

ปั้ น AI Agent ด้วย ADK

คู่มือสร้างเอเจนต์จากพื้นฐานสู่การใช้งาน

จริง

อนุชิต ชโลธร

คำนำสำนักพิมพ์

ในยุคที่เทคโนโลยี AI ก้าวหน้าอย่างรวดเร็ว สำนักพิมพ์ของเรามีความ

ยินดีเป็นอย่างยิ่งที่ได้นำเสนอหนังสือ “ปั้ น AI Agent ด้วย ADK”

หนังสือเล่มนี้เป็นกุญแจสำคัญที่จะเปิดประตูสู่โลกของ เอไอเอเจนต์

ซึ่งเป็นนวัตกรรมที่จะพลิกโฉมการทำงานและชีวิตประจำวันของเรา

เรามุ่งมั่นที่จะส่งมอบความรู้ ที่เข้าถึงได้และนำไปใช้ได้จริง หนังสือเล่ม

นี้จึงถูกออกแบบมาเพื่อนักพัฒนาและผู้สนใจทุกระดับ ให้สามารถ

เรียนรู้ การสร้างเอไอเอเจนต์ ตั้งแต่พื้นฐานจนถึงการประยุกต์ใช้ใน

สถานการณ์จริง ด้วย Agent Development Kit (ADK) ที่จะช่วยให้

กระบวนการพัฒนามีประสิทธิภาพ

ขอขอบคุณผู้เขียนสำหรับความทุ่มเทในการสร้างสรรค์ผลงานอันทรง

คุณค่านี้ เราหวังเป็นอย่างยิ่งว่า “ปั้ น AI Agent ด้วย ADK” จะเป็นแรง

บันดาลใจและเครื่องมือสำคัญในการขับเคลื่อนนวัตกรรม AI ของ

ประเทศไทย

คำนำผู้เขียน

ปัญญาประดิษฐ์ (AI) ได้เข้ามาเป็นส่วนหนึ่งในชีวิตประจำวันของเรา

และกำลังนำเราเข้าสู่ยุคใหม่ที่น่าตื่นเต้นยิ่งกว่า นั่นคือยุคของ เอไอเอ

เจนต์ (AI Agent) เอไอเอเจนต์ไม่ใช่เพียงโปรแกรม แต่เป็นระบบ

อัจฉริยะที่สามารถรับรู้ , คิดวิเคราะห์ และตัดสินใจเพื่อบรรลุเป้าหมาย

ได้อย่างอิสระ พวกมันคืออนาคตของซอฟต์แวร์ที่จะปฏิวัติวิธีที่เรา

ทำงานและมีปฏิสัมพันธ์กับเทคโนโลยี

หนังสือ “ปั้ น AI Agent ด้วย ADK” เล่มนี้ ถูกเขียนขึ้นเพื่อเป็นคู่มือ

สำหรับทุกคนที่ต้องการสำรวจและสร้างสรรค์ในโลกของเอไอเอเจนต์

ไม่ว่าคุณจะเป็นนักพัฒนาที่ต้องการเครื่องมืออันทรงพลัง หรือผู้ที่
สนใจในเทคโนโลยี AI หนังสือเล่มนี้จะนำคุณไปทีละขั้นตอน

เราจะพาคุณเจาะลึก Agent Development Kit (ADK) ซึ่งเป็นเฟรม

เวิร์กที่ออกแบบมาเพื่อทำให้การสร้างเอไอเอเจนต์เป็นเรื่องง่ายและมี

ประสิทธิภาพ คุณจะได้เรียนรู้ ผ่านตัวอย่างโค้ดและกรณีศึกษาจริง

ตั้งแต่การเชื่อมต่อกับโมเดลภาษาขนาดใหญ่ (LLM) การสร้างเครื่อง

มือ การออกแบบเวิร์กโฟลว์ การสร้างระบบอัลติเอเจนต์ ไปจนถึงการ

ดีพลอย และการดูแลรักษาเอไอเอเจนต์ของคุณ

เป้าหมายของเราคือการทำให้หนังสือเล่มนี้เป็น “คู่มือฉบับลงมือทำ” ที่

คุณสามารถนำไปใช้สร้างโปรเจกต์ของคุณได้ทันที เราหวังว่าหนังสือ

เล่มนี้จะเป็นจุดเริ่มต้นที่มั่นคงและเป็นแรงบันดาลใจให้คุณสร้างสรรค์

เอไอเอเจนต์ที่น่าทึ่งต่อไป

ยินดีต้อนรับสู่โลกแห่งเอไอเอเจนต์ ขอให้สนุกกับการสร้างสรรค์

อนาคตด้วยมือของคุณเอง

สารบัญ

แนะนำเอไอเอเจนต์ 1

คุณสมบัติหลักของเอไอเอเจนต์ 1

Agent Development Kit (ADK) คืออะไร? 2

จุดเด่นของ ADK 3

ตัวอย่างการใช้งาน ADK 4

เครื่องมือสำหรับสร้างเอเจนต์ใน ADK 4

สร้างเอเจนต์ด้วย ADK 6

กำหนดตัวตนและวัตถุประสงค์ของเอเจนต์ 6

กำหนดขั้นตอนการทำงานของเอเจนต์ 7

เคล็ดลับการสั่งงานเอเจนต์ 10

การเรียกใช้เครื่องมือ 10

การจัดการตัวแปรสถานะ 12

เริ่มสร้างเอเจนต์ 14

ติดตั้ง ADK 14

สร้าง Imagine Agent 15

สร้าง Search Agent เรียกใช้เครื่องมือภายใน ADK 22

สร้าง News Agent เรียกใช้เครื่องมือภายนอก 24

การรันแบบ ChatLoop ใน Command Line 30

การรันแบบ API Server 32

การดีบักด้วย API Document 37

การตั้งค่าและการควบคุมขั้นสูง 40

การปรับแต่งการสร้างข้อความของ LLM 40

การจัดโครงสร้างข้อมูล 41

การจัดการบริบทของการสนทนา 43

Planner และการวางแผนหลายขั้นตอน 44

ตัวอย่างการใช้งาน Built-in Planner 46

การรันโค้ดจากเอเจนต์ 51

การสร้างเอเจนต์ด้วย Agent Config 56

เริ่มต้นสร้างเอเจนต์ด้วย Agent Config 57

การตั้งค่า 57

การสร้าง Agent 58

การเรียกใช้งานเอเจนต์ 58

ตัวอย่าง Agent Config 59

การเรียกใช้เครื่องมือ built-in 59

การเรียกใช้เครื่องมือที่สร้างเอง 59

การเรียกใช้ Sub-agents 61

การดีพลอย Agent Config 62

ข้อจำกัดที่ควรทราบ 62

การสร้างเอเจนต์ด้วย Visual Builder 65

คุณสมบัติของ Visual Builder 65

สร้างเวิร์กโฟลว์เอเจนต์ด้วย Visual Builder 66

สร้างโปรเจกต์ใหม่ 66

เปิด ADK Dev-UI 67

สร้างเอเจนต์แรกของคุณ 69

ตั้งค่าข้อมูลของเอเจนต์ 70

ทดลองใช้งานเอเจนต์ 71

การใช้งาน LLM โมเดลร่วมกับ ADK 74

กลไกการเชื่อมต่อโมเดล 74

การใช้งาน Google Gemini Models 74

การใช้งานโมเดลจาก Google AI Studio 75

การใช้งานโมเดลจาก Vertex AI 76

การใช้งานโมเดลจาก Apigee Gateway 77

การเชื่อมต่อกับ Apigee 78

การใช้งานโมเดลจากผู้ให้บริการอื่นผ่าน LiteLLM 79

การใช้งานโมเดลแบบ Local ผ่าน LiteLLM 82

การใช้ ollama_chat 82

การตั้งค่า OLLAMA_API_BASE 83

การตั้งค่าแบบ OpenAI สำหรับ Ollama 84

การใช้งานโมเดลบน Vertex AI 84

วิธีเชื่อมต่อโมเดลบน Vertex AI 84

การดีพลอยโมเดลจาก Model Garden 85

การใช้งานโมเดลที่ผ่านการ Fine-tune 86

การใช้งานโมเดลจากผู้ให้บริการภายนอกบน Vertex AI 86

แนะนำเวิร์กโฟลว์เอเจนต์ 90

เอเจนต์สำหรับงานลำดับขั้นตอน (SequentialAgent) 91

ลักษณะการทำงาน 92

ตัวอย่างกระบวนการเขียนโค้ด 93

เอเจนต์สำหรับงานที่ต้องทำซ้ำ (LoopAgent) 99

ลักษณะการทำงาน 100

ตัวอย่างการปรับปรุงเอกสารแบบวนซ้ำ 102

เอเจนต์สำหรับการประมวลผลงานแบบขนาน
(ParallelAgent)

109

ลักษณะการทำงาน 110

การจัดการสถานะและการสื่อสารระหว่างเอเจนต์ 111

ตัวอย่างการวิจัยเว็บพร้อมกัน 112

แนะนำระบบมัลติเอเจนต์ (Multi-Agent System: MAS) 120

ระบบมัลติเอเจนต์คืออะไร? 120

ใช้เอเจนต์พื้นฐานในการรวมเอเจนต์เข้าด้วยกัน 121

โครงสร้างลำดับชั้นของเอเจนต์ 122

เอเจนต์แบบเวิร์กโฟลว์ในฐานะตัวประสานงาน 124

กลไกการโต้ตอบและการสื่อสาร 131

รูปแบบการทำงานร่วมกันของเอเจนต์หลายตัว 139

Coordinator/Dispatcher Pattern 140

Sequential Pipeline Pattern 143

Parallel Fan-Out/Gather Pattern 146

Hierarchical Task Decomposition Pattern 149

Review/Critique Pattern 152

Iterative Refinement Pattern 156

Human-in-the-Loop Pattern 160

เครื่องมือสำหรับ Agents 165

เครื่องมือจาก Gemini 165

เครื่องมือจาก Google Cloud 166

เครื่องมือจากผู้ให้บริการภายนอก (Third-party Tools) 168

การสร้างเครื่องมือของคุณเอง 170

เครื่องมือแบบ Built-in 171

วิธีการใช้งาน 171

เครื่องมือแบบ Built-in ที่มีให้ใช้งาน 171

ใช้งาน Built-in Tools ร่วมกับเครื่องมืออื่น หรือร่วมกับ

ระบบมัลติเอเจนต์
194

เครื่องมือควบคุมคอมพิวเตอร์ 196

การใช้งาน Computer Use Toolset 196

ตัวอย่างโค้ดการใช้งาน 197

เครื่องมือ Google Cloud 199

เครื่องมือ Apigee API Hub 199

การสร้าง API Hub Toolset 200

เครื่องมือ Application Integration 203

การใช้ Integration Connectors 204

สร้าง Application Integration Toolset ใน tools.py 205

เพิ่มเครื่องมือ Integration Connectors 205

การใช้ Application Integration Workflows 206

MCP Toolbox สำหรับฐานข้อมูล 209

แหล่งข้อมูลที่รองรับ 209

การตั้งค่าและติดตั้ง 212

ฟีเจอร์ขั้นสูงของ Toolbox 213

เครื่องมือ Code Execution กับ Agent Engine 215

การใช้งานเครื่องมือ 215

วิธีการทำงาน 216

ประโยชน์หลัก 217

ข้อกำหนดระบบ 218

พารามิเตอร์การตั้งค่า 218

ตัวอย่างการใช้งาน Code Executor 219

เครื่องมือจากผู้ให้บริการอื่น 225

Bright Data 226

Browserbase 232

Exa 236

Firecrawl 240

GitHub MCP Server 245

Hugging Face MCP Server 250

Notion MCP Server 254

Tavily MCP Server 258

สร้างประสบการณ์แชทด้วย AG-UI และ CopilotKit 261

เครื่องมือสำหรับเอเจนต์ 266

เครื่องมือคืออะไร? 266

ลักษณะสำคัญของเครื่องมือ 267

วิธีที่เอเจนต์ใช้เครื่องมือ 267

ประเภทเครื่องมือใน ADK 268

การอ้างอิงเครื่องมือในคำสั่งเอเจนต์ 269

ตัวอย่างเครื่องมือวิเคราะห์สภาพอากาศและอารมณ์ 269

ข้อมูลบริบทของเครื่องมือ 271

การจัดการสถานะ 272

การควบคุมการไหลของเอเจนต์ 272

การยืนยันตัวตน 272

การเข้าถึงข้อมูลแบบ Context-Aware 273

การนิยามฟังก์ชันเครื่องมือที่ดี 273

การจัดกลุ่มและให้เครื่องมือแบบไดนามิกดัวย Toolsets 273

ตัวอย่างกลุ่มเครื่องมือคณิตศาสตร์ง่ายๆ 274

สร้างเครื่องมือจากฟังก์ชัน (Function Tools) 278

ฟังก์ชันเครื่องมือ (Function Tools) 278

ฟังก์ชันเครื่องมือที่ใช้เวลานาน (Long Running Function

Tools)
283

เอเจนต์เป็นเครื่องมือ (Agent-as-a-Tool) 285

การเพิ่มประสิทธิภาพเครื่องมือด้วยการทำงานแบบขนาน 287

การสร้างเครื่องมือพร้อมทำงานแบบขนาน 288

ตัวอย่างการเรียกใช้งาน HTTP แบบขนาน 288

ตัวอย่างการเรียกฐานข้อมูลแบบขนาน 288

ตัวอย่างการเพิ่มจุด yield สำหรับลูปยาว 288

ตัวอย่างการใช้ thread pool สำหรับงาน intensive 289

ตัวอย่างการแบ่งข้อมูลเป็น chunk 290

การสร้าง prompt และคำอธิบายเครื่องมือให้พร้อมทำงาน
แบบขนาน

291

การขอการยืนยันการทำงานของเครื่องมือ ADK 294

การยืนยันแบบ Boolean 295

การยืนยันแบบ Advanced 296

การยืนยันระยะไกลผ่าน REST API 298

เครื่องมือ Model Context Protocol (MCP) 301

การใช้ ADK Agents ร่วมกับ MCP Servers 302

ข้อพิจารณาเมื่อทำงานกับ MCP และ ADK 307

การนำ Agents ที่ใช้ MCP Tools ไปใช้งาน 308

รูปแบบของ MCP Server 310

ข้อพิจารณาในการจัดการการเชื่อมต่อ 312

เช็กลิสต์สำหรับการนำ MCP ไปใช้งาน 313

การเชื่อมต่อ MCP Server ด้วย MCPToolset ใน Google
Cloud Platforms

315

การแก้ไขปัญหาที่พบบ่อย 317

การใช้งานเอเจนต์ร่วมกับ OpenAPI 318

ส่วนประกอบสำคัญ 319

ขั้นตอนการทำงานของ OpenAPIToolset 319

วิธีเรียกใช้งาน OpenAPI กับเอเจนต์ 322

ตัวอย่างการใช้งานกับ JSONPlaceholder API 324

การยืนยันตัวตนเมื่อใช้งานเครื่องมือ 329

ประเภท Initial Credential ที่รองรับ 330

การตั้งค่าการรับรองเมื่อใช้งาน Tools 330

แนวทางที่ 1: การสร้างแอปที่ใช้การยืนยันตัวตนเพื่อเรียกใช้

เครื่องมือ
332

แนวทางที่ 2: การสร้าง Function Tools ที่ต้อง

Authentication
346

การใช้งาน ADK API Server 354

การรัน API Server 354

การทดสอบเอเจนต์ในเครื่อง 355

การรัน API Server 355

การสร้าง Session ใหม่ 356

การส่ง Query 358

การส่ง Query พร้อมไฟล์ที่เข้ารหัส base64 363

ดีบั๊กด้วย Interactive API Docs 364

จุดเชื่อมต่อ (API Endpoints) ที่สำคัญ 365

จุดเชื่อมต่อสำหรับงานทั่วไป 365

จุดเชื่อมต่อสำหรับจัดการ Session 366

Endpoints สำหรับการประมวลผลเอเจนต์ 369

การสร้างเอเจนต์แบบสตรีมมิ่ง 373

โมเดลที่รองรับ Voice/Video Streaming 373

สร้างเอเจนต์ 373

ทดลองเอเจนต์ด้วย ADK Web 374

ทดลองใช้งานด้วยข้อความ (Text) 375

ทดลองใช้งานด้วยเสียงและวิดีโอ (Voice & Video) 376

MCP Toolbox for Databases 378

ทำไมต้องใช้ Toolbox 378

สถาปัตยกรรมโดยรวม 379

เริ่มต้นใช้งาน 380

การเชื่อมต่อกับแอปพลิเคชันของคุณ 382

Toolbox Core SDK 382

LangChain 383

LlamaIndex 384

การใช้งาน Toolbox 384

ตั้งค่าฐานข้อมูลของคุณ 385

ตั้งค่าผู้ใช้ 385

ออกจากเซสชันฐานข้อมูล 386

เชื่อมต่อกับฐานข้อมูลของคุณด้วยผู้ใช้ใหม่ 386

สร้างตารางโดยใช้คำสั่งต่อไปนี้ 386

เพิ่มข้อมูลลงในตาราง 387

การติดตั้งและตั้งค่า Toolbox 388

เชื่อมต่อเอเจนต์ของคุณกับ Toolbox 395

เชื่อมต่อ Toolbox กับ MCP Inspector 397

การดีบักและทดสอบเอเจนต์ 401

ความท้าทายในการดีบักและทดสอบเอเจนต์ 401

เทคนิคการดีบัก 402

การใช้ ADK Web UI 402

การใช้ Log ที่มีประสิทธิภาพ 406

ระดับของ Log 407

กลยุทธ์การทดสอบ 409

ทดสอบหน่วยย่อย (Unit Testing) 409

ทดสอบการทำงานร่วมกัน (Integration Testing) 411

ทดสอบทั้งระบบ (End-to-End Testing) 414

แนวทางปฏิบัติที่ดีที่สุด (Best Practices) 416

การติดตามและสังเกตการณ์ 418

ความสำคัญของ Monitoring และ Observability 418

ความแตกต่างระหว่าง Monitoring และ Observability 419

องค์ประกอบหลักของ Observability 420

บันทึกเหตุการณ์ (Logs) 420

ตัวชี้วัด (Metrics) 421

การติดตามการทำงาน (Traces) 422

การนำระบบสังเกตการณ์มาใช้กับ ADK Agent 422

การใช้ Logging 423

การสังเกตการณ์เอเจนต์ด้วย Arize Phoenix 424

การติดตั้ง 425

เริ่มต้นใช้งาน Phoenix Server 426

โปรโตคอล Agent2Agent (A2A) 432

แนะนำ Agent2Agent (A2A) 432

ควรใช้ A2A หรือ Local Sub-Agents เมื่อใด 432

ควรใช้ A2A ในกรณีต่อไปนี้ 433

ตัวอย่างกรณีการใช้งาน A2A 433

กรณีที่ ไม่เหมาะสมสำหรับการใช้ A2A ควรใช้ Local Sub-

Agents แทน
434

ขั้นตอนการทำงานของ A2A 435

การเปิดให้เอเจนต์เข้าถึงได้ 435

การเชื่อมต่อไปยังเอเจนต์ที่เปิดเผยไว้ 436

ภาพรวมการทำงานของ A2A 436

การเปิดเผยเอเจนต์ 436

การใช้งานเอเจนต์ที่เปิดเผย 438

การเชื่อมต่อของทั้งสองฝั่ ง 440

ตัวอย่างการใช้งาน A2A ใน ADK 441

สร้างเอเจนต์สร้างข้อความสุ่ม 443

สร้างเอเจนต์ทอยลูกเต๋า (rolldice_agent) 447

สร้างเอเจนต์หลัก (query_agent) 448

การใช้งาน ADK ร่วมกับ CopilotKit โดยใช้ Agent UI (AG-
UI)

455

สร้างโปรเจกต์ CopilotKit พร้อม ADK Agent 455

สร้างโปรเจกต์ใหม่ 455

ติดตั้ง dependency 456

ตั้งค่า Google API Key 456

รันเอเจนต์ 456

เชื่อมต่อ CopilotKit กับเอเจนต์ที่มีอยู่แล้ว 457

ติดตั้ง dependency สำหรับเอเจนต์ 458

แก้ไขไฟล์เอเจนต์ 458

สร้าง Frontend 459

ติดตั้ง dependency สำหรับ CopilotKit 459

สร้าง Route สำหรับ CopilotRuntime 460

ตั้งค่า CopilotKit Provider 461

เรียกใช้ CopilotKit UI 462

รันเอเจนต์ 463

การประเมินเอเจนต์ 465

การเตรียมความพร้อมสำหรับการประเมินเอเจนต์ 465

สิ่งที่ควรประเมิน 466

การประเมินเอเจนต์โดยใช้ ADK CLI 467

โครงสร้างไดเรกทอรี 467

เอเจนต์ 468

ชุดทดสอบ .evalset.json 469

วิธีรันการประเมินผล 470

การประเมินเอเจนต์โดยใช้ pytest 473

การประเมินเอเจนต์โดยใช้งานผ่าน Web UI 474

ปรับปรุงเอเจนต์ 475

การนำเอเจนต์ไปใช้งาน 478

ตัวเลือกการนำเอเจนต์ไปใช้งาน 479

Agent Engine บน Vertex AI 479

Cloud Run 480

Google Kubernetes Engine (GKE) 481

การเลือกแนวทางดีพลอยให้เหมาะกับงาน 482

คำแนะนำตามสถานการณ์ 482

ข้อควรตรวจสอบก่อนดีพลอย 483

การนำไปใช้งานบน Cloud Run 484

การเตรียมเอเจนต์ก่อนดีพลอย 484

การตั้งค่าตัวแปรสภาพแวดล้อม (Environment Variables) 484

สิ่งที่ต้องเตรียมก่อนใช้งาน 485

การจัดเก็บข้อมูลสำคัญใน Secret Manager 486

เนื้อหาที่ถูกอัปโหลดระหว่างดีพลอย 486

ตัวเลือกที่ 1: ดีพลอยแบบอัตโนมัติด้วย ADK CLI 487

ตัวเลือกที่ 2: ดีพลอยด้วย gcloud CLI (ยืดหยุ่นสูงกว่า) 489

การทดสอบเอเจนต์หลังดีพลอย 492

การนำไปใช้งานบน Google Kubernetes Engine (GKE) 494

การตั้งค่าตัวแปรสภาพแวดล้อม (Environment Variables) 495

เปิดใช้งาน API และกำหนดสิทธิ์ (Permissions) 496

ข้อมูลที่ใช้ในการดีพลอย 497

วิธีการดีพลอย 497

ตัวเลือกที่ 1: ดีพลอยด้วย gcloud และ kubectl 498

ตัวเลือกที่ 2: ดีพลอยอัตโนมัติด้วย adk deploy gke 501

การทดสอบเอเจนต์บน GKE 502

การแก้ไขปัญหาที่พบบ่อย 503

การล้างทรัพยากร (Cleanup) 504

การดีพลอยเอเจนต์บน Vertex AI Agent Engine 505

การดีพลอยแบบรวดเร็วด้วย Agent Starter Pack (ASP) 505

การดีพลอยแบบมาตรฐาน 507

การดีพลอยขึ้น Agent Engine 510

ทดสอบเอเจนต์หลังดีพลอย 511

เนื้อหาที่ถูกอัปโหลดระหว่างดีพลอย 513

ทำความสะอาดทรัพยากรหลังทดสอบ 513

ตัวอย่างเอเจนต์สร้างรูปภาพจากข้อความ 515

การสร้างโปรเจกต์ 515

การสร้างเอเจนต์ Painter 516

การออกแบบเอเจนต์ 517

การรันเอเจนต์เป็น API 523

การรันและทดสอบ 524

ตัวอย่าง LINE ChatBot กูรูหนังสือนิยาย 529

เทคโนโลยีหลักที่ใช้ในโปรเจกต์ 529

สร้างฐานความรู้ ด้วย Vector Database 530

Vector Database คืออะไร? 530

ขั้นตอนการสร้างฐานความรู้ 532

สร้างโปรเจกต์สำหรับสร้างฐานความรู้ 532

สร้าง Guru Agent 536

สร้างโปรเจกต์ Guru Agent 536

ทดสอบ ผ่าน WebUI 543

ทดสอบผ่าน REST API 544

สร้าง Webhook สำหรับ LINE Chatbot 545

ตั้งค่า LINE Messaging API 546

สร้างโปรเจกต์ Webhook 547

สร้าง AgentResponse Model 549

สร้าง Agent Client 553

สร้าง Webhook สำหรับ LINE 559

ทดสอบผ่าน LINE 566

ตัวอย่างสร้างเอเจนต์วางแผนท่องเที่ยว 572

สร้างโปรเจกต์เอเจนต์ 573

ตั้งค่าเอเจนต์หลัก (TripPlannerAgent) 573

เอเจนต์รวบรวมข้อมูล (DataGathererAgent) 574

ค้นหาเทศกาลและอีเวนต์ท้องถิ่น (FestivalAgent) 574

ค้นหาที่พัก (HotelSearchAgent) 575

ค้นหาสถานที่ท่องเที่ยว (SightseeingAgent) 576

สังเคราะห์แผนการเดินทาง (ItinerarySynthesisAgent) 577

ทดสอบการทำงานผ่าน Dev UI 578

ตัวอย่างสร้างแอปเชื่อมต่อกับเอเจนต์ 582

สร้างโปรเจกต์ Flutter ใหม่ 582

การสร้างโมเดล ChatMessage 583

สร้าง AgentService 583

แก้ไฟล์ main.dart 587

สร้างหน้า UI หลัก 589

รัน Agent Server 594

รันแอป Flutter 594

ตัวอย่างสร้างเอเจนต์ใช้งานร่วมกับ MCP 598

สร้าง MCP Server สำหรับบริการข้อมูลพยากรณ์อากาศ 598

สร้างเอเจนต์เชื่อมต่อกับ Wttr.in MCP Server 601

ตัวอย่างการสร้างเอเจนต์สำหรับวิเคราะห์ข้อมูล 605

ภาพรวมการออกแบบ 605

ตัวอย่างโครงสร้างฐานข้อมูล 606

สร้าง Sale Report API 608

สร้างเอเจนต์สำหรับวิเคราะห์ข้อมูล 618

ทดสอบการทำงานผ่าน Dev-UI 624

บทส่งท้าย 629

สรุปคำสั่ง ADK CLI 631

การพัฒนาและการสร้าง (Development & Creation) 631

adk create สร้างเอเจนต์ใหม่ 631

adk run รันเอเจนต์แบบโต้ตอบ 632

การให้บริการและการปรับใช้ (Serving & Deployment) 632

adk api_server เริ่มเซิร์ฟเวอร์ FastAPI 633

adk web เริ่มเซิร์ฟเวอร์พร้อม Web UI 633

adk deploy (ปรับใช้เอเจนต์) 635

การประเมินผล (Evaluation) 636

adk eval ประเมินเอเจนต์ 636

สรุปเปรียบเทียบคำสั่ง 637

ดาวน์โหลดซอร์สโค้ด 639

แนะนำเอไอเอเจนต์

เอไอเอเจนต์ (AI Agent) หรือ Agentic AI คือระบบปัญญา

ประดิษฐ์ที่สามารถ ตัดสินใจ วางแผน และลงมือทำงาน ได้ด้วยตัวเอง

เพื่อบรรลุเป้าหมายที่ได้รับมอบหมาย โดยไม่ต้องรอคำสั่งจากมนุษย์

ในทุกขั้นตอน ทำให้ AI พัฒนาไปไกลกว่าเดิม จากการเป็นเพียง ระบบ

ตอบคำถาม กลายเป็น ผู้ช่วยอัจฉริยะ ที่ลงมือทำงานแทนเราได้จริง

เบื้องหลังความสามารถนี้คือพลังของ โมเดลภาษาขนาดใหญ่ (LLM)

และเฟรมเวิร์กสำหรับสร้างเอเจนต์ เช่น LangChain, LangGraph,

CrewAI และ ADK ซึ่งช่วยให้นักพัฒนาสร้างเอเจนต์ที่ยืดหยุ่นและปรับ

ให้เหมาะกับงานของตัวเองได้ง่ายขึ้น

คุณสมบัติหลักของเอไอเอเจนต์

การตั้งเป้าหมาย (Goal Setting): ผู้ใช้ระบุเป้าหมาย แล้วเอเจน

ต์ประเมินบริบทและข้อมูลเพื่อหาวิธีที่เหมาะสมที่สุด

การวางแผน (Planning): แบ่งงานออกเป็นขั้นตอนย่อย วาง

ลำดับงานอย่างเป็นระบบ

การใช้งานเครื่องมือ (Tool Usage): เรียกใช้ API, ฐานข้อมูล

และบริการภายนอกได้อย่างหลากหลาย
ความสามารถในการจดจำ (Memory): บางระบบมีหน่วยความ

จำเพื่อเก็บบริบทและประสบการณ์ เพิ่มคุณภาพการตัดสินใจ

1

การทำงานอัตโนมัติหลายขั้นตอน (Autonomous

Execution): ทำงานต่อเนื่องด้วยตัวเอง ไม่ต้องคอยสั่งซ้ำ

ตัวอย่างเช่น ตั้งเอเจนต์ให้ ค้นหาข่าวเทคโนโลยีทุกเช้า สรุป และส่ง

อีเมลอัตโนมัติ—เอเจนต์สามารถจัดการทุกอย่างตั้งแต่ต้นจนจบ และ

ทำซ้ำทุกวันโดยไม่ต้องตั้งค่าใหม่

Agent Development Kit (ADK) คืออะไร?

Agent Development Kit (ADK) คือเฟรมเวิร์กแบบโมดูลาร์สำหรับ

สร้างและดีพลอยเอไอเอเจนต์ ได้อย่างยืดหยุ่นและมีมาตรฐาน ADK

ถูกออกแบบมาให้ทำงานได้อย่างราบรื่นในระบบนิเวศของ Google

และ Gemini แต่ในทางปฏิบัติ ไม่ได้ผูกติดกับแพลตฟอร์มหรือโมเดล

ใดเป็นพิเศษ จึงสามารถนำไปใช้ร่วมกับเฟรมเวิร์กเอเจนต์อื่นๆ ได้เช่น

กัน

2

google.github.io/adk-docs

แนวคิดของ ADK คือ “สร้างเอเจนต์ให้เหมือนพัฒนาซอฟต์แวร์จริง”

— มีโครงสร้าง, ระบบทดสอบ, เครื่องมือ และแนวปฏิบัติที่ช่วยให้คุณ

สร้างเอเจนต์ได้ตั้งแต่งานง่ายๆ ไปจนถึงเวิร์กโฟลว์ที่ซับซ้อนระดับโปร

ดักชัน

จุดเด่นของ ADK

ระบบจัดการเวิร์กโฟลว์ที่ยืดหยุ่น: รองรับการทำงานหลายรูป

แบบ เช่น ทำงานทีละขั้น (Sequential), ทำงานพร้อมกัน

(Parallel), ทำซ้ำแบบลูป (Loop) หรือให้ LLM ตัดสินใจเลือกเส้น

ทางของเวิร์กโฟลว์

สถาปัตยกรรมมัลติเอเจนต์: เปิดโอกาสให้เอเจนต์หลายตัวที่

เชี่ยวชาญต่างกันทำงานร่วมกัน เพื่อรองรับงานที่ซับซ้อนและ

3

ขยายระบบได้ง่าย

ระบบเครื่องมือที่หลากหลาย: ใช้เครื่องมือสำเร็จรูป เชื่อมต่อ

ไลบรารีภายนอก (เช่น LangChain, CrewAI) สร้างเครื่องมือใหม่

หรือแม้แต่ใช้เอเจนต์ตัวอื่นเป็นเครื่องมือได้

พร้อมดีพลอยในทุกสภาพแวดล้อม: ใช้งานได้ตั้งแต่ในเครื่อง

คอนเทนเนอร์ ไปจนถึงระบบคลาวด์ เช่น Vertex AI Agent

Engine, Cloud Run หรือโครงสร้างพื้นฐานขององค์กร

มีระบบประเมินผลในตัว: สามารถทดสอบคุณภาพของงานและ

ขั้นตอนการทำงานด้วย Test Case ที่กำหนดได้ล่วงหน้า
เน้นความปลอดภัยและความน่าเชื่อถือ: มีแนวทางด้านความ

ปลอดภัยให้ปฏิบัติตามตั้งแต่ขั้นตอนออกแบบ เพื่อสร้างเอเจนต์ที่

ใช้งานได้จริงอย่างมั่นใจ

ตัวอย่างการใช้งาน ADK

AI Assistant ส่วนตัว: จัดการ Calendar, ส่งอีเมล, ค้นหา

เอกสารใน Google Drive
Customer Support Agent: เชื่อมต่อ CRM ดึงข้อมูลคำสั่งซื้อ

และช่วยตอบคำถามอัตโนมัติ

DevOps Agent: ตรวจสอบสถานะ Build/Deploy ผ่าน

GitHub Actions หรือ CI/CD อื่นๆ

เครื่องมือสำหรับสร้างเอเจนต์ใน ADK

4

ADK มาพร้อมเครื่องมือครบชุดเพื่อรองรับนักพัฒนาทุกระดับ

ADK CLI & Library: สำหรับเขียนโค้ดสร้างเอเจนต์โดยตรง

Agent Config: สร้างเอเจนต์แบบ ไม่ต้องเขียนโค้ด เพียงกำหนด

ไฟล์ YAML

Visual Builder: เครื่องมือแบบแผนภาพ (visual workflow)

สำหรับออกแบบเวิร์กโฟลว์เอเจนต์อย่างรวดเร็ว

ด้วยชุดเครื่องมือเหล่านี้ ADK ช่วยให้นักพัฒนาก้าวข้ามการสร้าง AI

แบบ Chatbot ไปสู่การสร้าง เอเจนต์ที่ลงมือทำงานแทนมนุษย์ มี

ความสามารถในการจดจำ เชื่อมต่อระบบภายนอก ทำงานอัตโนมัติ
หลายขั้นตอน และพร้อมใช้งานจริงในระดับโปรดักชัน — เป็น

เทคโนโลยีสำคัญที่นักพัฒนายุค AI ไม่ควรมองข้าม

5

สร้างเอเจนต์ด้วย ADK

LLM Agent หรือที่เราเรียก “Agent” เป็นส่วนประกอบหลักทำหน้าที่

เป็นส่วน “การคิด” เราสามารถใช้ประโยชน์และความสามารถของ

LLM ในการใช้เหตุผล การเข้าใจภาษาธรรมชาติ การตัดสินใจ การ

ตอบสนองและการโต้ตอบกับเครื่องมือ จะแตกต่างจาก Workflow

เพราะไม่มีการกำหนดขั้นตอนการทำงานไว้ล่วงหน้า เอเจนต์จะ

ตีความคำสั่งจาก context และตัดสินใจดำเนินการด้วยตัวเองว่าจะ

ทำงานอย่างไร จะเลือกใช้เครื่องมือใด หรือเรียกใช้เอเจนต์ตัวอื่นเพื่อ

ดำเนินการหรือไม่

กำหนดตัวตนและวัตถุประสงค์ของเอเจนต์

ก่อนสร้างเอเจนต์ คุณควรกำหนดให้ชัดเจนว่าเอเจนต์นี้เป็นใครและ

มีหน้าที่อะไร การตั้งค่าเหล่านี้จะช่วยให้ทั้งคนและเอเจนต์อื่นๆ เข้าใจ

บทบาทของมันได้อย่างถูกต้อง

Name: ชื่อเอเจนต์เป็นองค์ประกอบสำคัญสำหรับการอ้างอิง

ภายในระบบ ควรตั้งชื่อที่สื่อถึงหน้าที่ เช่น

customer_support_router หรือ billing_inquiry_agent เพื่อ

ให้เข้าใจบทบาทของเอเจนต์ได้ทันที
Description: อธิบายความสามารถของเอเจนต์แบบกระชับและ

ชัดเจน เพื่อให้เอเจนต์อื่นตัดสินใจได้ว่าควรส่งงานมาที่เอเจนต์นี้

6

หรือไม่ ควรระบุให้เฉพาะเจาะจง เช่น “Handles inquiries

about current billing statements” มากกว่าคำกว้างๆ อย่าง

“Billing agent”

Model: ระบุโมเดล LLM ที่ใช้เป็นสมองของเอเจนต์ โดยเลือก

โมเดลที่เหมาะกับระดับการใช้เหตุผล ความเร็ว และต้นทุน โมเดล

ที่ซับซ้อนขึ้นอาจให้ผลลัพธ์ดีขึ้น แต่แลกกับค่าใช้จ่ายและเวลาใน

การประมวลผลที่สูงขึ้น ดังนั้นควรเลือกให้สอดคล้องกับงานของ

เอเจนต์

ตัวอย่างการกำหนดตัวตนและวัตถุประสงค์ของเอเจนต์

กำหนดขั้นตอนการทำงานของเอเจนต์

การกำหนดขั้นตอนการทำงาน (Instruction) มีความสำคัญมาก

เนื่องจากการกำหนดลักษณะการทำงานของเอเจนต์ เช่น

ภารกิจหลักและเป้าหมาย

ตัวอย่าง: การกำหนดตัวตนพื้นฐาน
capital_agent = LlmAgent(

 model="gemini-2.5-flash",
 name="capital_agent",
 description="Answers user questions about the capital
city of a given country."
 # กำหนดขั้นตอนการทำงานในขั้นตอนต่อไป
)

7

บุคลิกภาพหรือตัวตน เช่น คุณเป็นผู้ช่วยที่มีประโยชน์, คุณเป็น

โจรสลัดที่ฉลาด เป็นต้น

ข้อจำกัดเกี่ยวกับพฤติกรรม เช่น ตอบเฉพาะคำถามเกี่ยวกับ X

อย่าเปิดเผย Y เป็นต้น

วิธีการใช้เครื่องมือ

คุณควรอธิบายวัตถุประสงค์ของเครื่องมือแต่ละชิ้นและสถานการณ์ที่

ควรเรียกใช้งานเครื่องมือนั้นๆ พร้อมทั้งอธิบายเพิ่มเติมเกี่ยวกับคำ

อธิบายภายในเครื่องมือนั้นๆ รวมไปถึงรูปแบบที่ต้องการสำหรับ

เอาต์พุต เช่น ตอบกลับในรูปแบบ JSON จัดทำรายการแบบหัวข้อ
ย่อย เป็นต้น

ตัวอย่างการกำหนดค่า Instruction เพื่อกำหนดพฤติกรรมของเอเจน

ต์อย่างละเอียด

ขั้นตอนการทำงาน
agent_instruction = """You are an agent that provides the
capital city of a country.
When a user asks for the capital of a country:
1. Identify the country name from the user's query.
2. Use the `get_capital_city` tool to find the capital.
3. Respond clearly to the user, stating the capital city.
Example Query: "What's the capital of France?"
Example Response: "The capital of France is Paris."
"""

capital_agent = LlmAgent(

8

อธิบาย Instruction ข้างต้น

บทบาท (Role): “คุณคือเอเจนต์ที่ให้ข้อมูลเมืองหลวงของ

ประเทศ” (You are an agent that provides the capital city

of a country.)

กระบวนการทำงาน (Process): อธิบายขั้นตอนที่ต้องทำเมื่อผู้

ใช้ถามหาเมืองหลวง

ระบุชื่อประเทศจากคำถามของผู้ใช้ (Identify the country
name from the user’s query.)

ใช้เครื่องมือ (tool) ที่ชื่อ get_capital_city เพื่อค้นหาเมือง

หลวง (Use the get_capital_city tool to find the

capital.)

ตอบผู้ใช้อย่างชัดเจน โดยระบุชื่อเมืองหลวง (Respond

clearly to the user, stating the capital city.)

ให้ตัวอย่าง (Examples): ให้ตัวอย่างคำถามและคำตอบที่คาด

หวัง เพื่อให้ LLM เข้าใจรูปแบบที่ต้องการ เช่น ถาม “What’s the

 model="gemini-2.5-flash",
 name="capital_agent",
 description="Answers user questions about the capital
city of a given country.",
 instruction=agent_instruction,
 # กำหนดเครื่องมือในขั้นตอนต่อไป
)

9

capital of France?” ต้องตอบ “The capital of France is

Paris.”

เคล็ดลับการสั่งงานเอเจนต์

เคล็ดลับการสั่งงานเอเจนต์ให้ได้ผลลัพธ์ที่ต้องการ

ชัดเจนและเฉพาะเจาะจง: หลีกเลี่ยงความคลุมเครือ ระบุการ

ดำเนินการและผลลัพธ์ที่ต้องการอย่างชัดเจน

ใช้ Markdown: สำหรับคำแนะนำที่ซับซ้อนโดยใช้หัวเรื่อง

รายการ เป็นต้น

ให้ตัวอย่าง (ตัวอย่างสั้นๆ): สำหรับงานที่ซับซ้อนหรือรูปแบบ

เอาต์พุตเฉพาะ ให้รวมตัวอย่างในคำแนะนำ

ใส่คำแนะนำการใช้เครื่องมือ: อย่าแสดงรายการเครื่องมืออย่าง

เดียว ให้อธิบายว่าเอเจนต์ควรใช้เครื่องมือเหล่านั้นตอนไหนและ

ทำไม

การเรียกใช้เครื่องมือ

เครื่องมือ (Tool) มีบทบาทสำคัญในการเพิ่มขีดความสามารถให้กับเอ

เจนต์ เนื่องจากช่วยให้เอเจนต์สามารถเชื่อมต่อกับบริการภายนอก

หรือระบบต่างๆ ได้ ไม่ว่าจะเป็นการคำนวณข้อมูล การดึงข้อมูลแบบ

เรียลไทม์ หรือการดำเนินการเฉพาะทางบางอย่างที่เกินขอบเขตของ

การใช้โมเดลภาษาเพียงอย่างเดียว

10

ภายในระบบของ ADK คุณสามารถระบุรายการเครื่องมือที่เอเจนต์

สามารถใช้ได้ผ่านพารามิเตอร์ tools ซึ่งเครื่องมือแต่ละรายการ

สามารถอยู่ในรูปแบบต่างๆ ได้แก่ ฟังก์ชัน Python ที่ถูกห่อหุ้มให้อยู่

ในรูปแบบ FunctionTool โดยอัตโนมัติ หรือคลาสที่สืบทอดจาก

BaseTool ซึ่งในกรณีนี้อาจเป็นอินสแตนซ์ของเอเจนต์ตัวอื่น โดยจะใช้

ในลักษณะของ AgentTool ซึ่งเปิดโอกาสให้สามารถมอบหมายงาน

ระหว่างเอเจนต์ได้

เมื่อมีการสนทนาเกิดขึ้น โมเดลภาษา (LLM) จะใช้ข้อมูลจากชื่อ

ฟังก์ชันหรือชื่อของเครื่องมือ คำอธิบายที่มาจาก docstring หรือฟิลด์
description รวมถึงโครงร่างของพารามิเตอร์ (parameter schema)

เพื่อวิเคราะห์และตัดสินใจว่าในสถานการณ์นั้นควรเรียกใช้เครื่องมือ

ใด พร้อมทั้งจัดเตรียมอินพุตให้เหมาะสมสำหรับการเรียกใช้งาน

เครื่องมือนั้น

ตัวอย่างการกำหนดเครื่องมือ get_capital_city ให้เอเจนต์

กำหนดฟังก์ชันเครื่องมือ
def get_capital_city(country: str) -> str:
 """Retrieves the capital city for a given country."""
 # ส่วนนี้ให้คุณแทนที่ด้วยตรรกะจริง เช่น การเรียก API, การค้นหาฐานข้อมูล
เป็นต้น
 capitals = {"france": "Paris", "japan": "Tokyo",
"canada": "Ottawa"}
 return capitals.get(country.lower(), f"Sorry, I don't
know the capital of {country}.")

11

การจัดการตัวแปรสถานะ

การจัดการตัวแปรสถานะ (State Variable) ช่วยให้เอเจนต์สามารถ

นำค่าที่กำหนดไว้มาใช้ซ้ำหรือแทรกลงในคำสั่งได้อย่างยืดหยุ่น

หลักการใช้งาน

ขั้นตอนการทำงาน
agent_instruction = """You are an agent that provides the
capital city of a country.
When a user asks for the capital of a country:
1. Identify the country name from the user's query.
2. Use the `get_capital_city` tool to find the capital.
3. Respond clearly to the user, stating the capital city.
Example Query: "What's the capital of France?"
Example Response: "The capital of France is Paris."
"""

เพิ่มเครื่องมือให้เอเจนต์
capital_agent = LlmAgent(
 model="gemini-2.5-flash",
 name="capital_agent",
 description="Answers user questions about the capital
city of a given country.",
 instruction=agent_instruction,
 tools=[get_capital_city] # ใส่ชื่อฟังก์ชั่นไปตรงๆ
)

12

คำสั่งจะอยู่ในรูป Template String ซึ่งสามารถใช้ {var} เพื่อ

แทรกค่าตัวแปรแบบไดนามิก

{var} หมายถึงการเรียกค่าของตัวแปรสถานะที่ชื่อว่า var

{artifact.var} หมายถึงการนำข้อความจาก artifact ที่ชื่อว่า var

มาใช้

หากไม่มีตัวแปร state หรือ artifact ที่อ้างถึง เอเจนต์จะแสดง

ข้อผิดพลาด แต่หากต้องการไม่ให้ระบบหยุดทำงาน สามารถใส่

? ต่อท้ายชื่อตัวแปรได้ เช่น {var?}

การเรียกใช้เครื่องมือเป็นแกนหลักที่ทำให้เอเจนต์ก้าวข้ามขีดจำกัด
ของโมเดลภาษา สามารถเชื่อมต่อข้อมูลภายนอก ประมวลผลเชิง

ตรรกะ และลงมือทำงานที่ซับซ้อนได้จริง ผ่านการกำหนดรายการ

เครื่องมือในพารามิเตอร์ tools เอเจนต์จึงสามารถเลือกใช้ฟังก์ชันที่

เหมาะสมตามบริบทของข้อความสนทนาได้โดยอัตโนมัติ โดยอาศัยทั้ง

ชื่อเครื่องมือ คำอธิบาย และสคีมาของพารามิเตอร์เป็นตัวช่วยตัดสิน

ใจ

แนวทางนี้ทำให้การออกแบบเอเจนต์มีความยืดหยุ่นสูง ไม่ว่าจะ

เป็นการใช้ฟังก์ชัน Python ธรรมดาเปลี่ยนให้เป็นเครื่องมือ โดยใช้

FunctionTool หรือการใช้อีกเอเจนต์หนึ่งเป็นเครื่องมือผ่าน

AgentTool เพื่อสร้างการทำงานแบบมอบหมายข้ามเอเจนต์ เมื่อ

เข้าใจหลักการของเครื่องมือแล้ว ขั้นตอนต่อไปคือการนำองค์ประกอบ

ทั้งหมดมาใช้ในการสร้างเอเจนต์ที่พร้อมทำงานจริงในระบบของคุณ

13

เริ่มสร้างเอเจนต์

เรามาสร้างเอเจนต์ พร้อมเรียนรู้ วิธีใช้งานในหลายรูปแบบ ตั้งแต่การ

สร้างเอเจนต์ง่ายๆ ที่ไม่ต้องพึ่งพา Function Call หรือเครื่องมือใดๆ

กับ Imagine Agent ไปจนถึงการเรียกใช้งานเครื่องมือผ่าน Function

Tool กับ News Agent และการใช้เครื่องมือ build-in อย่าง Google

Search กับ Search Agent เพื่อให้คุณเข้าใจและทดลองสร้างเอเจนต์
แบบครบวงจร

ติดตั้ง ADK

ติดตั้ง ADK โดยใช้คำสั่ง

หรือใช้ uv ดังนี้

โครงสร้างโปรเจกต์เป็นดังนี้

adk-basic-agent/
├── imagine_agent/ # prompt refinement agent
│ ├── __init__.py
│ └── agent.py
├── search_agent/ # search tool agent

pip install google-adk

uv tool install google-adk

14

│ ├── __init__.py
│ └── agent.py
├── news_agent/ # news reseach agent
│ ├── __init__.py
│ └── agent.py
├── README.md

สร้าง Imagine Agent

สร้าง Imagine Agent ทำหน้าที่ปรับปรุง Prompt สำหรับสร้าง

รูปภาพของผู้ใช้ให้ดีขึ้น โดยเอเจนต์ใช้ความสามารถของ LLM ทำ
หน้าที่สร้าง Prompt ให้มีรายละเอียดมากขึ้น โดยไม่จำเป็นต้องมี

Function Call หรือเครื่องมือใดๆ เพิ่มเติม เพียงใส่ขั้นตอนและวิธีการ

ทำงานลงใน Instruction ของเอเจนต์เท่านั้น

สร้างเอเจนต์ imagine_agent ด้วยคำสั่ง

เลือก model ที่ต้องการใช้งาน ตัวอย่างนี้ใช้ model gemini-2.5-

flash จาก Google AI และ กรอก Google API key ให้เรียบร้อย ใน

กรณีที่เลือกใช้ model จาก Vertex AI จะต้องตั้งค่า Google Cloud

Project, Google Cloud Location ด้วย

adk create imagine_agent

15

Choose a model for the root agent:
1. gemini-2.5-flash
2. Other models (fill later)
Choose model (1, 2): 1
1. Google AI
2. Vertex AI
Choose a backend (1, 2): 1

Don't have API Key? Create one in AI Studio:
https://aistudio.google.com/apikey

Enter Google API key:

ADK จะสร้างไดเรคทอรี imagine_agent สร้างไฟล์ __init__.py,

agent.py และ .env เพื่อเก็บ API KEY ดังนี้

GOOGLE_GENAI_USE_VERTEXAI=0
GOOGLE_API_KEY="YOUR_GEMINI_API_KEY"

แก้ไขไฟล์ agent.py ในไดเรคทอรี imagine_agent กำหนดตัวตน
และขั้นตอนการทำงานของเอเจนต์ ดังนี้

ตัวอย่างโค้ด

from google.adk.agents import Agent

--- Define the Imagine Agent ---
imagine_agent_instruction = """

16

**Optimized Instruction Prompt: Imagine Prompt
Engineer**

You are an **Imagine Prompt Engineer**.
Your task is to transform any given topic, idea, or
description into a **rich, detailed, and visually
compelling prompt** suitable for an AI image generation
model.

Guidelines:

* Identify the **main subject(s)** and **actions**.
* Describe the **setting**, **environment**,
background, and **foreground** elements.
* Define the **mood**, **atmosphere**, and **lighting**
(e.g., cinematic, soft, neon).
* Specify the **emotional tone** and overall **visual
impression**.
* Optionally include **artistic or stylistic cues** (e.g.,
photorealistic, watercolor, cyberpunk, anime) — only when
they enhance the concept or if requested.
* Integrate key **details**, **keywords**, and
concepts from the user’s input.
* Keep the result **concise** and **effective** —
typically **1–3 sentences**.
* **CRITICAL:** Output **only** the final prompt text — no
introductions, explanations, or extra commentary.

Example:
Input: `cat`
Output: `A fluffy ginger cat sleeping peacefully in a
sunbeam on a wooden floor, photorealistic style.`
Invalid Output: `Here is the prompt: A fluffy ginger
cat...`
"""

17

เปิดไปที่ไดเรคทอรี adk-basic-agent และ สั่ง run web interface

ด้วยคำสั่ง

คุณจะพบว่า ADK Web Server ทำงานที่พอร์ต 8000 ดังภาพ

ADK Web Server ทำงานที่พอร์ต 8000

เปิดเบราเซอร์ไปที่ http://localhost:8000

Create the Imagine Agent instance
It doesn't need specific tools for this core task,
it relies on the LLM's text generation capability.
root_agent = Agent(
 name="imagine_agent",
 instruction=imagine_agent_instruction,
 # Standardize model for consistency within the flow
 model="gemini-2.5-flash"

)

adk web

18

ADK Dev UI

ลองใส่ prompt แบบกว้างๆ ลงไป เช่น

“Glowing Fungi” คุณจะได้ prompt ที่ระบุรายละเอียดเพิ่มเติม

กลับมาดังนี้

A vibrant cluster of diverse fungi, including delicate
bioluminescent caps and intricate gills, emerging from
rich, dark soil and decaying leaves on a misty forest
floor, illuminated by soft, ethereal light filtering
through ancient trees, with tiny dew drops clinging to
their surfaces, extreme macro detail, photorealistic.

“A 18yo woman walking in beach” คุณจะได้ prompt ที่ระบุ

รายละเอียดเพิ่มเติมกลับมาดังนี้

19

An 18-year-old woman, with sun-kissed skin and windswept
hair, casually walking along a pristine golden beach at
sunset. Gentle waves lap at her bare feet as the warm
golden light bathes the scene, creating a serene and
picturesque atmosphere, photorealistic.

จากตัวอย่างนี้คุณสามารถใช้ prompt ที่ปรับปรุงแล้ว ไปใช้กับเครื่อง

มือ (tool) หรือ Agent อื่นเพื่อสร้างรูปภาพต่อไปได้

20

A vibrant cluster of diverse fungi, including delicate bioluminescent

caps and intricate gills, emerging from rich, dark soil and decaying

leaves on a misty forest floor, illuminated by soft, ethereal light

filtering through ancient trees, with tiny dew drops clinging to their

surfaces, extreme macro detail, photorealistic.

An 18-year-old woman, with sun-kissed skin and windswept hair,

casually walking along a pristine golden beach at sunset. Gentle

waves lap at her bare feet as the warm golden light bathes the scene,

creating a serene and picturesque atmosphere, photorealistic.

21

สร้าง Search Agent เรียกใช้เครื่องมือภายใน ADK

เราสามารถเรียกใช้เครื่องมือ (tool) ผ่านทาง Function call ของ
LLM ได้โดยใช้ internal tools ใน ADK ได้ เช่น Google Search,

Code Excution, Vertex AI Search หรือใช้จากไลบรารีภายนอก เช่น

LangChain หรือเรียกใช้ tool จาก MCP Server ได้เช่นกัน ADK ได้

เตรียมเครื่องมือเหล่านี้ไว้ให้พร้อมใช้เรียบร้อยแล้ว ลองมาดูตัวอย่าง

โค้ด search_agent โดยใช้งานบริการ Google Search กัน

สร้างไดเรคทอรี search_agent สำหรับสร้างเอเจนต์สำหรับค้นหา

ข้อมูล

จากนั้นแก้ไขไฟล์ agent.py ลงในไดเรคทอรี search_agent กำหนด

เอเจนต์และเครื่องมือ (tool) ที่ต้องใช้ดังนี้

adk create search_agent

from google.adk.agents import Agent
from google.adk.tools.google_search_tool import
GoogleSearchTool

search_agent_instruction = """
You are a helpful assistant.

Use the `GoogleSearchTool` to find relevant and up-to-date
information based on the user’s query.

22

The tool will return a list of articles containing
titles, **summaries**.

Your task is to:

1. Review the list of returned articles.
2. Summarize the key information from these sources into a
concise report.
3. Present the findings in a **clear list format**,
including for each article:

 * **Title** — the article’s name.
 * **Short Summary** — a brief 1–2 sentence overview of
its main points.

Output Format Example:

Search Results for: *"Latest trends in AI agents
2025"*

1. **"The Rise of Agentic AI: How Autonomous Systems Are
Shaping 2025"**
 Summary: Discusses how AI agents are moving beyond
simple automation to handle complex workflows with
reasoning and tool use.

2. **"Google’s Next-Gen Agent Framework: What Developers
Need to Know"**
 Summary: Covers Google’s new platform for building
adaptive, multimodal AI agents with integrated tool
orchestration.

3. **"OpenAI and the Future of Autonomous Agents"**
 Summary: Explores OpenAI’s approach to agent-native
architecture and the integration of external APIs and
reasoning modules.

23

จากโค้ดข้างต้นเพียงแค่กำหนด GoogleSearchTool ลงไปเท่านั้น

คุณก็สามารถเชื่อมต่อและเรียกใช้งาน Google Search ได้เลย

ตัวอย่าง Search Agent

สร้าง News Agent เรียกใช้เครื่องมือภายนอก

"""

root_agent = Agent(
 name="search_agent",
 model="gemini-2.5-flash",
 description="Agent to search information",
 instruction=search_agent_instruction,
 tools=[GoogleSearchTool()]
)

24

ในส่วนนี้จะยกตัวอย่างการสร้าง AI Search Assistant ด้วย Agent

Development Kit ร่วมกับ Gemini API เพื่อให้ระบบสามารถค้นหา

ข้อมูลและสรุปข้อมูลให้ผู้ใช้ได้โดยอัตโนมัติ ตัวอย่างนี้ใช้บริการค้นหา

ข้อมูลจาก Brave Search ซึ่งเป็นเครื่องมือจากภายนอก เราจะใช้

ไลบรารีจาก LangChain ชื่อ BraveSearchWrapper เพื่อเรียกใช้งาน

สร้างไดเรคทอรี news_agent เพื่อสร้างเอเจนต์ค้นหาข้อมูล

แก้ไขไฟล์ .env ในไดเรคทอรี news_agent เพื่อเก็บ API KEY ของ

บริการต่างๆ

GOOGLE_GENAI_USE_VERTEXAI=0
GOOGLE_API_KEY="YOUR_GEMINI_API_KEY"
BRAVE_SEARCH_API_KEY="YOUR_BRAVE_SEARCH_API_KEY"

แก้ไขไฟล์ agent.py ในไดเรคทอรี news_agent กำหนด Agent และ

เครื่องมือ (tool) ที่ต้องใช้ดังนี้

adk create news_agent

from google.adk.agents import Agent
from langchain_community.utilities import
BraveSearchWrapper
import os

Ensure you have BRAVE_SEARCH_API_KEY set in your
environment variables

25

if "BRAVE_SEARCH_API_KEY" not in os.environ:
 raise ValueError("BRAVE_SEARCH_API_KEY environment
variable not set.")

def get_news(query: str) -> dict:
 """
 Retrieve news articles including title, snippet, and
URL using Brave Search.

 Args:
 query (str) : Query the Brave search engine.

 Returns:
 dict: status and a formatted string containing
search results or an error message.
 """
 if query:
 print("-- brave search --")
 try:
 brave =
BraveSearchWrapper(api_key=os.environ["BRAVE_SEARCH_API_KE
Y"])
 results = brave.run(query)

 print(results)

 except Exception as e:
 return {"status": "error", "error_message":
f"Brave Search failed: {e}"}

 return {"status": "success", "result": results}
 else:

26

 return {"status": "error", "error_message": "topic
cannot be empty"}

news_search_instruction = """
Role:
You are a helpful research assistant.

Goal:
Use the `get_news` to find the most relevant and reliable
information based on the user’s query.

Capabilities:

* You can access the `get_news`, which returns a list of
articles containing **titles**, **summaries**.
* You should read and interpret these results carefully.

Instructions:

1. Use the `get_news` to perform a search using the user’s
query.
2. Review the list of returned articles.
3. For each article, extract:

 * **Title** – the name of the article or source.
 * **Short Summary** – a brief, 1–2 sentence summary of
the main idea or key takeaway.
4. Present your findings in a clear, user-friendly **list
format** as shown below.
5. If multiple perspectives exist, briefly highlight them.
6. Avoid redundant entries or unreliable sources.
7. Keep the final report concise, factual, and easy to
read.

27

Output Format Example:

Search Results for: *"Latest trends in AI agents
2025"*

1. **"The Rise of Agentic AI: How Autonomous Systems Are
Shaping 2025"**
 Summary: Discusses how AI agents are moving beyond
simple automation to handle complex workflows with
reasoning and tool use.

2. **"Google’s Next-Gen Agent Framework: What Developers
Need to Know"**
 Summary: Covers Google’s new platform for building
adaptive, multimodal AI agents with integrated tool
orchestration.

3. **"OpenAI and the Future of Autonomous Agents"**
 Summary: Explores OpenAI’s approach to agent-native
architecture and the integration of external APIs and
reasoning modules.
"""

root_agent = Agent(
 name="news_agent",
 model="gemini-2.5-flash",
 description="Agent to search news and information",
 instruction=news_search_instruction,
 tools=[get_news],
)

28

เปิดไปที่ไดเรคทอรี adk-basic-agent และ สั่ง run web interface

ด้วยคำสั่ง

คุณจะพบว่า ADK Dev UI ทำงานที่พอร์ต 8000 ดังภาพ

ADK Dev UI ทำงานที่พอร์ต 8000

เปิดเบราเซอร์ไปที่ http://localhost:8000 เลือก news_agent

ADK Dev UI

adk web

29

http://localhost:8000/

ทดลองกรอกข้อมูล “AI technology” คุณจะพบว่า Gemini เรียก

เครื่องมือ get_news เพื่อค้นหาข่าวและสรุปข้อมูลข่าวดังภาพ

ค้นหาข่าวและสรุปข้อมูลข่าว

การรันแบบ ChatLoop ใน Command Line

คุณสามารถ run แบบ ChatLoop ใน Command Line ได้โดยใช้คำ

สั่ง run แล้วตามด้วยชื่อเอเจนต์ที่ต้องการ run ดังนี้

คุณจะพบว่าโปรแกรมจะมี prompt ให้แชทกับเอเจนต์ ให้ลองค้นหา

“AI news” และดูผลลัพธ์ดังนี้

adk run news_agent

30

[user]: the impact of AI in 2026

-- brave search --
[{"title": "AI\u2019s true impact will become apparent in
the coming year", "link": "https://www.economist.com/the-
world-ahead/2025/11/10/ais-true-impact-will-become-
apparent-in-the-coming-year", "snippet": "Yet revenues
from AI so far amount ... feats of AI, the focus is
shifting. In 2026 expect its economic, financial
and social consequences to grab
attention...."},...]

[news_agent]: ### Search Results for: "the impact of AI in
2026"

1. **"AI’s true impact will become apparent in the coming
year"**
 Summary: In 2026, the economic, financial, and social
consequences of AI are expected to become much more
evident.

2. **"Top 10 AI Trends to Watch in 2026"**
 Summary: By 2026, AI is projected to significantly
increase efficiency, improve patient outcomes, and reduce
costs within modern healthcare systems.

3. **"AI in 2026: The Breakthroughs, Challenges, and
Real-World Impact Ahead"**
 Summary: AI's increasing sophistication and
availability will change entire sectors, transforming

31

jobs, workflows, and bringing about new ethical
considerations.

 ...

[user]:

การรันแบบ API Server

คุณสามารถ run เอเจนต์ของคุณแบบ API Server ได้ โดยใช้คำสั่ง

API ทำงานที่ port 8000 หากต้องการ ส่ง HTTP request ไปยัง API

Server ดังนี้

สร้าง Session สำหรับเอเจนต์โดยระบุ

ชื่อ app เป็น imagin_agent

User ID เป็น user_123

Session ID เป็น s_123

ใช้คำสั่ง curl ดังนี้

adk api_server

32

เซิร์ฟเวอร์จะสร้าง session ให้ดังนี้

ส่ง prompt ไปยัง Agent ดังนี้

curl -X POST
http://127.0.0.1:8000/apps/imagin_agent/users/u_123/sessio
ns/s_123
-H "Content-Type: application/json"

{
 "id": "s_123",
 "appName": "imagin_agent",
 "userId": "u_123",
 "state": {},

 "events": [],
 "lastUpdateTime": 1759919980.1439106
}

curl -X POST http://127.0.0.1:8000/run
-H "Content-Type: application/json"
-d '{
 "app_name": "imagin_agent",
 "user_id": "u_123",
 "session_id": "s_123",
 "new_message": {
 "role": "user",
 "parts": [{
 "text": "Glowing fungi"
 }]

33

หากคุณใช้ /run คุณจะเห็นผลลัพธ์ของเหตุการณ์ทั้งหมดแสดงพร้อม

กันในรูปแบบของรายการ (list) ซึ่งจะมีลักษณะคล้ายกับตัวอย่างต่อ

ไปนี้

 }
}'

[
 {
 "content": {
 "parts": [
 {
 "text": "A magical forest floor at twilight,
covered in a vibrant array of bioluminescent mushrooms and
glowing moss, their soft, ethereal light illuminating dew-
kissed leaves, ancient roots, and a misty background, rich
cinematic lighting, hyperrealistic."
 }
],
 "role": "model"
 },
 "finishReason": "STOP",
 "usageMetadata": {
 "candidatesTokenCount": 47,
 "promptTokenCount": 301,
 "promptTokensDetails": [
 {
 "modality": "TEXT",
 "tokenCount": 301
 }

34

หากคุณใช้ /run_sse

],
 "thoughtsTokenCount": 412,
 "totalTokenCount": 760
 },
 "invocationId": "e-1bf32d62-d10f-40b8-8738-
4b0cced92ac0",
 "author": "imagine_agent",
 "actions": {
 "stateDelta": {},
 "artifactDelta": {},
 "requestedAuthConfigs": {},
 "requestedToolConfirmations": {}
 },
 "id": "7dec21e0-a309-4d22-a8ea-50a4651f5393",
 "timestamp": 1759920038.216567
 }
]

curl -X POST http://127.0.0.1:8000/run_sse
-H "Content-Type: application/json"
-d '{
 "app_name": "imagin_agent",

 "user_id": "u_123",
 "session_id": "s_123",
 "new_message": {
 "role": "user",
 "parts": [{
 "text": "Glowing fungi"

35

คุณสามารถตั้งค่า streaming เป็น true เพื่อเปิดใช้งานการสตรีมใน

ระดับโทเค็น ซึ่งหมายความว่าผลลัพธ์จะถูกส่งกลับมาเป็น data

หลายส่วน (chunks) ต่อเนื่องกัน ผลลัพธ์ที่คุณเห็นจะมีลักษณะคล้าย

กับตัวอย่างต่อไปนี้

 }]
 }
 "streaming": true
}'

data: { "content": { "parts": [{ "text": "A hidden grotto
deep within an ancient forest, illuminated entirely by
clusters of various bioluminescent fungi casting a soft
emerald green and sapphire blue glow onto damp moss,
gnarled tree roots, and glistening droplets of water,
mystical atmosphere, hyperrealistic" }], "role": "model"
}, "partial": true, "usageMetadata": {
"candidatesTokenCount": 49, "promptTokenCount": 507,
"promptTokensDetails": [{ "modality": "TEXT",
"tokenCount": 507 }], "thoughtsTokenCount": 595,
"totalTokenCount": 1151 }, "invocationId": "e-7cfd3f16-
2522-4444-acc2-55afd9b5dc9f", "author": "imagine_agent",
"actions": { "stateDelta": {}, "artifactDelta": {},
"requestedAuthConfigs": {}, "requestedToolConfirmations":
{} }, "id": "9486d97a-397d-46de-8872-650121ca8e5a",
"timestamp": 1759920688.028734 }

36

การดีบักด้วย API Document

เซิร์ฟเวอร์ API จะสร้าง API Document แบบโต้ตอบโดยอัตโนมัติ
ผ่าน Swagger UI ซึ่งเป็นเครื่องมือที่มีประโยชน์อย่างมากในการ

สำรวจ endpoint ต่างๆ ทำความเข้าใจรูปแบบของคำขอ (request

data: { "content": { "parts": [{ "text": ", cinematic
lighting, macro photography." }], "role": "model" },
"partial": true, "finishReason": "STOP", "usageMetadata":
{ "candidatesTokenCount": 56, "promptTokenCount": 507,
"promptTokensDetails": [{ "modality": "TEXT",
"tokenCount": 507 }], "thoughtsTokenCount": 595,
"totalTokenCount": 1158 }, "invocationId": "e-7cfd3f16-
2522-4444-acc2-55afd9b5dc9f", "author": "imagine_agent",
"actions": { "stateDelta": {}, "artifactDelta": {},
"requestedAuthConfigs": {}, "requestedToolConfirmations":
{} }, "id": "a306c222-4e74-490d-a4de-55b31e41e95f",
"timestamp": 1759920695.189489 }

data: { "content": { "parts": [{ "text": "A hidden grotto
deep within an ancient forest, illuminated entirely by
clusters of various bioluminescent fungi casting a soft
emerald green and sapphire blue glow onto damp moss,
gnarled tree roots, and glistening droplets of water,
mystical atmosphere, hyperrealistic, cinematic lighting,
macro photography." }], "role": "model" },
"usageMetadata": { "candidatesTokenCount": 56,
"promptTokenCount": 507, "promptTokensDetails": [{
"modality": "TEXT", "tokenCount": 507 }],
"thoughtsTokenCount": 595, "totalTokenCount": 1158 },
"invocationId": "e-7cfd3f16-2522-4444-acc2-55afd9b5dc9f",
"author": "imagine_agent", "actions": { "stateDelta": {},
"artifactDelta": {}, "requestedAuthConfigs": {},
"requestedToolConfirmations": {} }, "id": "d3b1d515-b996-
4c23-8dce-5dc60925f3b0", "timestamp": 1759920695.467105 }

37

format) และทดสอบการทำงานของเอเจนต์ ได้โดยตรงจาก

เบราว์เซอร์ของคุณ

ในการใช้งานเอกสารแบบโต้ตอบ ให้เริ่มต้นเซิร์ฟเวอร์ API แล้วเปิด

เว็บเบราว์เซอร์ไปที่ http://localhost:8000/docs

API Document

เมื่อเข้าไปแล้ว คุณจะเห็นรายการของ API endpoint ทั้งหมดที่มีอยู่

ในระบบในรูปแบบแบบโต้ตอบ ซึ่งสามารถคลิกเพื่อดูรายละเอียดของ

พารามิเตอร์ (parameters), โครงสร้างของคำขอ (request body)

และ รูปแบบการตอบกลับ (response schema) ได้อย่างครบถ้วน

นอกจากนี้คุณยังสามารถคลิกที่ปุ่ม “Try it out” เพื่อส่งคำขอจริงไป

ยังเอเจนต์ที่กำลังทำงานอยู่ได้ทันที

38

ทดสอบโดยใช้ API Document

ในบทนี้ เราได้เรียนรู้ พื้นฐานสำคัญของการสร้างเอเจนต์ด้วย Agent

Development Kit (ADK) โดยเริ่มตั้งแต่การกำหนดตัวตนและ

วัตถุประสงค์ของเอเจนต์ผ่าน name, description และ model ที่จะ

ใช้เป็นแกนหลักในการประมวลผล หัวใจสำคัญของการสร้างเอเจนต์

คือการเขียน instruction ที่ชัดเจนและละเอียด เพื่อเป็นแนวทางให้เอ

เจนต์เข้าใจภารกิจหลัก ข้อจำกัด และวิธีการทำงาน

เราได้เห็นถึงพลังของเอเจนต์ในการเชื่อมต่อกับความสามารถ

ภายนอกผ่านการเรียกใช้เครื่องมือ (Tools) ซึ่งมีทั้งเครื่องมือที่ ADK

เตรียมไว้ให้ เช่น Google Search และการสร้างเครื่องมือขึ้นเองเพื่อ

เชื่อมต่อกับบริการภายนอกอย่าง Brave Search ผ่านไลบรารี
LangChain นอกจากนี้ยังได้เรียนรู้ วิธีการจัดการตัวแปรสถานะ

(State Variable) เพื่อเพิ่มความยืดหยุ่นในการทำงาน

39

ท้ายที่สุด เราได้ลงมือสร้างเอเจนต์ตัวอย่าง ตั้งแต่ Imagine Agent ที่

ใช้เพียง instruction ในการปรับปรุงพรอมต์ ไปจนถึง News Agent

ที่สามารถค้นหาและสรุปข่าวสาร พร้อมทั้งสำรวจวิธีการรันเอเจนต์ใน

รูปแบบต่างๆ ไม่ว่าจะเป็น Web UI สำหรับการพัฒนา, Command

Line สำหรับการโต้ตอบโดยตรง และ API Server สำหรับการนำไป

เชื่อมต่อกับระบบอื่น ซึ่งทั้งหมดนี้เป็นพื้นฐานสำคัญในการพัฒนาเอ

เจนต์ที่มีความสามารถซับซ้อนต่อไป

การตั้งค่าและการควบคุมขั้นสูง

นอกเหนือจากพารามิเตอร์พื้นฐานแล้ว LlmAgent ยังมีตัวเลือกเพิ่ม

เติมสำหรับการควบคุมพฤติกรรมของเอเจนต์ในระดับที่ละเอียดขึ้น

เพื่อให้สามารถปรับแต่งการทำงานให้เหมาะสมกับกรณีใช้งานที่ซับ

ซ้อนยิ่งขึ้น

การปรับแต่งการสร้างข้อความของ LLM

สามารถควบคุมลักษณะการตอบสนองของโมเดลภาษาได้ผ่าน

generate_content_config ซึ่งใช้สำหรับกำหนดพฤติกรรมการสร้าง

ข้อความของ LLM โดยตรง

generate_content_config (Optional) ใช้ส่งออบเจ็กต์

google.genai.types.GenerateContentConfig เพื่อกำหนด

พารามิเตอร์ต่าง ๆ เช่น

40

temperature ระดับความสุ่มของคำตอบ

max_output_tokens ความยาวสูงสุดของผลลัพธ์

top_p, top_k สำหรับการสุ่มเชิงความน่าจะเป็น

safety_settings สำหรับควบคุมเนื้อหาที่อาจเป็นอันตราย

ตัวอย่างการตั้งค่าเพื่อให้ผลลัพธ์มีความคงที่และปลอดภัยมากขึ้นมี

ดังนี้

การจัดโครงสร้างข้อมูล

from google.genai import types

agent = LlmAgent(
 # ... other params
 generate_content_config=types.GenerateContentConfig(
 temperature=0.2, # More deterministic output
 max_output_tokens=250,
 safety_settings=[
 types.SafetySetting(

category=types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTEN
T,

threshold=types.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
)
]
)
)

41

สำหรับกรณีที่ต้องการแลกเปลี่ยนข้อมูลกับ LLM ในรูปแบบที่มี

โครงสร้างชัดเจน ADK รองรับการกำหนด schema ทั้งฝั่ งอินพุตและ

เอาต์พุต เพื่อบังคับรูปแบบข้อมูลให้เป็นไปตามที่ต้องการ

input_schema (Optional) ใช้กำหนดโครงสร้างของข้อมูลนำ

เข้า หากตั้งค่าไว้ ข้อความจากผู้ใช้ที่ส่งเข้าเอเจนต์จะต้องเป็น

JSON ที่สอดคล้องกับ schema นี้ โดยคำสั่ง (instruction) ควร

อธิบายรูปแบบข้อมูลให้ชัดเจน

output_schema (Optional) ใช้กำหนดโครงสร้างของข้อมูล

ผลลัพธ์ โดยบังคับให้เอเจนต์ส่งคำตอบสุดท้ายออกมาเป็น JSON
ตาม schema ที่กำหนด

output_key (Optional) ใช้ระบุ key สำหรับบันทึกผลลัพธ์

สุดท้ายของเอเจนต์ลงใน state ของ session โดยอัตโนมัติ

เหมาะสำหรับการส่งต่อข้อมูลระหว่างเอเจนต์หรือขั้นตอนต่าง ๆ

ใน workflow

ตัวอย่างการเข้าถึงค่าใน state

ตัวอย่างการกำหนด schema ด้วย Pydantic

session.state[output_key] = agent_response_text

42

