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คำนำ

หนังสือ ปั้ น AI Agent ด้วย Dartantic AI เล่มนี้จัดทำขึ้นเพื่อ
เป็นแนวทางเชิงปฏิบัติสำหรับนักพัฒนาที่ต้องการสร้างและ

ประยุกต์ใช้ระบบปัญญาประดิษฐ์ (AI) ด้วยภาษา Dart ในยุคที่
ระบบอัจฉริยะมีบทบาทสำคัญต่อการพัฒนาซอฟต์แวร์ ตั้งแต่การ

ประมวลผลภาษาธรรมชาติ การวิเคราะห์ข้อมูล ไปจนถึงการสร้าง AI
Agent ที่สามารถทำงานอัตโนมัติได้อย่างมีประสิทธิภาพ ความ

เข้าใจและความสามารถในการนำ AI ไปใช้งานจริงจึงกลายเป็นทักษะ
ที่จำเป็นอย่างยิ่ง

แม้ Dart จะเป็นที่รู้ จักอย่างแพร่หลายในงานพัฒนา
แอปพลิเคชันข้ามแพลตฟอร์ม แต่ด้วยประสิทธิภาพของภาษา

ระบบนิเวศที่แข็งแกร่ง และความสามารถในการผสานรวมกับบริการ
และโมเดล AI สมัยใหม่ Dart จึงมีศักยภาพสูงในการพัฒนาระบบ

อัจฉริยะ หนังสือเล่มนี้มุ่งแสดงให้เห็นว่า Dart และ DartanticAI
สามารถนำมาใช้สร้าง AI Agent ได้อย่างเป็นระบบ ยืดหยุ่น และ

เหมาะสมกับการใช้งานจริง

เนื้อหาภายในเล่มออกแบบในรูปแบบเชิงปฏิบัติ โดยแต่ละบทนำ
เสนอแนวคิด ขั้นตอน และตัวอย่างโค้ดที่สามารถนำไปใช้งานและ



ต่อยอดได้ทันที ครอบคลุมตั้งแต่พื้นฐานของ AI Agent ไปจนถึง
การเชื่อมต่อกับโมเดลภาษาขนาดใหญ่และการนำระบบไปใช้งานจริง

หวังเป็นอย่างยิ่งว่าหนังสือเล่มนี้จะช่วยให้ผู้อ่านสามารถพัฒนา
โซลูชัน AI ด้วย Dart ได้อย่างมั่นใจและมีประสิทธิภาพ
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แนะนำ Dartantic AI

การพัฒนาแอปพลิเคชันที่ขับเคลื่อนด้วยปัญญาประดิษฐ์จำเป็น
ต้องมีเฟรมเวิร์กที่สามารถจัดการความซับซ้อนในการทำงานร่วมกับ

โมเดลภาษาขนาดใหญ่ (Large Language Models: LLMs) อย่าง
มีประสิทธิภาพ

Dartantic AI คือเฟรมเวิร์กสำหรับภาษา Dart ออกแบบมาเพื่อ
วัตถุประสงค์นี้โดยเฉพาะ โดยใช้สถาปัตยกรรมเชิงเอเจนต์

(Agent-based Architecture) เพื่อลดความซับซ้อนในการจัดการ
ผู้ ให้บริการ การเรียกใช้เครื่องมือ และการควบคุมบริบทการสนทนา

เนื้อหาในบทนี้จะแนะนำแนวคิดหลัก คุณสมบัติ และโครงสร้าง
พื้นฐานของ Dartantic AI เพื่อเป็นรากฐานสำหรับการพัฒนาเอเจน

ต์ขั้นสูงในบทต่อ ๆ ไป

Dartantic AI คืออะไร

Dartantic AI คือ Agent Framework สำหรับภาษา Dart ที่

ออกแบบมาเพื่อลดความซับซ้อนในการสร้างแอปพลิเคชัน
Generative AI ทั้งฝั่ งไคลเอนต์และเซิร์ฟเวอร์ โดยมีเป้าหมายหลัก
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เพื่อให้นักพัฒนาสามารถมุ่งเน้นไปที่การออกแบบพฤติกรรม
อัจฉริยะ (Agentic Behavior) และตรรกะทางธุรกิจ

Dartantic AI มีอินเทอร์เฟซที่เป็นมาตรฐานช่วยจัดการกับความ
แตกต่างของ API ของผู้ ให้บริการ ลดความซับซ้อนในการจัดการ

API ที่แตกต่างกัน การแปลงข้อมูล และการควบคุมลำดับการทำงาน
ของเอเจนต์ ทำให้กระบวนการพัฒนารวดเร็วและเป็นระบบมากขึ้น

คุณสมบัติ

พฤติกรรมเชิงเอเจนต์และการเรียกใช้เครื่องมือหลายขั้นตอน
(Multi-step Tool Calling) เอเจนต์สามารถเรียกใช้เครื่อง

มือหลายชนิดต่อเนื่องกันโดยอัตโนมัติ เพื่อแก้ ไขปัญหาที่ซับ
ซ้อนโดยไม่ต้องอาศัยการสั่งงานจากผู้ ใช้ ในแต่ละขั้นตอน

รองรับผู้ ให้บริการหลายราย (Multi-provider Support) มี
ระบบรองรับผู้ ให้บริการ Generative AI ชั้นนำมาพร้อมใช้งาน

(Built-in) เช่น OpenAI, Google, Anthropic, Mistral,
Cohere และ Ollama

มาตรฐาน OpenAI-compatible API สามารถเชื่อมต่อกับผู้
ให้บริการที่รองรับ OpenAI API ซึ่งเป็นมาตรฐานที่แพร่หลาย

ในปัจจุบันได้อย่างสะดวก
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การส่งผลลัพธ์แบบสตรีมมิง (Streaming Output) รองรับ
การสร้างคำตอบแบบเรียลไทม์ เหมาะสำหรับแอปพลิเคชันที่

ต้องการการตอบสนองอย่างต่อเนื่อง เช่น แชตบอต
ผลลัพธ์แบบมีชนิดข้อมูล (Typed Outputs) ผสานระบบ

ชนิดข้อมูลของภาษา Dart เข้ากับการแปลงข้อมูล JSON เพื่อ
ให้ ได้ผลลัพธ์ที่มีโครงสร้างชัดเจนและลดความผิดพลาด

อินพุตแบบมัลติมีเดีย (Multimedia Inputs) สามารถ
ประมวลผลอินพุตที่ประกอบด้วยข้อความ รูปภาพ และไฟล์

ข้อมูลภายในคำสั่งเดียวกัน
การสร้างสื่อ (Media Generation) รองรับการสร้างและสตรี

มรูปภาพ, PDF และไฟล์ประเภทอื่น ๆ จากผู้ ให้บริการอย่าง
OpenAI, Google และ Anthropic

Embeddings รองรับการสร้างเวกเตอร์สำหรับงานค้นหาเชิง
ความหมาย (Semantic Search) และการวิเคราะห์ความ

คล้ายคลึง
การแสดงผลกระบวนการคิดของโมเดล (Model

Reasoning) รองรับการแสดงผลกระบวนการให้เหตุผลของ
โมเดล (ที่มักเรียกว่า “Thinking”) จากผู้ ให้บริการที่รองรับ
คุณสมบัตินี้
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เครื่องมือฝั่ งเซิร์ฟเวอร์ (Server-side Tools) สามารถเรียก
ใช้เครื่องมือที่โฮสต์ โดยผู้ ให้บริการ เช่น การค้นหาเว็บ, การรัน

โค้ด, และการสร้างภาพ
รองรับ Model Context Protocol (MCP) สามารถทำงาน

ร่วมกับ MCP Server เพื่อขยายขีดความสามารถของเอเจนต์
ได้อย่างยืดหยุ่น

พร้อมสำหรับใช้งานจริง (Production Ready) มีระบบ
บันทึกข้อมูลเหตุการณ์ (Logging), การจัดการข้อผิดพลาด,

และกลไกการลองใหม่ (Retry) ที่เหมาะสำหรับสภาพแวดล้อม
โปรดักชัน

ขยายความสามารถได้ (Extensible) โครงสร้างออกแบบมาให้
สามารถเพิ่มผู้ ให้บริการ, สร้างเครื่องมือเฉพาะทาง, หรือเชื่อม

ต่อกับ MCP Server ได้ง่าย

โครงสร้างพื้นฐานเอเจนต์

โครงสร้างพื้นฐานเอเจนต์ (Agent) เป็นจุดเริ่มต้นสำคัญในการ

พัฒนาแอปพลิเคชัน AI ด้วย Dartantic AI โดยแนวคิดหลักคือการ
ห่อหุ้มความสามารถของโมเดลภาษา (LLM) ไว้ ในอ็อบเจกต์เดียว

เพื่อให้ผู้พัฒนาสามารถสื่อสารกับโมเดลได้อย่างเป็นระบบ เรียบง่าย
และเปลี่ยนผู้ ให้บริการได้ โดยไม่กระทบกับโค้ดส่วนอื่นของระบบ
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จากโค้ดข้างต้น นำเข้าแพ็กเกจ dartantic_ai ซึ่งเป็นไลบรารี
หลักที่ใช้สำหรับสร้างและจัดการเอเจนต์ AI ในภาษา Dart

สร้างอินสแตนซ์ของ Agent โดยกำหนดชื่อผู้ ให้บริการโมเดล
ภาษา (Provider) เป็น 'claude' ซึ่งสามารถเปลี่ยนเป็น 'openai',

'gemini' หรือผู้ ให้บริการอื่นที่รองรับได้ โดยไม่ต้องแก้ ไขโครงสร้าง
โค้ดหลัก

ส่งข้อความไปยังเอเจนต์เพื่อให้ โมเดลประมวลผล คำสั่งนี้เป็น
แบบ asynchronous และจะคืนค่าเป็นอ็อบเจกต์ผลลัพธ์

(ChatResult) ที่บรรจุข้อมูลการตอบกลับจากโมเดล

import 'package:dartantic_ai/dartantic_ai.dart';

final agent = Agent('claude'); // or 'openai', 
'gemini', etc.

final result = await agent.send('Hello!');

print(result.output);

import 'package:dartantic_ai/dartantic_ai.dart';

final agent = Agent('claude'); // หรือ 'openai', 
'gemini', etc.
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