


ปั้ น AI Agent ด้วย Dartantic
AI

คู่มือสร้างเอเจนต์จากพื้นฐานสู่การใช้งานจริง

อนุชิต ชโลธร



คำนำ

หนังสือ ปั้ น AI Agent ด้วย Dartantic AI เล่มนี้จัดทำขึ้นเพื่อ
เป็นแนวทางเชิงปฏิบัติสำหรับนักพัฒนาที่ต้องการสร้างและ

ประยุกต์ใช้ระบบปัญญาประดิษฐ์ (AI) ด้วยภาษา Dart ในยุคที่
ระบบอัจฉริยะมีบทบาทสำคัญต่อการพัฒนาซอฟต์แวร์ ตั้งแต่การ

ประมวลผลภาษาธรรมชาติ การวิเคราะห์ข้อมูล ไปจนถึงการสร้าง AI
Agent ที่สามารถทำงานอัตโนมัติได้อย่างมีประสิทธิภาพ ความ

เข้าใจและความสามารถในการนำ AI ไปใช้งานจริงจึงกลายเป็นทักษะ
ที่จำเป็นอย่างยิ่ง

แม้ Dart จะเป็นที่รู้ จักอย่างแพร่หลายในงานพัฒนา
แอปพลิเคชันข้ามแพลตฟอร์ม แต่ด้วยประสิทธิภาพของภาษา

ระบบนิเวศที่แข็งแกร่ง และความสามารถในการผสานรวมกับบริการ
และโมเดล AI สมัยใหม่ Dart จึงมีศักยภาพสูงในการพัฒนาระบบ

อัจฉริยะ หนังสือเล่มนี้มุ่งแสดงให้เห็นว่า Dart และ DartanticAI
สามารถนำมาใช้สร้าง AI Agent ได้อย่างเป็นระบบ ยืดหยุ่น และ

เหมาะสมกับการใช้งานจริง

เนื้อหาภายในเล่มออกแบบในรูปแบบเชิงปฏิบัติ โดยแต่ละบทนำ
เสนอแนวคิด ขั้นตอน และตัวอย่างโค้ดที่สามารถนำไปใช้งานและ



ต่อยอดได้ทันที ครอบคลุมตั้งแต่พื้นฐานของ AI Agent ไปจนถึง
การเชื่อมต่อกับโมเดลภาษาขนาดใหญ่และการนำระบบไปใช้งานจริง

หวังเป็นอย่างยิ่งว่าหนังสือเล่มนี้จะช่วยให้ผู้อ่านสามารถพัฒนา
โซลูชัน AI ด้วย Dart ได้อย่างมั่นใจและมีประสิทธิภาพ



สารบัญ

แนะนำ Dartantic AI 1

Dartantic AI คืออะไร 1

คุณสมบัติ 2

โครงสร้างพื้นฐานเอเจนต์ 4

การติดตั้งและการตั้งค่า 7

การติดตั้งแพ็กเกจ 7

การตั้งค่า API Key 7

ข้อควรระวังด้านความปลอดภัย 8

การสร้างและใช้งานเอเจนต์ 9

การระบุโมเดล 11

ผู้ ให้บริการโมเดล 12

ชื่อแฝงผู้ ให้บริการโมเดล 12

ผู้ ให้บริการ 14

ภาพรวมผู้ ให้บริการ 14

เปรียบเทียบความสามารถโมเดล 14

การกำหนดค่าผู้ ให้บริการ 17



การใช้งานผู้ ให้บริการ 18

การตั้งค่าตัวแปรสภาพแวดล้อม 18

การสร้างเอเจนต์ 19

คุณสมบัติขั้นสูง 19

การเปิดใช้งานการให้เหตุผล 19

การเรียกใช้เครื่องมือฝั่ งเซิร์ฟเวอร์ 20

การจัดการผู้ ให้บริการ 20

แสดงรายชื่อผู้ ให้บริการทั้งหมด 20

สร้างผู้ ให้บริการจากชื่อโมเดลหรือชื่อแฝง 20

การตรวจสอบความสามารถของโมเดล 21

การกำหนดค่าผู้ ให้บริการด้วยตนเอง 21

การกำหนด HTTP Headers 22

การตรวจสอบความสามารถของผู้ ให้บริการ 22

ประเภทของโมเดล 23

ผลลัพธ์ที่มีมีโครงสร้าง 23

คำสั่งระดับระบบ 26

การใช้งานคำสั่งระดับระบบ 26

แนวทางการออกแบบ 28

การสนทนา 29



การจัดการประวัติการสนทนา 29

ตัวอย่างการสนทนาพื้นฐาน 30

ตัวอย่างการใช้งานร่วมกับ Streaming 31

รูปแบบการใช้งานขั้นสูง 31

การสนทนาข้ามผู้ ให้บริการ 32

การใช้งานร่วมกับเครื่องมือ 32

การแคชพรอมต์ 33

การส่งผลลัพธ์แบบสตรีม 35

การสตรีมมิงพื้นฐาน 35

การจัดการ Message History ขณะสตรีม 36

การสตรีมมิงร่วมกับ Tools 37

Extended Thinking 37

การสตรีมผลลัพธ์ที่มีโครงสร้าง 38

การติดตามข้อมูลการใช้งาน 39

ผลลัพธ์ที่มีโครงสร้าง 41

การใช้งานกับ JSON Schema 41

การแปลงผลลัพธ์เป็นอ็อบเจ็กต์ 42

การแปลงเป็น Map 42

การแปลงเป็น Custom Type 43



การสร้าง Schema อัตโนมัติ 44

การใช้งานร่วมกับคุณสมบัติอื่น 45

การสตรีมผลลัพธ์ 46

การเรียกใช้เครื่องมือ 46

การรองรับเครื่องมือจากผู้ ให้บริการ 47

การเรียกใช้งานเครื่องมือ 49

องค์ประกอบของ Tool 49

ตัวอย่างการใช้งาน 50

รูปแบบการใช้งานขั้นสูง 51

การใช้เครื่องมือหลายตัว 51

การใช้เครื่องมือแบบสตรีมมิง 52

การจัดการข้อผิดพลาด 52

การสร้าง Schema อัตโนมัติ 53

พฤติกรรมเชิงเอเจนต์ 56

การให้เหตุผลหลายขั้นตอน 56

เวิร์กโฟลว์ที่ซับซ้อน 58

พฤติกรรมแบบวนซ้ำ 59

อินพุตแบบมัลติมีเดีย 61

รูปแบบการแนบข้อมูล 61



การแนบไฟล์จาก Local Path 61

การแนบไฟล์จาก URL 62

การส่งข้อมูลแบบ Bytes 63

การผสมผสานหลายรูปแบบ 63

การใช้งานขั้นสูง 64

การถอดเสียง (Transcription) 64

OCR (Optical Character Recognition) 65

ผลลัพธ์สื่อมัลติมีเดีย 67

การรองรับการทำงานกับรูปภาพและไฟล์เอกสาร 67

การสร้างสื่อพื้นฐาน 68

การแก้ ไขรูปภาพ 69

การสร้างสื่อแบบสตรีมมิง 70

การกำหนดค่าขั้นสูง 72

การระบุ Media Model 72

ตัวเลือกเฉพาะของผู้ ให้บริการ 72

การฝังเวกเตอร์ 74

การสร้าง Embeddings 74

การวัดความคล้ายคลึงเชิงความหมาย 76

ตัวอย่างการค้นหาเชิงความหมาย 77



การกำหนดค่าขั้นสูง 78

ความไม่เข้ากันของเวกเตอร์ 79

การติดตามปริมาณการใช้งาน 80

การติดตาม Usage สำหรับ Chat 80

การติดตาม Usage สำหรับ Embeddings 81

การลองใหม่โดยอัตโนมัติ 83

การทำงานอัตโนมัติแบบไม่ต้องตั้งค่า 83

กลยุทธ์การหน่วงเวลา 84

การบันทึกเหตุการณ์ 86

การเปิดใช้งานการบันทึกเหตุการณ์ 86

การกำหนดระดับการบันทึกเหตุการณ์ 87

ระดับการบันทึกเหตุการณ์ 88

การกรองเหตุการณ์ที่บันทึก 88

การกำหนดค่าผ่านตัวแปรสภาพแวดล้อม 89

การเรียกใช้กระบวนการให้เหตุผล 91

การเปิดใช้งานและการเข้าถึงข้อมูล 91

การกำหนดค่าสำหรับแต่ละ Provider 92

OpenAI Responses 93

Anthropic 93



Google 94

ข้อควรทราบ 95

การสตรีมข้อมูล Thinking 95

ผู้ ให้บริการแบบกำหนดเอง 97

Dependencies 97

การสร้าง Custom Provider 98

การสร้าง Custom Model 100

การใช้งาน Custom Provider 101

การใช้งานโดยตรง 102

การลงทะเบียนแบบไดนามิก 102

เครื่องมือฝั่ งเซิร์ฟเวอร์ 104

การรองรับเครื่องมือฝั่ งเซิร์ฟเวอร์ของผู้ ให้บริการ 104

การเปิดใช้งานเครื่องมือฝั่ งเซิร์ฟเวอร์ 105

OpenAI Responses 105

Google 106

Anthropic 106

เมทาดาตาแบบสตรีมมิงของเครื่องมือ 107

การรับผลลัพธ์สุดท้าย 108

การกำหนดค่าขั้นสูง 109



เครื่องมือฝั่ งเซิร์ฟเวอร์ของ OpenAI 111

OpenAI Web Search 111

การเปิดใช้งาน 111

การติดตามสถานะผ่าน Metadata 112

การกำหนดค่าเพิ่มเติม 113

OpenAI File Search 113

การเปิดใช้งาน 114

การติดตามสถานะผ่าน Metadata 114

OpenAI Code Interpreter 115

การเปิดใช้งาน 115

การติดตามสถานะผ่าน Metadata 116

การใช้ Container ซ้ำ 117

การรับผลลัพธ์ประเภทไฟล์ 117

OpenAI Image Generation 118

การเปิดใช้งาน 119

การรับภาพ Preview ระหว่างการสตรีม 119

การรับภาพผลลัพธ์สุดท้าย 120

เครื่องมือฝั่ งเซิร์ฟเวอร์ของ Google 122

Google Search 122



การเปิดใช้งาน Google Search 123

การใช้งาน Google Search 123

การใช้งาน Grounding Metadata 124

Google Code Execution 125

การเปิดใช้งาน Code Execution 125

การทำงานแบบหลายขั้นตอน 126

การรับไฟล์ผลลัพธ์ 127

การใช้งานเครื่องมือร่วมกัน 127

เครื่องมือฝั่ งเซิร์ฟเวอร์ของ Anthropic 129

Anthropic Web Search 129

การเปิดใช้งาน Web Search 130

การติดตามสถานะผ่าน Metadata 130

Anthropic Web Fetch 131

การเปิดใช้งาน Web Fetch 131

ผลลัพธ์ประเภทไฟล์ 132

Anthropic Code Interpreter 133

การเปิดใช้งาน Code Interpreter 133

การทำงานแบบหลายขั้นตอน 133

ผลลัพธ์ประเภทไฟล์ 135



การติดตามสถานะผ่าน Metadata 135

การทำงานร่วมกับระบบอื่น 137

การจัดการ Environment 137

การตั้งค่า API Keys 137

ลำดับความสำคัญของตัวแปรสภาพแวดล้อม 139

การเชื่อมต่อ MCP Server 140

Remote MCP Server 140

Local MCP Server 141

การเรียกใช้งานเครื่องมือจากหลายแหล่ง 141

การใช้งาน DotPrompt 142

การสร้างและใช้งาน DotPrompt 142

การส่งตัวแปรไปยัง Template 143

การเรียกใช้ Prompt จากไฟล์ 144

ตัวอย่างแอปถามตอบกับ GenAI 146

การสร้างโปรเจกต์ 146

การสร้าง Model สำหรับเก็บผลลัพธ์ 147

การสร้าง Endpoint 148

การสร้างแอปสำหรับถามคำถามกับ AI 150

การทดสอบการทำงาน 155



ตัวอย่างแอป RAG Agent 160

การสร้างโปรเจกต์ 160

การสร้าง Model สำหรับจัดเก็บข้อมูลเวกเตอร์ 161

การแปลงเอกสารเป็นเวกเตอร์ 162

การสร้าง Endpoint 169

การสร้างแอปสำหรับถามคำถามกับ AI 175

การทดสอบการทำงาน 181

ก้าวต่อไป 185

ดาวน์ โหลดซอร์สโค้ด 187



แนะนำ Dartantic AI

การพัฒนาแอปพลิเคชันที่ขับเคลื่อนด้วยปัญญาประดิษฐ์จำเป็น
ต้องมีเฟรมเวิร์กที่สามารถจัดการความซับซ้อนในการทำงานร่วมกับ

โมเดลภาษาขนาดใหญ่ (Large Language Models: LLMs) อย่าง
มีประสิทธิภาพ

Dartantic AI คือเฟรมเวิร์กสำหรับภาษา Dart ออกแบบมาเพื่อ
วัตถุประสงค์นี้โดยเฉพาะ โดยใช้สถาปัตยกรรมเชิงเอเจนต์

(Agent-based Architecture) เพื่อลดความซับซ้อนในการจัดการ
ผู้ ให้บริการ การเรียกใช้เครื่องมือ และการควบคุมบริบทการสนทนา

เนื้อหาในบทนี้จะแนะนำแนวคิดหลัก คุณสมบัติ และโครงสร้าง
พื้นฐานของ Dartantic AI เพื่อเป็นรากฐานสำหรับการพัฒนาเอเจน

ต์ขั้นสูงในบทต่อ ๆ ไป

Dartantic AI คืออะไร

Dartantic AI คือ Agent Framework สำหรับภาษา Dart ที่

ออกแบบมาเพื่อลดความซับซ้อนในการสร้างแอปพลิเคชัน
Generative AI ทั้งฝั่ งไคลเอนต์และเซิร์ฟเวอร์ โดยมีเป้าหมายหลัก

1



เพื่อให้นักพัฒนาสามารถมุ่งเน้นไปที่การออกแบบพฤติกรรม
อัจฉริยะ (Agentic Behavior) และตรรกะทางธุรกิจ

Dartantic AI มีอินเทอร์เฟซที่เป็นมาตรฐานช่วยจัดการกับความ
แตกต่างของ API ของผู้ ให้บริการ ลดความซับซ้อนในการจัดการ

API ที่แตกต่างกัน การแปลงข้อมูล และการควบคุมลำดับการทำงาน
ของเอเจนต์ ทำให้กระบวนการพัฒนารวดเร็วและเป็นระบบมากขึ้น

คุณสมบัติ

พฤติกรรมเชิงเอเจนต์และการเรียกใช้เครื่องมือหลายขั้นตอน
(Multi-step Tool Calling) เอเจนต์สามารถเรียกใช้เครื่อง

มือหลายชนิดต่อเนื่องกันโดยอัตโนมัติ เพื่อแก้ ไขปัญหาที่ซับ
ซ้อนโดยไม่ต้องอาศัยการสั่งงานจากผู้ ใช้ ในแต่ละขั้นตอน

รองรับผู้ ให้บริการหลายราย (Multi-provider Support) มี
ระบบรองรับผู้ ให้บริการ Generative AI ชั้นนำมาพร้อมใช้งาน

(Built-in) เช่น OpenAI, Google, Anthropic, Mistral,
Cohere และ Ollama

มาตรฐาน OpenAI-compatible API สามารถเชื่อมต่อกับผู้
ให้บริการที่รองรับ OpenAI API ซึ่งเป็นมาตรฐานที่แพร่หลาย

ในปัจจุบันได้อย่างสะดวก

2



การส่งผลลัพธ์แบบสตรีมมิง (Streaming Output) รองรับ
การสร้างคำตอบแบบเรียลไทม์ เหมาะสำหรับแอปพลิเคชันที่

ต้องการการตอบสนองอย่างต่อเนื่อง เช่น แชตบอต
ผลลัพธ์แบบมีชนิดข้อมูล (Typed Outputs) ผสานระบบ

ชนิดข้อมูลของภาษา Dart เข้ากับการแปลงข้อมูล JSON เพื่อ
ให้ ได้ผลลัพธ์ที่มีโครงสร้างชัดเจนและลดความผิดพลาด

อินพุตแบบมัลติมีเดีย (Multimedia Inputs) สามารถ
ประมวลผลอินพุตที่ประกอบด้วยข้อความ รูปภาพ และไฟล์

ข้อมูลภายในคำสั่งเดียวกัน
การสร้างสื่อ (Media Generation) รองรับการสร้างและสตรี

มรูปภาพ, PDF และไฟล์ประเภทอื่น ๆ จากผู้ ให้บริการอย่าง
OpenAI, Google และ Anthropic

Embeddings รองรับการสร้างเวกเตอร์สำหรับงานค้นหาเชิง
ความหมาย (Semantic Search) และการวิเคราะห์ความ

คล้ายคลึง
การแสดงผลกระบวนการคิดของโมเดล (Model

Reasoning) รองรับการแสดงผลกระบวนการให้เหตุผลของ
โมเดล (ที่มักเรียกว่า “Thinking”) จากผู้ ให้บริการที่รองรับ
คุณสมบัตินี้

3



เครื่องมือฝั่ งเซิร์ฟเวอร์ (Server-side Tools) สามารถเรียก
ใช้เครื่องมือที่โฮสต์ โดยผู้ ให้บริการ เช่น การค้นหาเว็บ, การรัน

โค้ด, และการสร้างภาพ
รองรับ Model Context Protocol (MCP) สามารถทำงาน

ร่วมกับ MCP Server เพื่อขยายขีดความสามารถของเอเจนต์
ได้อย่างยืดหยุ่น

พร้อมสำหรับใช้งานจริง (Production Ready) มีระบบ
บันทึกข้อมูลเหตุการณ์ (Logging), การจัดการข้อผิดพลาด,

และกลไกการลองใหม่ (Retry) ที่เหมาะสำหรับสภาพแวดล้อม
โปรดักชัน

ขยายความสามารถได้ (Extensible) โครงสร้างออกแบบมาให้
สามารถเพิ่มผู้ ให้บริการ, สร้างเครื่องมือเฉพาะทาง, หรือเชื่อม

ต่อกับ MCP Server ได้ง่าย

โครงสร้างพื้นฐานเอเจนต์

โครงสร้างพื้นฐานเอเจนต์ (Agent) เป็นจุดเริ่มต้นสำคัญในการ

พัฒนาแอปพลิเคชัน AI ด้วย Dartantic AI โดยแนวคิดหลักคือการ
ห่อหุ้มความสามารถของโมเดลภาษา (LLM) ไว้ ในอ็อบเจกต์เดียว

เพื่อให้ผู้พัฒนาสามารถสื่อสารกับโมเดลได้อย่างเป็นระบบ เรียบง่าย
และเปลี่ยนผู้ ให้บริการได้ โดยไม่กระทบกับโค้ดส่วนอื่นของระบบ

4



จากโค้ดข้างต้น นำเข้าแพ็กเกจ dartantic_ai ซึ่งเป็นไลบรารี
หลักที่ใช้สำหรับสร้างและจัดการเอเจนต์ AI ในภาษา Dart

สร้างอินสแตนซ์ของ Agent โดยกำหนดชื่อผู้ ให้บริการโมเดล
ภาษา (Provider) เป็น 'claude' ซึ่งสามารถเปลี่ยนเป็น 'openai',

'gemini' หรือผู้ ให้บริการอื่นที่รองรับได้ โดยไม่ต้องแก้ ไขโครงสร้าง
โค้ดหลัก

ส่งข้อความไปยังเอเจนต์เพื่อให้ โมเดลประมวลผล คำสั่งนี้เป็น
แบบ asynchronous และจะคืนค่าเป็นอ็อบเจกต์ผลลัพธ์

(ChatResult) ที่บรรจุข้อมูลการตอบกลับจากโมเดล

import 'package:dartantic_ai/dartantic_ai.dart';

final agent = Agent('claude'); // or 'openai', 
'gemini', etc.

final result = await agent.send('Hello!');

print(result.output);

import 'package:dartantic_ai/dartantic_ai.dart';

final agent = Agent('claude'); // หรือ 'openai', 
'gemini', etc.

5


