

ปั้ น AI Agent ด้วย

PydanticAI

เรียนรู้ ครบจบในเล่มเดียว สู่การเป็น

มืออาชีพ

อนุชิต ชโลธร

(อัปเดตครั้งที่ 3)

คำนำสำนักพิมพ์

ในนามของสำนักพิมพ์ เรามีความยินดีเป็นอย่างยิ่งที่ได้นำ
เสนอหนังสือ “ปั้ น AI Agent ด้วย PydanticAI: เรียนรู้ ครบจบ

ในเล่มเดียว สู่การเป็นมืออาชีพ” สู่สายตานักพัฒนาและผู้สนใจ
ในเทคโนโลยีปัญญาประดิษฐ์ทุกท่าน

ปฏิเสธไม่ได้ว่า Generative AI และ Large Language
Models (LLMs) คือคลื่นลูกใหม่ที่กำลังเปลี่ยนแปลงโลก

เทคโนโลยีในทุกมิติ ความสามารถในการสร้างแอปพลิเคชันที่
สามารถ “คิด” และ “สื่อสาร” ได้ใกล้เคียงกับมนุษย์ได้เปิดประตู

สู่ความเป็นไปได้ใหม่ๆ อย่างที่ไม่เคยมีมาก่อน อย่างไรก็ตาม
การเปลี่ยนศักยภาพอันน่าทึ่งนี้ให้กลายเป็นผลิตภัณฑ์ที่ใช้งานได้

จริงและเชื่อถือได้นั้น ยังคงเป็นความท้าทายที่ยิ่งใหญ่

PydanticAI ได้เข้ามามีบทบาทสำคัญในการลดช่องว่างดัง

กล่าว ด้วยการนำเสนอแนวทางที่สวยงามในการสร้างสะพาน
เชื่อมระหว่างโลกของ AI ที่ยืดหยุ่นและโลกของซอฟต์แวร์ที่

ต้องการความแม่นยำและโครงสร้างที่ชัดเจน

หนังสือเล่มนี้ไม่ได้เป็นเพียงคู่มือการใช้งานไลบรารี แต่เป็น
ตำราอาหารที่รวบรวม “สูตรสำเร็จ” สำหรับการสร้าง AI Agent

ในสถานการณ์ต่างๆ ที่นักพัฒนาต้องเผชิญในโลกแห่งความเป็น
จริง ตั้งแต่การดึงข้อมูลพื้นฐาน, การสร้าง Chatbot, การ

ทำงานกับฐานข้อมูลและ API, ไปจนถึงเทคนิคขั้นสูงสำหรับการ
ทดสอบและนำขึ้นระบบโปรดักชัน ด้วยแนวทางการเขียนที่เน้น

การลงมือทำและตัวอย่างที่จับต้องได้ เราเชื่อมั่นว่าหนังสือเล่มนี้
จะเป็นเครื่องมือสำคัญที่ช่วยให้ท่านสามารถนำ PydanticAI ไป

ประยุกต์ใช้ได้อย่างรวดเร็วและมั่นใจ

เราหวังว่าหนังสือเล่มนี้จะเป็นส่วนหนึ่งในการขับเคลื่อน

วงการพัฒนาซอฟต์แวร์ AI ของไทยให้ก้าวไปข้างหน้า และช่วย
ให้ท่านสามารถสร้างสรรค์นวัตกรรมที่ยอดเยี่ยมออกมาได้ใน

ที่สุด

ทีมงานสำนักพิมพ์

คำนำ

ในยุคที่ Large Language Models (LLMs) ได้กลายเป็น
เทคโนโลยีที่ก้าวล้ำและเข้าถึงได้ง่าย นักพัฒนาทั่วโลกต่างตื่น

เต้นกับศักยภาพในการสร้างสรรค์แอปพลิเคชันอัจฉริยะที่
สามารถเข้าใจและโต้ตอบกับภาษามนุษย์ได้อย่างเป็นธรรมชาติ

แต่ทว่า ท่ามกลางความมหัศจรรย์นี้ เรากลับพบความท้าทาย

สำคัญประการหนึ่ง นั่นคือ “ความไร้ระเบียบ” ของข้อมูลที่ได้

จาก LLMs

LLMs สร้างข้อความที่อ่านลื่นไหลได้อย่างยอดเยี่ยม แต่

ผลลัพธ์ที่ได้มักอยู่ในรูปแบบของข้อความดิบ (raw text) ที่ไม่มี
โครงสร้างชัดเจน การจะนำข้อมูลเหล่านี้ไปใช้งานต่อใน

แอปพลิเคชันจริง เช่น การบันทึกลงฐานข้อมูล, การเรียกใช้ API
หรือการแสดงผลบน UI จึงกลายเป็นเรื่องที่ซับซ้อนและเต็มไป

ด้วยโค้ดที่ต้องเขียนขึ้นเพื่อจัดการกับข้อมูลโดยเฉพาะ
(boilerplate code)

PydanticAI แก้ปัญหาเรื่องเหล่านี้โดยเฉพาะ โดยใช้
ปรัชญาอันเรียบง่ายของ Pydantic ซึ่งเป็นไลบรารีสำหรับการ
ตรวจสอบและจัดการข้อมูลที่ดีที่สุดตัวหนึ่งของ Python เข้ากับ

ความสามารถของ LLMs ผลลัพธ์ที่ได้คือเครื่องมือที่ช่วยให้นัก
พัฒนาสามารถ “สั่ง” ให้ LLM คืนค่าผลลัพธ์ออกมาเป็น

Pydantic Object ที่มีโครงสร้างชัดเจน, ตรวจสอบความถูก
ต้องได้ และพร้อมใช้งานต่อได้ทันที

หนังสือ “ปั้ น AI Agent ด้วย PydanticAI: เรียนรู้ ครบจบใน
เล่มเดียว สู่การเป็นมืออาชีพ” เล่มนี้ เป็นคู่มือที่จะพาคุณเดินทาง

ตั้งแต่จุดเริ่มต้นของการทำความเข้าใจปัญหา ไปจนถึงการสร้าง
AI Agent ที่ซับซ้อนและพร้อมสำหรับนำไปใช้งานจริง

(Production-ready) เราจะเปลี่ยน “Prompt” ที่เป็นเพียงไอ
เดียในหัวของคุณ ให้กลายเป็น “Product” ที่จับต้องได้ ผ่านสูตร

สำเร็จที่คัดสรรมาอย่างดี พร้อมตัวอย่างโค้ดที่นำไปใช้ได้จริง
และคำอธิบายเบื้องหลังการทำงานที่ชัดเจน

ไม่ว่าคุณจะเป็นนักพัฒนาที่เพิ่งเริ่มต้นกับโลกของ AI หรือ
เป็นวิศวกรผู้มีประสบการณ์ที่กำลังมองหาเครื่องมือที่จะช่วย

ให้การทำงานกับ LLMs เป็นเรื่องง่ายและมีประสิทธิภาพมากขึ้น
ผมหวังว่าหนังสือเล่มนี้จะเป็นเข็มทิศนำทางให้คุณสามารถปลด

ปล่อยศักยภาพของ AI และสร้างสรรค์ผลงานที่น่าทึ่งออกมาได้
สำเร็จ

สารบัญ

แนะนำ PydanticAI 1

จุดเด่นของ PydanticAI 2

ก้าวแรกสู่ AI Agent 4

องค์ประกอบของ PydanticAI 11

Agent 11

LLM Model 12

OpenAI 12

Google 20

Anthropic (Claude) 32

Bedrock 47

Cerebras 62

Cohere 64

Groq 66

Hugging Face 68

Mistral 69

OpenRouter 71

Outlines 74

โมเดลที่ใช้งานร่วมกับ OpenAI API ได้ 85

การใช้งาน Docker Model Runner 104

Messages และ Chat History 108

การทำ ChatBot แบบไม่มีประวัติการสนทนา 108

การทำ ChatBot แบบมีประวัติการสนทนา 110

การเพิ่ม System Prompt เพื่อกำหนด persona 111

การป้อนข้อมูลรูปภาพ เสียง วิดีโอ และเอกสาร 114

การป้อนข้อมูลรูปภาพ (Image Input) 114

การป้อนข้อมูลรูปภาพผ่าน URL (ImageUrl) 114

การป้อนข้อมูลรูปภาพผ่านข้อมูลไบนารี
(BinaryContent)

115

การป้อนข้อมูลเสียง (Audio Input) 117

การป้อนข้อมูลวิดีโอ (Video Input) 117

การป้อนข้อมูลเอกสาร (Document Input) 117

การป้อนข้อมูลเอกสารผ่าน URL (DocumentUrl) 118

การป้อนข้อมูลเอกสารผ่านไฟล์ไบนารี
(BinaryContent)

120

ดาวน์โหลดก่อนส่ง vs ส่ง URL โดยตรง 123

เอาต์พุต 125

ตัวอย่างการกำหนด output_type เป็นโมเดล 126

ข้อมูลเอาต์พุต 126

ฟังก์ชันเอาต์พุต 128

ความแตกต่างกับ Tool Function ทั่วไป 129

คุณสมบัติของฟังก์ชันเอาต์พุต 129

เอาต์พุตเป็นข้อความ 131

โหมดการแสดงผล 132

การสตรีมผลลัพธ์ 137

การสตรีมข้อความแบบปกติ 138

การสตรีมแบบ delta 139

การสตรีมข้อมูลโครงสร้าง 140

Thinking (Reasoning) 144

OpenAI 145

OpenAI Responses 146

Raw Reasoning ไม่มี Summary 147

Anthropic 148

Google 149

Bedrock 149

Groq 150

OpenRouter 151

Mistral 152

Cohere 152

Hugging Face 152

Outlines 153

สรุป 153

เพิ่มศักยภาพให้ Agent ด้วยเครื่องมือ 155

Function Tools คืออะไร 155

สร้างเครื่องมือคำนวณเลข 157

สร้างเครื่องมือดึงข้อมูลสภาพอากาศจาก API 160

ผลลัพธ์จากเครื่องมือ 163

โครงสร้างของเครื่องมือ 163

การย่อ Schema เมื่อมีพารามิเตอร์เดียว 166

ความสามารถขั้นสูงของเครื่องมือ 169

ผลลัพธ์จากเครื่องมือ 169

การส่งคืนค่าขั้นสูงด้วย ToolReturn 172

การกำหนด Schema ของเครื่องมือ 175

เครื่องมือแบบไดนามิก 177

เครื่องมือแบบไดนามิกระดับ Agent 178

การทำงานของเครื่องมือและกลไกการลองใหม่ 179

การตั้งเวลาในการทำงานของเครื่องมือ 182

การเรียกใช้เครื่องมือแบบขนานและการทำงาน

พร้อมกัน
184

การจัดการฟังก์ชันแบบ Async และ Sync 185

การเรียกผลลัพธ์จากเครื่องเครื่องมือพร้อมกับ
เครื่องมืออื่น

185

การผูกเครื่องมือหลายตัวให้ Agent 186

การเรียกใช้ข้อมูลใน Context 189

Agent เลือกใช้เครื่องมืออย่างไร 193

ชุดเครื่องมือ 194

วิธีการกำหนดชุดเครื่องมือให้กับ Agent 195

ฟังก์ชันชุดเครื่องมือ 198

การประกอบชุดเครื่องมือ 201

การรวมชุดเครื่องมือ 201

การกรองเครื่องมือ 202

การเพิ่ม Prefix ให้ชื่อเครื่องมือ 203

การเปลี่ยนชื่อเครื่องมือ 205

การกำหนดเครื่องมือแบบไดนามิก 207

การกำหนดให้ต้องขออนุมัติก่อนเรียกใช้เครื่องมือ 211

การเปลี่ยนพฤติกรรมการเรียกใช้เครื่องมือ 214

ชุดเครื่องมือภายนอก 217

การใช้งานเครื่องมือภายนอกและการใช้เครื่องมือ
ภายหลังร่วมกับ API

220

การสร้างชุดเครื่องมือแบบไดนามิก 225

การเรียกใช้เครื่องมือในภายหลัง 228

Human-in-the-Loop: การขออนุมัติใช้เครื่องมือ 230

ตัวอย่างขออนุมัติการลบไฟล์ทั้งหมด และการแก้ไข

ไฟล์ที่ถูกป้องกัน
232

External Tool Execution 240

ตัวอย่างส่งงานที่ใช้เวลานานไปประมวลผลเบื้อง
หลัง

242

เครื่องมือจากผู้ให้บริการโมเดล 248

การรองรับจากผู้ให้บริการ (Provider Support) 249

การตั้งค่าแบบไดนามิก (Dynamic Configuration) 250

Web Search Tool 252

Code Execution Tool 257

Image Generation Tool 262

Web Fetch Tool 269

Memory Tool 273

MCP Server Tool 277

File Search Tool 282

เครื่องมือที่มีมาให้ในตัว 286

DuckDuckGo Search Tool 287

Tavily Search Tool 289

สรุปเครื่องมือที่มีมาให้ในตัว 291

เครื่องมือจากผู้ให้บริการอื่นๆ 291

MCP (Model Context Protocol) Tools 292

เครื่องมือจาก LangChain 319

เครื่องมือจาก ACI.dev 321

การใช้เครื่องมือใน Docker MCP Gateway 324

การแปลงข้อความให้เป็นเวกเตอร์ 329

การใช้งาน 329

Queries vs Documents 331

ผลลัพธ์การค้นหา 331

ผู้ให้บริการโมเดล Embedding 333

OpenAI 333

Cohere 337

การใช้โมเดล Sentence Transformers 339

การติดตั้งไลบรารี 339

การตั้งค่าโมเดล 339

การเลือกอุปกรณ์ CPU/GPU 340

การเรียกใช้โมเดลของคุณเอง 341

การตั้งค่าเพิ่มเติมผ่าน EmbeddingSettings 341

การนับจำนวนโทเคน 342

การทดสอบ Embedding 343

การติดตามการทำงาน 344

การสร้าง Chatbot 346

สร้าง Agent ที่จดจำบริบทและโต้ตอบได้ 346

ตัวอย่างสร้างลูปสนทนา 347

ทดลองคุยกับ Chatbot 349

สร้าง Chatbot ที่มีบุคลิก (Persona) 350

ใช้ System Prompt เพื่อกำหนดบุคลิก 350

สร้าง Agent บุคลิกกัปตันแจ็ค 350

ทดลองคุยกับกัปตันแจ็ค 351

สร้างระบบ RAG (Retrieval-Augmented
Generation)

354

RAG คืออะไร 354

ข้อดีของ RAG 356

การใช้งาน RAG Agent ร่วมกับ FAISS 356

สร้างคลังความรู้ จากเอกสาร 357

เตรียมเครื่องมือและติดตั้งไลบรารี 358

ขั้นตอนสร้าง Vector Store 358

สร้าง Agent ที่ค้นข้อมูลจากเอกสารเพื่อตอบคำถาม 361

การใช้งาน RAG Agent ร่วมกับ Qdrant 364

ทำไมต้องใช้ Qdrant แทน FAISS? 365

วิธีการใช้งาน Qdrant ร่วมกับ RAG Agent 366

สร้างคลังความรู้ จากเอกสาร 367

สร้าง Agent ที่ค้นข้อมูลจากเอกสารเพื่อตอบคำถาม 372

เทคนิคการแปลงไฟล์เอกสารเป็น Markdown 375

การใช้งานผ่าน Python API 375

การใช้งานผ่าน Command Line Interface (CLI) 377

การสั่งงานฐานข้อมูล (SQL Generation) 379

สร้าง Tool สำหรับเชื่อมต่อกับฐานข้อมูล SQL 379

เตรียมฐานข้อมูลตัวอย่าง 380

สร้างฟังก์ชันสำหรับรัน SQL Query 383

สร้าง Agent ที่แปลงคำถามให้เป็น SQL Query 384

การสร้าง API ด้วย FastAPI 390

เตรียมความพร้อม 390

นำ Agent ไปใช้ใน FastAPI Endpoint 393

สร้าง API แบบ Streaming 396

การทำงานร่วมกันของ Agent หลายตัว 400

ทำไมต้องใช้ Agent หลายตัว 400

สร้าง Workflow Agents 402

กราฟ (Graphs) 408

การติดตั้ง 408

องค์ประกอบหลัก 409

GraphRunContext 409

End 409

Node 409

Graph 412

การสร้าง Mermaid Diagram 413

กราฟที่มีสถานะ (Stateful Graphs) 414

ตัวอย่าง เครื่องขายสินค้าอัตโนมัติ (Vending
Machine)

415

การใช้งานกราฟร่วมกับ PydanticAI 420

ตัวอย่างการใช้งานกราฟ 421

เรียกใช้ไลบรารี pydantic_graph 421

นิยามข้อมูลผู้ใช้งานและอีเมล 422

กำหนดสถานะภายใน Graph 422

สร้าง Agent สำหรับเขียนอีเมล 423

สร้าง Node: WriteEmail 423

สร้าง Agent สำหรับให้ feedback 424

สร้าง Node: Feedback 424

การเรียกใช้งานกราฟ 425

การวนลูปทำงานโดยใช้กราฟ (Graph Iteration) 425

ตัวอย่างกราฟนับถอยหลัง 425

การเรียกใช้งาน 426

การควบคุมการรัน node ด้วย GraphRun.next() 427

การบันทึกสถานะเพื่อ Resume 427

ตัวเลือกการบันทึกสถานะ 428

ตัวอย่างการ Resume จาก JSON File 428

การทดสอบและประเมินผล 431

ทำไมการประเมินผลจึงสำคัญกับ LLM Application 432

การสร้างชุดข้อมูล (Dataset) สำหรับทดสอบด้วย
pydantic_evals

433

การรัน Evaluator เพื่อวัดความแม่นยำของ Agent 435

การ Debug และ Monitoring 439

การใช้ Logfire เพื่อติดตามการทำงานของ Agent 440

เทคนิคการเขียน Unit Test สำหรับ Tools และ Agent 444

การทดสอบ Tools 444

การทดสอบ Agent 445

การใช้งาน OpenTelemetry กับ Pydantic AI 446

การใช้งาน Logfire ร่วมกับ otel-tui 447

การใช้งาน Logfire ร่วมกับ Opik 449

โปรโตคอล Agent2Agent (A2A) 452

FastA2A 455

การออกแบบ 455

ส่วนประกอบ A2A Protocol 456

องค์ประกอบของ FastA2A 456

ลักษณะการทำงานของ context_id 458

สถาปัตยกรรมของ Storage 459

การใช้งานร่วมกับ PydanticAI 459

ตัวอย่างโค้ด Pirate Agent 460

ตัวอย่างโค้ด A2A Sever 460

ทดสอบใช้งาน 464

โปรโตคอล Agent User Interaction (AG-UI) 466

ทำไมต้องใช้ AG-UI 466

การเชื่อมต่อที่มีอยู่แล้ว 467

การสร้างแอปด้วย create-ag-ui-app 470

การสร้างแอป CLI 471

การสร้างเว็บแอปด้วย CopilotKit และ Next.js 476

การใช้งาน PydanticAI CLI 485

การติดตั้งและการตั้งค่าเบื้องต้น 485

ตัวอย่างการเริ่มต้นและสนทนาเบื้องต้น 486

คำสั่งพิเศษในโหมดโต้ตอบ 487

ตัวอย่างการใช้งาน 489

การระบุโมเดลและเรียกใช้งาน Agent 489

การใช้งานร่วมกับ Agent 490

การเรียกใช้ CLI โดยตรงจาก Agent Instance 492

Web Chat UI 493

การติดตั้ง (Installation) 493

การใช้งานพื้นฐาน (Basic Usage) 494

ตัวอย่างการใช้งาน 494

การตั้งค่าโมเดล (Configuring Models) 495

ตัวอย่างการตั้งค่าโมเดล 495

การรองรับ Built-in Tools 496

ตัวอย่างรองรับ Built-in Tools 496

Memory Tool 497

คำสั่งเพิ่มเติม (Extra Instructions) 497

เส้นทางที่สงวนไว้ (Reserved Routes) 498

การเรียกใช้ WebUI ผ่าน Clai 499

การให้บริการ Agent ที่มีอยู่แล้ว 499

ตัวอย่างรูปแบบการเรียกใช้งาน 500

Memory Tool 500

ตัวเลือกของ Web UI (Web UI Options) 501

การเรียกใช้งานแบบ Programmatic 502

ดูตัวเลือกทั้งหมด 502

สร้างแอปแชทบอตด้วย Streamlit และ PydanticAI 504

ติดตั้ง Library 505

ตั้งค่า OpenAI API Key 505

สร้างไฟล์แอป 505

อธิบายโค้ด 512

การติดตั้งและตั้งค่าเบื้องต้น 512

การตั้งค่า UI เบื้องต้นของหน้าเว็บ 513

ตรวจสอบและขอ API Key จากผู้ใช้ (หากยังไม่มี) 513

สร้าง Agent ของ PydanticAI 514

เตรียม session state สำหรับเก็บข้อความและ
ประวัติสนทนา

515

แสดงข้อความเก่า 515

ฟังก์ชันจำลองการพิมพ์แบบไหล (streaming) 515

ฟังก์ชันเรียกใช้งาน Agent แบบ async 516

รับอินพุตจากผู้ใช้ และโต้ตอบกับ Agent 516

ส่วน Sidebar สำหรับควบคุมและข้อมูลสถานะ 517

ปุ่ม Refresh หน้าแชท 518

การใช้งาน 518

การ Deploy PydanticAI App 521

การ Deploy API ด้วย Docker Compose 521

ตัวอย่างโค้ด AI Agent API 521

สร้าง Dockerfile สำหรับ Build Container 523

สร้าง docker-compose.yaml สำหรับจัดการ
Service

524

สั่ง Build Image และ Run Container 525

การ Deploy Web App 527

ตัวอย่างโค้ด Web App ด้วย Streamlit 527

สร้าง Dockerfile สำหรับ Build Container 534

สร้าง docker-compose.yaml สำหรับจัดการ
Service

535

สั่ง Build Image และ Run Container 535

การ Deploy แบบ Agent CLI 536

ตัวอย่างโค้ด Agent CLI 536

สร้าง Dockerfile 537

สร้าง Docker Image 538

สั่ง Run Agent CLI โดยใช้ Docker 538

บทส่งท้าย การเดินทางของคุณกับ PydanticAI 540

ดาวน์โหลดซอร์สโค้ด 542

แนะนำ PydanticAI

ถ้า FastAPI คือเฟรมเวิร์กที่ทำให้การสร้าง API เป็นเรื่อง
สนุก PydanticAI ก็เป็นเครื่องมือสร้าง AI Agent ได้สนุกใน

แบบเดียวกัน

เว็บไซต์ ai.pydantic.dev

PydanticAI เป็นเฟรมเวิร์กสำหรับสร้าง AI Agent ด้วย

ภาษา Python ออกแบบมาเพื่อช่วยให้นักพัฒนาสามารถสร้าง
แอปพลิเคชัน Generative AI ในระดับ Production ได้อย่าง

รวดเร็ว ถูกต้อง และมีโครงสร้างที่ดี โดยอาศัยจุดแข็งของ

1

Pydantic ซึ่งเป็นเครื่องมือที่คุ้นเคยกันดีในวงการภาษา
Python และถูกใช้อย่างแพร่หลายในไลบรารี AI ชั้นนำ

แม้ว่าทุกวันนี้ไลบรารี LLM ต่างก็ใช้ Pydantic ในการ
จัดการข้อมูลอยู่เบื้องหลัง แต่กลับยังไม่มีเฟรมเวิร์กตัวไหนที่

มอบประสบการณ์การพัฒนาในแบบที่ FastAPI เคยทำได้ นั่น
จึงเป็นที่มาของ PydanticAI

จุดเด่นของ PydanticAI

PydanticAI สร้างโดยทีม Pydantic โดยตรง
PydanticAI พัฒนาขึ้นโดยทีมเดียวกับผู้สร้าง Pydantic

ไลบรารีตรวจสอบข้อมูลที่กลายเป็นหัวใจในไลบรารี AI ชั้น
นำหลากหลายตัว เช่น OpenAI SDK, LangChain,

LlamaIndex, Instructor, CrewAI และอื่นๆ อีกมากมาย
รองรับหลายโมเดล PydanticAI สามารถเชื่อมต่อกับ

โมเดลยอดนิยมได้หลากหลาย เช่น OpenAI, Anthropic,
Gemini, Ollama, Deepseek, Groq, Coher และ Mistral

พร้อมระบบอินเตอร์เฟซที่ยืดหยุ่น สามารถขยายให้รองรับ
โมเดลอื่นๆ ได้ง่าย

2

ทำงานร่วมกับ Pydantic Logfire ได้อย่างไร้รอยต่อ
สามารถเชื่อมต่อกับ Pydantic Logfire เพื่อดูการทำงาน

ของ Agent แบบเรียลไทม์ ตรวจสอบประสิทธิภาพ และ
พฤติกรรมของ LLM ได้สะดวกสบาย

ปลอดภัยด้วยระบบ Type Checking Agent และ
Output ในระบบของ PydanticAI ถูกออกแบบให้รองรับ

Type-safe อย่างเต็มรูปแบบ ทำให้โค้ดของคุณสามารถ
ตรวจสอบได้ตั้งแต่ก่อนรันจริง ช่วยลดข้อผิดพลาดในระบบ

เขียนได้ง่ายในสไตล์ Python เฟรมเวิร์กนี้ออกแบบโดยยึด
แนวคิด Pythonic ไม่ว่าจะเป็น Control Flow การจัดการ

Agent แบบ Composition หรือแม้แต่ Dependency
Injection ก็สามารถเขียนในรูปแบบที่คุณคุ้นเคยได้

จัดการผลลัพธ์ด้วยโครงสร้างที่แน่นอน การใช้ Pydantic
มาช่วยในการตรวจสอบและจัดรูปแบบผลลัพธ์จากโมเดล

LLM ทำให้คุณมั่นใจได้ว่า Response ที่ได้จากโมเดลจะมี
ความสม่ำเสมอ และสามารถนำไปใช้งานต่อได้ทันที

ระบบ Dependency Injection สามารถส่งข้อมูลหรือ
บริการต่างๆ ไปยัง Agent ได้ผ่านระบบ Dependency
Injection ซึ่งเหมาะอย่างยิ่งสำหรับการทำ Testing,

Mocking และการพัฒนาแบบ Iterative

3

รองรับการสตรีมผลลัพธ์จากโมเดล คุณสามารถรับ
ผลลัพธ์จาก LLM แบบสตรีม (Streamed Response) ได้

ทันที พร้อมระบบตรวจสอบข้อมูลในระหว่างการส่ง ทำให้
เหมาะสำหรับแอปที่ต้องตอบสนองแบบเรียลไทม์

เขียนโค้ดแบบกราฟด้วย Pydantic Graph สำหรับแอปที่
มีความซับซ้อน PydanticAI ยังรองรับการสร้างโฟลว์แบบ

กราฟด้วย Type Hint ช่วยให้การจัดการลำดับขั้นตอน
ต่างๆ มีความชัดเจน ลดปัญหาโค้ดพันกัน (Spaghetti

Code)

PydanticAI คือเฟรมเวิร์กที่ออกแบบมาสำหรับนักพัฒนา

Python ที่ต้องการพัฒนา AI Agent อย่างจริงจัง ให้
ประสบการณ์แบบเดียวกับการใช้ FastAPI แต่เป็นโลกของ

Generative AI

หากคุณกำลังมองหาเครื่องมือที่ช่วยให้การทำงานกับ LLM

เป็นระบบมากขึ้น ใช้ซ้ำได้ ตรวจสอบได้ และขยายได้ในระยะ
ยาว PydanticAI คือคำตอบที่คุณไม่ควรมองข้าม

ก้าวแรกสู่ AI Agent

4

ถ้าในโลกของการเขียนโปรแกรมมี “Hello, World!” เป็นบท
เรียนเบื้องต้น การสร้าง AI Agent ก็เริ่มต้นจากสิ่งที่สำคัญไม่แพ้

กัน นั่นคือ การสกัดข้อมูลแบบมีโครงสร้าง (Structured Data
Extraction)

หนึ่งในความท้าทายในการทำงานร่วมกับ Large
Language Models (LLMs) คือการรับมือกับผลลัพธ์ที่อยู่ในรูป

แบบของ “ข้อความอิสระ” (Unstructured Text) ซึ่งยากต่อ
การนำไปใช้งานในระบบซอฟต์แวร์แบบดั้งเดิม นี่คือจุดที่

PydanticAI เข้ามามีบทบาทสำคัญ โดยทำหน้าที่เป็นสะพาน
เชื่อมระหว่างโลกของข้อความที่คลุมเครือของ LLM กับโลกของ

ข้อมูลแบบมีโครงสร้างชัดเจนในแบบของ Pydantic

เราจะเริ่มต้นจากตัวอย่างง่ายๆ เพื่อเรียนรู้ การใช้งาน

PydanticAI อย่างเป็นรูปธรรม โดยการสร้าง Agent ที่สามารถ
อ่านข้อความธรรมดา แล้วสกัดข้อมูลชื่อ อายุ และแปลงข้อมูลที่

ได้ ให้อยู่ในรูปแบบของ Pydantic Object ที่สามารถใช้งานและ
ตรวจสอบความถูกต้องได้ทันที

เครื่องมือที่ต้องใช้มีดังนี้

Python 3.9 ขึ้นไป

5

ไลบรารี pydantic-ai และ openai
OpenAI API Key

เริ่มจากการติดตั้งไลบรารีที่จำเป็น ดังนี้

จากนั้นให้ตั้งค่า OpenAI API Key ของคุณเป็น

environment variable ดังนี้

สำหรับ Linux หรือ macOS

สำหรับ Windows (Command Prompt)

สำหรับ Windows (Powershell)

pip install "pydantic-ai-slim[openai]"

export OPENAI_API_KEY="sk-..."

set OPENAI_API_KEY="sk-..."

$env:OPENAI_API_KEY="sk-..."

6

นิยามโครงสร้างข้อมูลด้วย Pydantic โดยการออกแบบ
“พิมพ์เขียว” ให้กับข้อมูลที่เราต้องการให้ LLM ช่วยดึงออกมา

ดังนี้

สร้างไฟล์ชื่อ extract_user.py แล้วใส่โค้ดโมเดล User ต่อ

ไปนี้

การระบุ docstring และ description ชัดเจนในแต่ละฟิลด์
ช่วยให้ LLM เข้าใจว่าแต่ละฟิลด์หมายถึงอะไร และควรดึงข้อมูล

แบบไหน

from pydantic import BaseModel, Field

class User(BaseModel):
 """

 A model for storing user data extracted from text
 The text in this docstring will be passed to LLM
for understanding

 """
 name: str = Field(description="Full name and
surname of the user")
 age: int = Field(description="Age of the user in
years")

7

จากนั้นเราจะสร้าง Agent ที่ทำหน้าที่ดึงข้อมูลจากข้อความ
ให้เป็นไปตามโมเดล User ที่นิยามไว้ เพิ่มโค้ดลงในไฟล์

extract_user.py ดังนี้

from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel

llm = OpenAIModel('gpt-4o')

agent = Agent(llm)

prompt = "My name is John Doe and I will be 30 years
old on my next birthday."

print(f"Input Prompt: '{prompt}'\n")

agent_run_result = agent.run_sync(prompt,
output_type=User)

result: User = agent_run_result.output

print("--- Extracted Data ---")
print(f"Name: {result.name}")

print(f"Age: {result.age}")

print(f"\nType of result: {type(result)}")

print("Object: ", repr(result))

print("----------------------")

8

รันทดสอบจาก Terminal รันไฟล์ด้วยคำสั่ง

คุณจะเห็นผลลัพธ์ในลักษณะนี้

Input Prompt: 'My name is John Doe and I will be 30

years old on my next birthday.'

--- Extracted Data ---

Name: John Doe

Age: 29

Type of result: <class '__main__.User'>

Object: User(name='John Doe', age=29)

วิเคราะห์ผลลัพธ์

1. ความถูกต้องของข้อมูล Agent สามารถสกัดชื่อ John
Doe และอายุ 29 ได้อย่างแม่นยำ ในข้อความจะใช้คำว่า

“will be 30” ซึ่งหมายถึงในอนาคตจะอายุ 30
2. ผลลัพธ์เป็นวัตถุ Pydantic ตัวแปร result ไม่ใช่แค่ string

หรือ dict แต่เป็นอินสแตนซ์ของคลาส User ทำให้สามารถ

python extract_user.py

9

เรียกใช้ result.name และ result.age ได้โดยตรง พร้อม
ระบบตรวจสอบข้อมูลและ Type Hint ของ Pydantic

เบื้องหลัง PydanticAI ทำงานดังนี้

แปลงโมเดล User ให้เป็น Schema ที่ LLM เข้าใจ เหมือน

Function Calling
สร้าง Prompt ที่ประกอบด้วย Schema และคำสั่งเพื่อให้

LLM ตอบกลับข้อมูลในโครงสร้างที่กำหนด

รับค่าตอบกลับ มักเป็น JSON string และนำมาสร้างเป็น

อินสแตนซ์ของ User พร้อมตรวจสอบความถูกต้องให้
อัตโนมัติ

PydanticAI ช่วยให้เราสามารถ “ประกาศว่าเราต้องการ
ข้อมูลแบบไหน” และปล่อยให้ Agent จัดการส่วนที่ยุ่งยากใน

การสื่อสารกับ LLM แทนเรา

ในบทถัดไป เราจะเจาะลึกองค์ประกอบต่างๆ ของ Agent

รวมถึงการเชื่อมต่อกับ LLM จากผู้ให้บริการอื่น เพื่อขยายความ
สามารถของระบบต่อไป

10

องค์ประกอบของ PydanticAI

เรามาเจาะลึกองค์ประกอบสำคัญของ PydanticAI ซึ่งเป็น
รากฐานในการสร้างแอปพลิเคชันที่ขับเคลื่อนด้วยปัญญา

ประดิษฐ์ ความเข้าใจในองค์ประกอบเหล่านี้จะช่วยให้คุณ
สามารถนำ PydanticAI ไปปรับใช้ในงานต่างๆ ได้อย่างยืดหยุ่น

มีประสิทธิภาพ และสามารถขยายต่อยอดได้ในอนาคต

PydanticAI มีองค์ประกอบหลัก ดังนี้

1. Agent ตัวควบคุมหลัก หรือ “สมอง” ของระบบ
2. LLM Models ส่วนที่เชื่อมต่อกับผู้ให้บริการ Large

Language Models
3. Messages และ Chat History กลไกการจัดการบริบท

ของบทสนทนา

Agent

Agent คือคลาสหลักที่ทำหน้าที่เป็นศูนย์กลางการประมวล
ผลทั้งหมดใน PydanticAI ทำหน้าที่รับคำสั่งจากผู้ใช้ (prompt),

ทำงานประสานกับ LLM, ตัดสินใจว่าจะเรียกใช้เครื่องมือ

11

(Tools) ใดบ้าง และจัดการส่งผลลัพธ์กลับไปยังผู้ใช้อย่างมี
แบบแผน

กระบวนการทำงานของ Agent ประกอบด้วย

รับข้อมูลจากผู้ใช้

สร้าง prompt ที่เหมาะสมสำหรับส่งไปยัง LLM
เรียกใช้งาน LLM เพื่อประมวลผลคำตอบ

ตรวจสอบผลลัพธ์ที่ได้ และตัดสินใจว่าจะตอบกลับหรือ
เรียกใช้เครื่องมือเพิ่มเติม

ส่งผลลัพธ์สุดท้ายกลับในรูปแบบข้อมูลที่โครงสร้างชัดเจน
ด้วย Pydantic Model

LLM Model

PydanticAI ถูกออกแบบให้สามารถทำงานร่วมกับ LLM
จากหลากหลายผู้ให้บริการได้อย่างยืดหยุ่น ผ่านคลาส Model

ซึ่งเป็นตัวกลางในการสื่อสารกับ API ของแต่ละราย เช่น
OpenAI, Google (Gemini) หรือ Anthropic (Claude) เป็นต้น

ทำให้สามารถสลับเปลี่ยนโมเดลได้โดยไม่ต้องแก้ไขโค้ดมาก

OpenAI

12

ติดตั้ง OpenAI Model ดังนี้

ตั้งค่า API Key ของ OpenAI ใน environment variable

ดังนี้

เชื่อมต่อกับโมเดลของ OpenAI อย่างเช่น gpt-5 สามารถ

ทำได้ดังนี้

หรือเรียกใช้ผ่าน OpenAIModel ดังนี้

pip install "pydantic-ai-slim[openai]"

export OPENAI_API_KEY='your-api-key'

from pydantic_ai import Agent

agent = Agent('openai:gpt-5')

from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel

13

คุณสามารถกำหนด API Key ผ่าน provider ดังนี้

OpenAI Responses API

Pydantic AI รองรับการใช้งาน OpenAI Responses
API โดยตรง ซึ่งเป็น API รุ่ นใหม่ของ OpenAI ที่ออกแบบมาให้

จัดการบริบทการสนทนา เครื่องมือ (tools) และเหตุผลการตอบ
(reasoning) ได้อย่างมีประสิทธิภาพมากขึ้น

คุณสามารถใช้งาน OpenAIResponsesModel ได้ทั้งในรูป
แบบการอ้างอิงชื่อโมเดลโดยตรง หรือการสร้างอินสแตนซ์ของ

model = OpenAIModel('gpt-5')

agent = Agent(model)

from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import
OpenAIProvider

แนะนำให้ตั้งค่า API Key ผ่าน environment variable

provider = OpenAIProvider(api_key='your-api-key')

model = OpenAIModel('gpt-5', provider=provider)

agent = Agent(model)

14

โมเดลด้วยตนเอง

การใช้งานด้วยชื่อโมเดลโดยตรง

Built-in Tools ของ Responses API

Responses API มาพร้อม Built-in Tools ที่สามารถใช้
งานได้ทันที โดยไม่จำเป็นต้องพัฒนาเครื่องมือเอง ได้แก่

Web search — ให้โมเดลค้นหาข้อมูลล่าสุดจากเว็บก่อน
สร้างคำตอบ

Code interpreter — ให้โมเดลเขียนและรันโค้ด Python
ใน sandbox ก่อนตอบกลับ

Image generation — ให้โมเดลสร้างภาพจากข้อความ
File search — ให้โมเดลค้นหาข้อมูลจากไฟล์ของคุณ

from pydantic_ai import Agent
from pydantic_ai.models.openai import
OpenAIResponsesModel

model = OpenAIResponsesModel('gpt-5')

agent = Agent(model)

...

15

Computer use — ให้โมเดลควบคุมคอมพิวเตอร์เพื่อ
ทำงานแทนผู้ใช้

เครื่องมือ Web search, Code interpreter, Image
generation และ File search รองรับแบบ native ผ่านฟีเจอร์

Built-in tools ของ Pydantic AI

การเปิดใช้งาน Computer Use

เครื่องมือ Computer use สามารถเปิดใช้งานได้โดย
กำหนด ComputerToolParam ใน openai_builtin_tools ของ

OpenAIResponsesModelSettings

หมายเหตุ ในปัจจุบัน Computer use ยังไม่สร้าง

BuiltinToolCallPart หรือ BuiltinToolReturnPart ใน
message history และไม่รองรับ streamed events

from openai.types.responses import ComputerToolParam

from pydantic_ai import Agent
from pydantic_ai.models.openai import
OpenAIResponsesModel, OpenAIResponsesModelSettings

model_settings = OpenAIResponsesModelSettings(

16

การอ้างอิงคำตอบก่อนหน้า

Responses API รองรับการอ้างอิงคำตอบก่อนหน้าของ

โมเดลผ่านพารามิเตอร์ previous_response_id เพื่อให้บริบท
การสนทนาและ reasoning ก่อนหน้ายังคงอยู่ครบถ้วน

ใน Pydantic AI สามารถใช้งานได้ผ่านฟิลด์
openai_previous_response_id ใน
OpenAIResponsesModelSettings

 openai_builtin_tools=[

 ComputerToolParam(

 type='computer_use',

)
],

)

model = OpenAIResponsesModel('gpt-5')
agent = Agent(model=model,
model_settings=model_settings)

result = agent.run_sync('Open a new browser tab')

print(result.output)

17

ด้วยวิธีนี้ โมเดลสามารถต่อยอดจาก reasoning เดิมของ

ตนเองได้ โดยไม่จำเป็นต้องส่ง message history ทั้งหมดซ้ำ
อีกครั้ง

การอ้างอิงคำตอบก่อนหน้าแบบอัตโนมัติ

from pydantic_ai import Agent
from pydantic_ai.models.openai import
OpenAIResponsesModel, OpenAIResponsesModelSettings

model = OpenAIResponsesModel('gpt-5')

agent = Agent(model=model)

result = agent.run_sync('The secret is 1234')

model_settings = OpenAIResponsesModelSettings(
 openai_previous_response_id=result.all_messages()
[-1].provider_response_id

)

result = agent.run_sync('What is the secret code?',
model_settings=model_settings)

print(result.output)

#> 1234

18

หากตั้งค่า openai_previous_response_id เป็น 'auto'
Pydantic AI จะเลือก provider_response_id ล่าสุดจาก

message history ให้โดยอัตโนมัติ และจะตัดข้อความก่อนหน้า
นั้นออกจากคำขอ เพื่อให้ OpenAI API ใช้ประโยชน์จาก

server-side history ได้อย่างมีประสิทธิภาพมากขึ้น

from pydantic_ai import Agent
from pydantic_ai.models.openai import
OpenAIResponsesModel, OpenAIResponsesModelSettings

model = OpenAIResponsesModel('gpt-5')

agent = Agent(model=model)

result1 = agent.run_sync('Tell me a joke.')

print(result1.output)
#> Did you hear about the toothpaste scandal? They
called it Colgate.

เมื่อกำหนดเป็น 'auto'

ระบบจะส่งเฉพาะ provider_response_id ล่าสุด

และข้อความหลังจากนั้นไปยัง OpenAI

model_settings = OpenAIResponsesModelSettings(
 openai_previous_response_id='auto'

)

result2 = agent.run_sync(

19

แนวทางนี้ช่วยลดขนาดของ context ที่ต้องส่งซ้ำ และเพิ่ม
ประสิทธิภาพในการเรียกใช้งาน Responses API โดยยังคง

ความต่อเนื่องของการสนทนาไว้ครบถ้วน

Google

ติดตั้ง Google Model ดังนี้

ตั้งค่า API Key ของ Gemini ใน Environment Variable
ดังนี้

 'Explain?',

 message_history=result1.new_messages(),

 model_settings=model_settings

)
print(result2.output)
#> This is an excellent joke invented by Samuel
Colvin, it needs no explanation.

pip install "pydantic-ai-slim[google]"

export GOOGLE_API_KEY=your-api-key

20

Google Generative Language API

เชื่อมต่อกับโมเดลของ Google ทำได้ได้ดังนี้

หรือตั้งค่าผ่าน GoogleModel ดังนี้

Vertext AI

หากคุณใช้ Vertext AI ในบริการ Google Cloud เรียกใช้

งานได้ดังนี้

from pydantic_ai import Agent

agent = Agent('google-gla:gemini-2.5-pro')
...

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

provider = GoogleProvider(api_key='your-api-key')
model = GoogleModel('gemini-2.5-flash',
provider=provider)

agent = Agent(model)

21

หรือ

หากคุณต้องการระบุ Service Account ผ่านไฟล์ JSON
ทำได้ดังนี้

from pydantic_ai import Agent

agent = Agent('google-vertex:gemini-2.5-pro')

...

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

provider = GoogleProvider(vertexai=True)
model = GoogleModel('gemini-2.5-flash',
provider=provider)

agent = Agent(model)

from google.oauth2 import service_account

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

22

หากต้องการระบุ location ที่ให้บริการ VertexAI ทำได้
ดังนี้

credentials =
service_account.Credentials.from_service_account_file
(

 'path/to/service-account.json',
 scopes=['https://www.googleapis.com/auth/cloud-
platform'],

)

provider = GoogleProvider(credentials=credentials)
model = GoogleModel('gemini-2.5-flash',
provider=provider)

agent = Agent(model)

...

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

provider = GoogleProvider(vertexai=True,
location='asia-east1', project='your-gcp-project-id')
model = GoogleModel('gemini-2.5-flash',
provider=provider)

23

นอกจากนี้ยังสามารถตั้งค่า Model เพิ่มเติมโดยใช้
GoogleModelSettings ดังนี้

agent = Agent(model)

...

from google.genai.types import HarmBlockThreshold,
HarmCategory

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel,
GoogleModelSettings

settings = GoogleModelSettings(

 temperature=0.2,

 max_tokens=1024,

 google_thinking_config={'thinking_budget': 2048},
 google_safety_settings=[

 {
 'category':
HarmCategory.HARM_CATEGORY_HATE_SPEECH,
 'threshold':
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

 }

]

)

24

Model Garden

คุณสามารถเข้าถึงโมเดลจาก Model Garden ที่รองรับ
generateContent API และเปิดให้ใช้งานภายใต้โปรเจกต์ GCP

ของคุณได้ ซึ่งรวมถึงโมเดลตระกูล Gemini และโมเดลอื่น ๆ อีก
มากมาย โดยสามารถระบุ model_name ได้ตามรูปแบบต่อไป

นี้

{model_id} สำหรับโมเดล Gemini

{publisher}/{model_id}
publishers/{publisher}/models/{model_id}

projects/{project}/locations/{location}/publishers/
{publisher}/models/{model_id}

รูปแบบเหล่านี้ช่วยให้คุณอ้างอิงโมเดลได้ทั้งจากผู้เผยแพร่
(publisher) โดยตรง หรือจากโมเดลที่ถูกผูกไว้กับโปรเจกต์และ

ภูมิภาค (location) เฉพาะใน GCP

model = GoogleModel('gemini-2.5-flash')

agent = Agent(model, model_settings=settings)

25

ตัวอย่างด้านล่างแสดงการใช้งานโมเดลจาก Model
Garden ผ่าน GoogleModel โดยกำหนดค่าโปรเจกต์และ

ภูมิภาคด้วย GoogleProvider

ในตัวอย่างนี้ เอเจนต์จะใช้โมเดล meta/llama-3.3-70b-

instruct-maas จาก Model Garden ซึ่งถูกเรียกใช้งานผ่านโปร
เจกต์และภูมิภาคที่กำหนดไว้ ทำให้สามารถผสานโมเดลจากผู้

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

provider = GoogleProvider(

 project='your-gcp-project-id',
 location='us-central1', # region ที่โมเดลพร้อมให้ใช้
งาน
)

model = GoogleModel(

 'meta/llama-3.3-70b-instruct-maas',

 provider=provider

)

agent = Agent(model)

...

26

ให้บริการหลายรายเข้ากับ Pydantic AI ได้อย่างยืดหยุ่นภายใต้
โครงสร้างของ GCP

การรับอินพุตแบบ Document, Image, Audio และ Video

GoogleModel รองรับอินพุตแบบ Multi-modal อย่าง

ครบถ้วน ไม่ว่าจะเป็นเอกสาร รูปภาพ เสียง หรือวิดีโอ ทำให้
สามารถส่งข้อมูลหลากหลายรูปแบบให้โมเดลประมวลผลร่วม

กันได้

การใช้งาน YouTube Video URL โดยตรง

คุณสามารถส่ง URL ของวิดีโอ YouTube ให้กับโมเดล
Google ได้โดยตรง เช่น

from pydantic_ai import Agent, VideoUrl
from pydantic_ai.models.google import GoogleModel

agent = Agent(GoogleModel('gemini-2.5-flash'))

result = agent.run_sync(

 [

 'What is this video about?',
 VideoUrl(url='https://www.youtube.com/watch?
v=dQw4w9WgXcQ'),

27

ในตัวอย่างนี้ เอเจนต์จะรับทั้งคำถามและ URL ของวิดีโอ
เพื่อให้โมเดลวิเคราะห์เนื้อหาของวิดีโอและตอบกลับมาโดยตรง

การอัปโหลดไฟล์ผ่าน Files API

นอกจาก URL ภายนอกแล้ว คุณยังสามารถอัปโหลดไฟล์

ผ่าน Files API และส่งไฟล์นั้นให้โมเดลในรูปแบบ URL ได้เช่น
กัน

]

)

print(result.output)

from pydantic_ai import Agent, DocumentUrl
from pydantic_ai.models.google import GoogleModel
from pydantic_ai.providers.google import
GoogleProvider

provider = GoogleProvider()
file = provider.client.files.upload(file='pydantic-
ai-logo.png')

assert file.uri is not None

agent = Agent(GoogleModel('gemini-2.5-flash',
provider=provider))

28

ในกรณีนี้ ไฟล์รูปภาพจะถูกอัปโหลดก่อน จากนั้นนำ uri
ของไฟล์มาใช้เป็นอินพุตให้กับเอเจนต์ พร้อมระบุชนิดสื่อ
(media_type) ให้ถูกต้อง

การตั้งค่าโมเดล

คุณสามารถปรับพฤติกรรมของโมเดลได้ผ่าน

GoogleModelSettings เพื่อควบคุมรูปแบบการตอบ ความ
ยาวของผลลัพธ์ และการตั้งค่าด้านความปลอดภัย

result = agent.run_sync(

 [

 'What company is this logo from?',
 DocumentUrl(url=file.uri,
media_type=file.mime_type),

]

)

print(result.output)

from google.genai.types import HarmBlockThreshold,
HarmCategory

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel,
GoogleModelSettings

29

การตั้งค่าเหล่านี้ช่วยให้คุณควบคุมระดับความสุ่มของคำ
ตอบ (temperature) จำนวนโทเคนสูงสุด และระดับการ “คิด”

ของโมเดล รวมถึงกำหนดกฎด้านความปลอดภัยได้อย่าง
ละเอียด

การปิด Thinking

settings = GoogleModelSettings(

 temperature=0.2,

 max_tokens=1024,
 google_thinking_config={'thinking_level': 'low'},

 google_safety_settings=[

 {
 'category':
HarmCategory.HARM_CATEGORY_HATE_SPEECH,
 'threshold':
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

 }

]
)

model = GoogleModel('gemini-2.5-pro')

agent = Agent(model, model_settings=settings)

...

30

สำหรับโมเดลที่เก่ากว่า Gemini 2.5 Pro คุณสามารถปิด
การทำงานด้าน thinking ได้ โดยตั้งค่า thinking_budget เป็น

0

การตั้งค่าความปลอดภัย

คุณสามารถกำหนดนโยบายด้านความปลอดภัยของโมเดล

ได้ผ่านฟิลด์ google_safety_settings เช่น การบล็อกเนื้อหาที่
เข้าข่าย Hate Speech

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel,
GoogleModelSettings

model_settings = GoogleModelSettings(

 google_thinking_config={'thinking_budget': 0}

)

model = GoogleModel('gemini-2.5-flash')

agent = Agent(model, model_settings=model_settings)

...

31

การตั้งค่านี้ช่วยให้คุณควบคุมระดับการกรองเนื้อหาได้ตาม
ข้อกำหนดด้านจริยธรรมและความปลอดภัยของแอปพลิเคชันที่

คุณพัฒนา

Anthropic (Claude)

from google.genai.types import HarmBlockThreshold,
HarmCategory

from pydantic_ai import Agent
from pydantic_ai.models.google import GoogleModel,
GoogleModelSettings

model_settings = GoogleModelSettings(

 google_safety_settings=[

 {
 'category':
HarmCategory.HARM_CATEGORY_HATE_SPEECH,
 'threshold':
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

 }
]

)

model = GoogleModel('gemini-2.5-flash')

agent = Agent(model, model_settings=model_settings)

...

32

ติดตั้ง Anthropic Model ดังนี้

ตั้งค่า API Key ของ Anthropic ใน Environment

Variable ดังนี้

เรียกใช้โมเดล Claude ของ Anthropic ดังนี้

หรือเรียกใช้ผ่าน AnthropicModel ดังนี้

pip install "pydantic-ai-slim[anthropic]"

export ANTHROPIC_API_KEY='your-api-key'

from pydantic_ai import Agent

agent = Agent('anthropic:claude-4-5-sonnet-latest')

from pydantic_ai import Agent
from pydantic_ai.models.anthropic import
AnthropicModel

model = AnthropicModel('claude-4-5-sonnet-latest')

agent = Agent(model)

33

กำหนด API Key ผ่าน provider ดังนี้

การใช้งานร่วมกับ Cloud Platform

คุณสามารถใช้งานโมเดลของ Anthropic ผ่านแพลตฟอร์ม

คลาวด์ต่าง ๆ ได้ โดยการส่ง custom client เข้าไปให้กับ
AnthropicProvider

AWS Bedrock

หากต้องการใช้งานโมเดล Claude ผ่าน AWS Bedrock ให้

ทำตามเอกสารของ Anthropic เพื่อสร้าง

from pydantic_ai import Agent
from pydantic_ai.models.anthropic import
AnthropicModel
from pydantic_ai.providers.anthropic import
AnthropicProvider

provider = AnthropicProvider(api_key='your-api-key')
model = AnthropicModel('claude-4-5-sonnet-latest',
provider=provider)

agent = Agent(model)

34

