการ หรือสถาปนิก

ซอฟต์แวร์ SpecKit จะช่วยให้ทุกคนมองภาพเดียวกัน ผ่านภาษาที่

ทั้งคนและเครื่องจักรเข้าใจตรงกัน

หนังสือเล่มนี้จะพาคุณไปรู้ จัก SpecKit ตั้งแต่พื้นฐานจนถึงการ

ประยุกต์ใช้จริง เริ่มตั้งแต่การติดตั้ง specify การสร้าง “ธรรมนูญ”

(Constitution) ของโครงการ การออกแบบสเปก ไปจนถึงการนำ AI

Agent เข้ามาช่วยในแต่ละขั้นตอน นอกจากนี้ยังมีตัวอย่างโครงร่าง

สเปกและแนวคิดเบื้องหลังที่คุณสามารถนำไปปรับใช้กับทีมของคุณ

ได้ทันที

เราหวังว่าหนังสือเล่มนี้จะไม่เพียงสอนให้คุณ “ใช้ SpecKit เป็น” แต่

จะช่วยให้คุณ “คิดแบบ Spec-Driven” ได้ นั่นคือการมองซอฟต์แวร์

เป็นระบบที่สามารถอธิบาย ทำความเข้าใจ และพัฒนาได้อย่างมี

แบบแผนและสื่อสารได้ชัดเจนยิ่งขึ้น

เพราะ SpecKit ไม่ได้เปลี่ยนแค่เครื่องมือที่คุณใช้ แต่จะเปลี่ยนวิธีที่

คุณและทีมคิดในการพัฒนาซอฟต์แวร์ไปตลอดกาล
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บทที่ 1: รู้ จักกับ SpecKit

ยินดีต้อนรับสู่โลกของการพัฒนาซอฟต์แวร์ที่ขับเคลื่อนด้วยสเปก หรือ

Spec-Driven Development (SDD) บทนี้จะพาคุณไปทำความรู้ จัก

กับ SpecKit ว่ามันคืออะไร ถูกสร้างขึ้นมาเพื่อแก้ปัญหาใด และ

แนวคิดเบื้องหลังของมันจะเข้ามาเปลี่ยนวิธีที่ทีมของคุณสร้าง

ซอฟต์แวร์ไปตลอดกาลได้อย่างไร

ทำไมต้องใช้ SpecKit?

SpecKit ไม่ได้เป็นเพียง “เครื่องมือ” ชิ้นหนึ่งเท่านั้น แต่ถูกออกแบบ

ขึ้นมาเพื่อแก้ “ปัญหาใหญ่” ที่ทีมพัฒนาซอฟต์แวร์ทั่วโลกต้องเจอ

เหมือนกันเสมอ นั่นคือ ช่องว่างระหว่างความคิด เอกสาร และโค้ด ซึ่ง

มักไม่สอดคล้องกันและเดินสวนทางอยู่บ่อยครั้ง

ลองนึกภาพการทำงานตามปกติ

1. Product Manager เขียนเอกสาร PRD อธิบายฟีเจอร์ใหม่

2. Software Architect ออกแบบระบบ และจัดทำเอกสาร ADR

3. Developer อ่านเอกสารทั้งหมด แล้วลงมือเขียนโค้ด

4. QA Tester กลับไปอ่านเอกสารเหล่านั้นอีกครั้ง เพื่อสร้าง Test

Case
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