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Preface

The textbook "Computational Fluid Dynamics by Finite Element and
Finite Volume Methods" has been translated from the latest Thai edition (4th
edition). It is published and distributed in both hardcopy and e-book formats by
Chulalongkorn University Press in Bangkok, Thailand.

This textbook is divided into four main parts. The first part covers the
fundamentals of fluid flows and the derivation of the Navier-Stokes equations. The
second part presents the finite element formulations for four types of fluid flows:
(a) inviscid incompressible flow, (b) inviscid compressible flow, (c) viscous
incompressible flow, and (d) viscous compressible flow. The third part revisits
these four types of fluid flows, but using the finite volume method. The final part
covers the characteristics and significance of turbulent flow, explores various
turbulence models, and discusses numerical simulation techniques. The book
includes numerous basic examples that are easy to understand, along with computer
programs in MATLAB, Mathematica, and Fortran. It also contains a large number
of application problems.

The computer programs and files mentioned in this book can be
downloaded from the following website: https://goo.gl/57ThUHE.

The author extends heartfelt gratitude to his esteemed former Professor,
Dr. Earl A. Thornton, and his supervisor, Dr. Allan R. Wieting, from the Aerothermal
Loads Branch at NASA Langley Research Center. Appreciation is also extended
to the students at NASA Langley Research Center, Old Dominion University, and
Chulalongkorn University who actively participated in the finite element and finite
volume method courses he offered.

Special thanks go to Chulalongkorn University Press for their role in
publishing the book, contributing to its dissemination and impact. Lastly, the author
expresses deep appreciation to his wife, Mrs. Yupa Dechaumphai, for her understand-
ing and unwavering support throughout the writing process, acknowledging the
significant role she played in bringing the book to fruition.

Pramote Dechaumphai
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Chapter
1

Computational Fluid Dynamics

1.1 Introduction

The use of Computational Fluid Dynamics (CFD) has become
increasingly crucial in both engineering design and scientific research for analyzing
flow behaviors such as velocity, pressure, and temperature. CFD integrates the
application of numerical methods and computer technology to solve partial
differential equations that describe the dynamics of fluid flow. This approach yields
results that can be visually represented through color graphics, greatly enhancing
the ability of analysts to comprehend complex flow phenomena. Consequently,
CFD facilitates the refinement and optimization of design models, allowing for the
validation of designs on computer screens before proceeding to actual construction
or further experimental validation. This preventive verification process boosts
confidence in the design's feasibility and performance.

Incorporating CFD into the design process markedly diminishes both
costs and timeframes when compared to traditional experimental methods that
dominated earlier engineering practices. A prime example of this shift can be seen
in the development of early Boeing aircraft models intended for commercial
transcontinental flights. Previously, engineers were tasked with constructing scale
models of the airplanes from wood and testing these models in wind tunnels to
analyze airflow conditions, including lift generated by the wings and the plane's
underbelly. This method was not only labor-intensive but also required significant
investment in materials and experimental setups, extending the development cycle
from construction to testing over years. Furthermore, should the testing reveal any
design flaws, such as wings that were too large or insufficiently long, the process
of making corrections was cumbersome. Adjustments necessitated additional time
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for modifications and subsequent testing, which, although occasionally leading to
improvements, did not always result in the sought-after enhancements.

By leveraging CFD, the design timeline and experimental costs associated
with aircraft development can be drastically reduced. Engineers proficient in CFD
can effortlessly generate simulation models of Boeing aircraft to analyze airflow
conditions, a process depicted in Figure 1.1. A significant benefit of this approach
is the agility with which modifications can be applied to the aircraft's design, such
as alterations to the wing configuration or other components. Additionally, CFD
enables rapid acquisition of detailed flow field information in specific areas, a task
that could be exceedingly challenging or time-intensive with traditional experimental
methods.

Figure 1.1 Contour lines illustrate pressure distribution on aircraft surfaces.

Moreover, the versatility of CFD extends beyond aircraft models. The
same software used for assessing flow conditions around the Boeing aircraft can
also be applied to analyze airflow through other intricate shapes, such as
determining air conditions around fighter jets, illustrated in Figure 1.2. These
examples underscore the value of CFD in providing detailed insights into pressure
variations across different sections of the aircraft, from the nose, along the wings,
to the vicinity of underwing areas. This capability not only enhances design precision
but also streamlines the development process, illustrating the comprehensive
advantages of CFD in modern aerospace engineering.
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Figure 1.2 Contour lines illustrate pressure distribution on the surface
and around a fighter jet aircratft.

Addressing modern challenges in design often confronts the limitation
that many contemporary issues are impractical to test experimentally, or such
testing would entail prohibitively high expenses. Take, for instance, the development
of an aerospace plane designed for high-speed travel, capable of circumnavigating
half the globe in merely two hours at velocities reaching 25 times the speed of
sound, as illustrated in Figure 1.3. At these extraordinary speeds, the friction with
the atmosphere generates heat up to 70,000 Btu/ft>-sec. This is starkly contrasted
with the mere 0.12 Btu/ft?>-sec one might experience from sunlight on a particularly
bright day. The significant heat produced through atmospheric friction has the
potential to melt the spacecraft's external surface.

The most extensive continuous experiments on the ground are capped at
2 minutes duration, achieving speeds only up to 8 times the speed of sound within
a wind tunnel at NASA Langley Research Center, the place where the author
previously worked. Conducting each experiment demands an enormous energy
input to drive hot gas at high velocities across a spacecraft component under test.
This process induces severe vibrations in the facility, necessitating the suspension
of all other activities during the 2-minute test interval. Furthermore, the average
cost for equipment and labor per test approaches several thousand US dollars,



6 Chapter 1 Computational Fluid Dynamics

underscoring the significant resource investment required for such pioneering
explorations in aerospace design.

Figure 1.3 Contour lines illustrate pressure distribution on the surface
and around the National Aerospace Plane.

Beyond addressing the overt challenges outlined previously, CFD has
been instrumental in tackling various issues that enhance our current quality of life,
such as analyzing ventilation efficiency within energy-saving buildings. Through
experiments conducted in different scenarios of window operation for ventilation
purposes, insightful data have been gathered. Figure 1.4 illustrates the airflow
derived from these calculations, demonstrating how air impacts the building's left
side. Some of this air traverses over the roof, while another portion enters through
an open balcony door on the second floor's left side, circulates through the building,
and exits upwards through an open window on the right side of the roof. Figure 1.5
depicts a similar setup for doors and windows as seen in the first instance, but with
an additional door opened on the right side of the lower floor to enhance ventilation.
The airflow conditions showcased in Figures 1.4 and 1.5, obtained through CFD,
demonstrate the capability of this technology to efficiently model and predict the
effects of various window configurations on air circulation in a relatively short time
frame.
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Figure 1.4 Velocity vectors depicting airflow through a house
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Figure 1.5 Velocity vectors depicting airflow through a house
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CFD has become a cornerstone in engineering, extensively applied
across a broad spectrum of research and development initiatives to amplify
operational efficiency. This includes optimizing impeller designs in pumps for
enhanced thrust, refining fuel distribution for uniform and complete combustion in
engine cylinders, and shaping ship hulls to minimize water resistance during
navigation. Furthermore, CFD aids in assessing the spread of wastewater in rivers,
ensuring effective ventilation in electronic devices through microchip cooling to
avert overheating, and providing precise weather forecasts for vast regions or
specific microclimates within air-conditioned office spaces. An example of CFD’s
application is depicted in Figure 1.6, which visualizes the airflow in a 5x4x3 meter
room, featuring a 1.5-meter tall cabinet centrally located. The walls of this room
experience varied heat loads, and an air conditioner, positioned at one ceiling
corner, emits air at 10°C, illustrating the detailed insight CFD offers into
environmental and mechanical engineering challenges.

0, 10 W/m%

Figure 1.6 Particle tracing paths in an air-conditioned room
with a cabinet placed in the middle of the room.

Figure 1.7 illustrates the temperature distribution across the same room's
cross-section, demonstrating the application of CFD to effortlessly predict the flow
conditions within. Moreover, CFD extends its utility beyond traditional engineering,
facilitating research in scientific fields where physical experiments are either not
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feasible or potentially dangerous. This includes, but is not limited to, simulating the
blood flow in veins and the heart, as well as modeling the interaction of hazardous
chemicals.

Figure 1.7 Temperature distribution in an air-conditioned room
with a cabinet placed in the middle of the room.

The examples highlighted above demonstrate the profound impact of
CFD across a wide spectrum of flow-related challenges. By significantly cutting
down on the time and expenses associated with design processes, CFD enhances
analytical capabilities and streamlines the experimental phase, particularly when
physical experimentation is impractical or impossible. Furthermore, CFD facilitates
a granular examination of flow dynamics in targeted areas, enabling the acquisition
of accurate results and insights. Crucially, these instances underscore CFD's
capacity to unlock extensive possibilities for tackling diverse flow issues, spanning
practical applications to research and development initiatives.

1.2 Process of Solving Problems

Analyzing engineering problems, ranging from solid mechanics like
stress analysis in structures and components, to heat transfer phenomena such as
temperature distribution in cooling systems of transformers and motors, to fluid
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dynamics like the study of airflow in air-conditioned environments, or even tackling
problems in diverse scientific areas, depends on three major factors or components.
These are: (a) the partial differential equations that describe the reality of the
problem, (b) the boundary conditions for the problem under study, and (c) the
geometry or shape of the problem. If any of these components changes, the resulting
outcomes will also change accordingly. A deep understanding of these three
components is crucial for problem analysis through computation. The importance
of each component that needs to be understood can be summarized as follows.

1.2.1 Governing Differential Equations

Most of engineering problems are governed by partial differential
equations that vary in complexity. Partial differential equations are considered the
core that represents the reality of each problem. For example, analyzing solid
mechanics problems requires starting from a set of partial differential equations that
describe the equilibrium of forces in three directions, which are always valid at any
point in the problem. Heat transfer analysis must begin with partial differential
equation that describe the equilibrium of heat transfer, while fluid dynamics
analysis must start from a set of partial differential equations that represents the
conservation of mass, momentum, and energy. These partial differential equations
consist of various terms in derivative form, using symbols similar to an inverted of
the number "six". As an example, the set of partial differential equations for two-
dimensional steady-state viscous incompressible flow without considering
temperature change (the details and meanings of each term will be presented in the
later chapter) are,

ou Ov
ou ou) op ou  0u
p(ua—+v5)+a = ﬂ(axz-Fayz (12)
o o) dop _ ov v
AGr gl - a5 (-

The three differential equations above consist of three unknown dependent variables
that vary with the independent variables x and y. These three dependent variables
are the velocity u in the x-direction, the velocity v in the y-direction, and the pressure
p, all of which are functions of both x and y-coordinates. The symbols p and u
represent the density and the viscosity of the fluid, respectively.

Solving the above set of differential equations for a complex flow problem
in order to find an exact solution is generally impossible. This is due to two main
reasons. The first reason is that these partial differential equations are coupled,
meaning that the solutions of the velocity components u, v and the pressure p must
satisfy all equations. The second difficulty is that the partial differential equations
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(1.2) and (1.3) are nonlinear since the unknown variables u and v appear as
coefficients in the first terms of both equations. Such the set of nonlinear
differential equations does not only makes finding an exact solution impossible but
also greatly complicates the use of numerical methods for solving them.

These two main reasons significantly slow down the development of
solutions for fluid flow problems compared to those for solid mechanics or heat
transfer problems. The non-linear nature of the partial differential equations in fluid
flow problems can lead to extremely complex outcomes when compared to solid or
heat transfer problems, which are often linear and result in simpler, more
straightforward distributions of solutions. For example, applying a certain force on
a beam results in a stress on that beam. If the force applied to the beam is increased,
the stress in the beam also increases in a proportional manner. However, in the case
of fluid flow problems governed by the non-linear partial differential equations, it
is different. As an example, turning on an air conditioner at a low speed in a room,
it creates a certain circulation pattern of air. But if the air speed of the air conditioner
is increased, the circulation pattern of the air in the room might change completely.
That is the circulation does not just remain in the same pattern with an increased
speed. Understanding the implications of the partial differential equations is thus
critically important. Those looking to solve such problems must first understand
and familiarize themselves with these equations, not just viewing them as mere
mathematical equations, but also understanding their physical significance. This
positive attitude towards solving these partial differential equations correctly can
lead to meaningful and insightful outcomes that enhance the understanding of the
problems at hand.

1.2.2 Boundary Conditions

In the process of solving the set of partial differential equations,
boundary conditions are a crucial component that leads to appropriate solutions. If
the problem being analyzed is unsteady, initial conditions must also be applied.
Changing boundary conditions lead to changing solutions as well. Figure 1.8
illustrates the temperature distribution at the mouth of the Chao Phraya River during
the flood season. The boundary condition for this problem is set so that water flows
from the upper left corner at a speed of 3 meters per second and at a temperature of
25°C. On the upper right side, hot water at a temperature of 40°C is released from
a factory, causing downstream temperatures to rise, which may affect the damage
to aquatic animal farming in the downstream area. Figure 1.9 (a) shows the details
of the temperature level contours in a small frame of Figure 1.8, where hot water
from the factory is released and mixed with the cold river water near the Butterfly
Island. Due to the flood season, the hot water from the factory is quite quickly
dispersed. Figure 1.9 (b) also shows the solutions of the temperature distribution
from the mixing of water near the Butterfly Island but in the dry season case. That
is, it is assumed that the cold water in the Chao Phraya River flows from the upper
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left corner of the image at a reduced speed of 1.5 meters per second, resulting in a
generally higher temperature in a broader area.

Figure 1.8 Contour lines indicate the temperature distribution at the mouth
of the Chao Phraya River due to the factory releasing hot water
during the flood season.

(a) Flood season (b) Dry season

Figure 1.9 Details of contour lines show the temperature distribution
from the mixing of waters at different temperatures in the
area around the Butterfly Island.
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The different temperature distributions shown in Figure 1.9 result from
setting different boundary conditions. The specification of boundary conditions for
flow problems in computational fluid dynamics depends on the type of partial
differential equations, whether they are elliptic, parabolic, or hyperbolic, which in
turn depends on the flow velocity. For example, flow at speeds greater than the
speed of sound around a blunt body creates a bow shock wave positioned in front
of the blunt body. In the area between the bow shock wave and the blunt body, the
flow speed is lower than the speed of sound, making the differential equation elliptic
in nature. However, just beyond this region, where the flow speed increases to
exceed the speed of sound, the differential equation becomes hyperbolic. Such
problems have historically been challenging to solve to obtain results, as the partial
differential equation system can change from one type to another within the same
computational domain. Therefore, in the chapters on different types of flows that
will be presented, the boundary conditions will be clearly explained to facilitate
understanding and to correctly and appropriately set the boundary conditions for
each type of flow.

1.2.3 Geometries

In general basic problem-solving in classrooms, the geometry or shape
of the problem is often not considered. Most studies focus only on the steps for
solving the differential equations along with given boundary conditions. If the
shapes of the problem are specified, they are typically just rectangles or squares.
Not considering the problem shapes leads students to almost completely overlook
the complexities of solving problems arising from the geometry. In engineering and
science, problems are always designed with complex geometries, such as airflow
through a house with rooms at different levels under a sloping roof, as shown in
Figures 1.4 and 1.5. Problems may inherently have complex geometries, like the
flow in the area near the mouth of the Chao Phraya River in Figures 1.8-1.9. The
geometry, which covers changing flow areas, results in changing the flow solutions,
even though the set of partial differential equations and boundary conditions remain
the same. Figure 1.10 shows a flow through a narrow channel with a linear
expansion, causing a small area of circulation in the lower left. Figure 1.11 shows
the results from solving the same set of partial differential equations and boundary
conditions near the entrance similar to Figure 1.10, but the geometry in the lower
left of the problem has been expanded further, resulting in an increased area of
circulation.
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Figure 1.10 Velocity vectors indicate the flow behavior through a narrow
channel geometry with a linear expansion.
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Figure 1.11 Velocity vectors indicate the flow behavior through a narrow
channel geometry with a complicated expansion.

From these examples, it can be seen that the flow solutions are diverse,
depending on the three main components mentioned above. These examples also
demonstrate that if an efficient method for obtaining the solutions of these flow
problems can be found, the analyst can modify the boundary conditions or the shape
of the problem, which will lead to the desired outcomes. This idea makes CFD
highly beneficial for design work nowadays.

The knowledge of problem-solving methods combined with the potential
of solving problems using computers has led to the development of numerous
commercial software. The primary function of these software is to find solutions by
solving the three main components as described above. These software are
generally expensive, and users must have sufficient knowledge in mathematics and
computational methods to ensure that the solutions obtained from these software
are accurate. [t must be emphasized that these software are not like graphic software
used for drawing or drafting. Using a Computer Aided Design (CAD) software to
draw a circle on a computer screen and seeing it as the desired circle allows users
to know they have the correct result. However, using a CFD software that provides
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the flow solutions, which are displayed in forms of velocity vectors and pressure in
colors, requires deep understanding. If users do not understand what the software is
doing internally, they cannot be sure that the solutions are accurate.

The operational steps of any CFD software are to solve a set of partial
differential equations of flow, with the appropriate boundary conditions and the
given problem geometry. Generally, every software follows the three main steps:
(a) the step of defining the problem geometry and boundary conditions, which is
called the pre-processing; (b) the analysis, which is the heart of the software; and
(c) the post-processing for displaying the solutions obtained from the calculations.

(a) Pre-processing The initial process begins with the creation of the
flow domain to be analyzed, consisting of steps ranging from creating lines,
creating surfaces, to creating volumes if it's a three-dimensional flow. Then, this
created flow domain is divided into small elements, where these elements are
connected at nodes. The nodes are the positions to calculate the flow solution
values such as the velocity components, pressure, and temperature. Finally, the
properties of the fluid and the boundary conditions for the problem are defined
accordingly.

This initial process, although it can be easily performed in commercial
software today, often takes a considerable amount of time due to the complexity of
the geometry of flow problems. For example, the flow over an engine under the
wing attached to the aircraft's fuselage, as shown in Figure 1.12, requires the flow
domain to be created accurately. The surface of this flow domain must be smooth
along the curved surfaces of the engine under the wing, the curved surface of the
aircraft's fuselage, and also where these various curved surfaces intersect in three
dimensions. Then, the created flow domain is divided into a large number of small
elements to be used in the next analysis step.

(b) Analysis The analysis step is considered the heart of these
commercial software. Dividing the flow domain into too many small elements
results in an increased number of the nodes with more unknowns, which in turn
increases the computational time and the amount of computer memory required.
However, conversely, this leads to higher solution accuracy. Experienced analysts
must therefore weigh the pros and cons before performing the calculation.

The concept of discretization, dividing the flow domain into small
elements, is to enable the use of simple functions to represent the characteristics of
the flow through these small elements. These functions are then substituted into the
set of the governing partial differential equations, combined with certain
mathematical processes to minimize errors, resulting in a large system of algebraic
equations that must be solved by numerical methods.
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Figure 1.12 A finite element mesh on the surfaces of the engine
under the wing attached to the aircraft fuselage.

The popular analysis methods include the Finite Difference Method
(FDM), the Finite Element Method (FEM), and the Finite Volume Method (FVM).
Currently, these three methods are integrated into the curriculum to assist in solving
problems in various subjects at both the undergraduate and graduate levels for
different fields in engineering and science.

In overview, the Finite Difference Method uses the Taylor series to
approximate the derivative terms appearing in partial differential equations with
values at the junction point under consideration and at adjacent junction points. This
results in a system of algebraic equations that must be solved using the
aforementioned numerical methods. The Finite Difference Method comprises
straightforward steps that are easy to understand, but it has the limitation of not
being easily applicable to problems with complex geometries.

At the same time, if the Finite Element Method or the Finite Volume
Method is used, problems of any complex two-dimensional shape can easily be
divided into elements such as triangles, irregular quadrilaterals. These elements do
not need to be arranged in an orderly fashion like the rectangular grid required in
the Finite Difference Method. The feasibility of the Finite Element and Finite
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Volume Methods has made them increasingly popular for solving various
engineering problems, which often have complex geometries. However, both of
these methods, such as the Finite Element Method, involve more complex steps of
formulating internal equations. Starting with the creation of element interpolation
functions and applying the method of weighted residuals, thereby generating finite
element equations for each element before assembling these equations into a large
system of equations that also must be solved by numerical methods.

(c) Post-processing Results from the flow analysis process typically
consist of velocity components in different directions, pressure, and temperature at
nodes in the flow domain. These nodal solutions are all in the form of numerical
values. Visualizing these solutions in the form of graphics is thus essential, such as
vector plots at every nodes throughout the flow domain as shown in figures 1.4 and
1.5 of air flowing through a house. Contour lines, for example, the temperature
distribution in an air-conditioned room as shown in figures 1.7, and in the area of
the Chao Phraya River mouth as shown in figures 1.8 and 1.9. These plots are
displayed in different colors on a computer screen to help understand the problem
more quickly and effectively. Additionally, the results can be presented in the form
of particle tracing paths, as shown in figure 1.6, among others. These various
formats can be viewed from multiple directions, including showing fluid motion to
create a more realistic feeling.

1.3 Essential Knowledge

Capabilities of computer software for analyzing fluid dynamics problems,
as described earlier, often leads analysts to believe that these software can easily
obtain flow solutions for any problem. However, in reality, since these software are
based on advanced mathematics and computational methods, those who can use
these software correctly and efficiently must have sufficient knowledge. The
necessary knowledge components can be categorized into five aspects: (a)
understanding of the set of partial differential equations and the physical meaning
of different terms in these equations, (b) knowledge of numerical methods, (c)
knowledge of finite element or finite volume methods, (d) basic knowledge of
computer programming, and (e) sufficient experience in using the software. These
five knowledge components are like five doors that must all be opened; if any door
is closed, it will limit the potential of the users to use these software, leading to
issues such as longer analysis times or excessive memory usage than necessary,
incorrect use of the software, unawareness of what the software is doing while it is
executing, results with low accuracy. Worst of all, getting incorrect results or being
unable to explain why the results are valid. The above five knowledge components
will help users understand the problem-solving process and be confident in the
solutions obtained. These five foundational knowledge aspects can be summarized
as follows.
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(a) Knowledge in the differential equations CFD software is funda-
mentally based on solving a set of partial differential equations. Therefore, it is
necessary to study the specific set of partial differential equations that the software
is designed to solve, and to understand the physical phenomena governing the flow
problems. Moreover, understanding the physical significance of each term in the
set of equations is crucial in indicating the capabilities and limitations of the
software itself. The terms in these equations further indicate the depth of
computational methods required and how this affects the time taken to solve
specific problems. Thus, understanding the set of partial differential equations is
essential before starting to use any CFD software.

(b) Good background on numerical methods Numerical methods have
become a mandatory subject in the study of many engineering disciplines today.
They are a fundamental knowledge and a necessary component for computation.
The basics of numerical methods include knowledge of interpolation functions,
numerical differentiation and integration, solving ordinary differential equations,
and partial differential equations. Most importantly, it involves knowledge of
various techniques used to solve systems of algebraic equations. As an example, to
solve a set of n linear algebraic equations in the form,

[41{x} = {B} (1.4)
(nxn) (nx1) (nx1)
where {X} is a vector or column matrix composed of unknown values x;, x,, x3,

..., X5 {B} is a vector containing n known values. In this case, [4] is a square

matrix consisting of nxn coefficients. In practical problem-solving, the time spent
solving this system of equations significantly exceeds the time spent on other
calculations. As an example, consider a three-dimensional flow problem that might
consist of only 50,000 equations (10,000 nodes, with each node having 5 unknowns
of velocities in three directions, pressure, and temperature), which is considered a
relatively small problem today. The matrix [4] would consist of a total of 2.5 billion
coefficients. Assuming writing down such 50,000 equations on paper by hand,
taking 1 second per coefficient, it would take approximately 80 years to write all of
these down. This estimate does not even begin to address solving this set of
equations.

The example mentioned illustrates the benefits of numerical methods,
which can be efficiently used on current computers. Moreover, due to the set of
partial differential equations, as shown in equations (1.1)-(1.3), which consist of
nonlinear terms, the resulting system of the algebraic equations is also in a nonlinear
form,

[A(0)l{x} = {B} (1.5)

(nxn)  (nx1) (nx1)
The system of nonlinear algebraic equations above needs an iterative process, such
as the Newton-Raphson iteration method, to solve for solutions. The foundation of



Computational Fluid Dynamics by Finite Element and Finite Volume Methods 19

this nonlinear equation solving technique is also included in the study of numerical
methods.

(c) Knowledge in finite element and finite volume methods Analyzing
any problem as described in section 1.2, the solution depends on three main
components: the set of partial differential equations covering the problem, the
boundary conditions, and the problem's geometry. The finite element and finite
volume methods are techniques that fulfill these three main requirements. Starting
with representing the problem's geometry using small elements, making the
computation domain more accurate than the rectangular grid used with the finite
difference method. Figure 1.13 (a) shows the computation domain on a cross-
section of a large cylindrical pipe wrapped in insulation, with two smaller
cylindrical pipes inside at high and low temperatures, filled with fluid between these
pipe surfaces. The aim is to study the flow behavior and temperature of this fluid.
Figure 1.13 (b) displays the rectangular grid using the finite difference method. The
figure shows that the computation domain's boundaries cannot be accurately
represented, appearing as steps along the pipe's curved surface. To reduce the size
of these steps, it's necessary to densify the rectangular grid, resulting in an increased
number of grid points and unknowns. Meanwhile, Figure 1.13 (c) illustrates the
triangular elements created for the finite element method, which can better
represent the pipe's curves, leading to more accurate results. Figure 1.13 (d) displays
the contour lines of the temperature distribution obtained by the finite element
method. The details of these results will be presented in Chapter 8.

After discretizing the computation domain into small elements, the
finite element equations are then generated for each element. These equations are
derived from the governing partial differential equations of the problem, combined
with the use of the interpolation functions that approximate the unknown
distributions over that element. This process will be described in detail in Chapter
3. Then, the equations of each element are assembled to form a large system of
equations, which, in physical terms, is akin to assembling all elements together to
form the actual shape or geometry of the problem. Subsequently, the boundary
conditions of the problem are applied to this large system of equations, which is in
the form of equations (1.4) or (1.5), before solving the entire system of equations
by the numerical methods.

From the above explanation, it is evident that the finite element method
fully meets the requirements of all three main components: the governing partial
differential equations, the boundary conditions, and the geometry of the problem.
Furthermore, since the finite element method is a numerical technique for finding
an approximate solution by using simple functions to represent the unknown
distribution, it implies that employing a more number of elements leads to higher
solution accuracy.
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Figure 1.13 Fluid temperature on pipe section with hot and cold tubes.

Figure 1.14 shows the use of the finite element method to solve the
problem of flow in converging pipes. The problem includes a large horizontal pipe
with flow entering from the left side. In the middle section of this large pipe, there
is a smaller, curved pipe that converges and has flow entering from the top. Figure
1.14 (a) displays the finite element model, consisting of triangular elements that
effectively represent the curved shape. Due to the complexity of the flow occurring
where the two pipes converge, the elements in this area are made smaller to yield
more accurate solutions in this region. Figure 1.14 (b) shows the flow behavior by
the velocity vectors, with the details of the flow at the convergence of the pipes
displayed in the top right insert.
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(b) Flow behavior by velocity vectors

Figure 1.13 Merging pipe flow by finite element method.
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(d) Knowledge of computer programming Understanding the steps of
computation, which are developed into the corresponding computer programs, is
very important for analyzing problems. A significant number of users try to use off-
the-shelf computer programs to solve complex flow problems. The computations
may take several days to complete. Understanding the computational steps in these
computer programs can lead to approaches that significantly reduce computational
time while still achieving equally accurate solutions. A lack of understanding of the
computational processes used in computer programs can sometimes lead to not
achieving any solution at all after spending a large computational time, or, if results
are obtained, they may not be accurate.

The reasons mentioned above indirectly compel program users to have
a relatively profound understanding of the problem analysis process. This
understanding can be acquired from classes or from having solved similar problems
several times before. Therefore, when purchasing these computer programs or
software from vendors, the vendors often include training classes to at least provide
a basic understanding of how to correctly use the software. However, the best
method remains to accumulate fundamental knowledge from classes, which,
although it may take time, leads to a deep and permanent understanding of various
processes that can be applied to other problems in the future.

(e) Sufficient experience in using the software The ability to use soft-
ware efficiently can indeed depend on the time spent practicing in front of a
computer screen. The more time spent practicing in front of the computer screen,
the more experience one gains. These experiences cannot be acquired merely by
sitting and listening in class but arise from hands-on practice. Anything that is
attempted and does not produce the desired flow solutions becomes a valuable
lesson for solving other flow problems in the future.

From the five components of knowledge as described above, it is
understandable that solving flow problems by CFD is not just about having
knowledge in the finite element method or finite volume method alone. It requires
a comprehensive understanding of various fundamental areas, which must be
accumulated over a certain period. This knowledge is not only applicable to solving
flow problems but also opens opportunities to solve many other engineering and
scientific problems governed by the differential equations, under different boundary
conditions, and with complicated geometries.

1.4 Conclusion
Computational fluid dynamics (CFD) has become significantly impor-

tant in both the study and design of various engineering tasks today. From
calculating the flow conditions around airplanes, cars, or trucks, to analyzing the
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lift and drag forces of aircrafts, the flow through water pump impellers, the air flow
and temperature levels in air-conditioned rooms or large buildings, predicting
weather conditions over large areas, or simply controlling the air flow through
microchips to reduce the temperature of small electronic devices. The benefits of
solving fluid flow problems computationally have led to extensive research and
development. This, in turn, has resulted in sophisticated commercial software
available at high prices.

This chapter broadly discusses three main factors that lead to different
outcomes, whether it be problems of flow, solids, heat transfer, or others. The
results depend on: (a) the differential equations that describe the fact of the problem,
(b) the boundary conditions, and (c) the geometry of the problem. In practice, these
three factors are inherently complex, such as the set of the Navier-Stokes differential
equations and complex boundary conditions in flow problems, combined with the
complicated geometries of the problem. This complexity makes it impossible to
find exact solutions in the same way as one might have found in certain academic
courses. This is a reason why students may not fully realize the potential and the
deep benefits of fluid mechanics courses as they ought to.

Therefore, solving complicated fluid flow problems using numerical
methods on the computers is the only way to produce meaningful and valuable
practical results. However, the process leading to such results requires the analyst
to possess knowledge components in various areas. This can be categorized into
five main parts: (a) understanding of the governing differential equations and their
physical significance, (b) knowledge of the numerical methods necessary for
computation, (c¢) knowledge in finite element method or finite volume method,
which can model the complex shapes of problems, (d) a brief understanding of
computer programs to help improve the efficiency of calculations and confidence
in the accuracy of the solutions obtained, and (e) experience in using computer
software, which depends on self-practice. These five components not only enable
the analyst to solve fluid flow problems effectively but also open opportunities to
analyze other engineering and scientific problems as well.






Chapter
2

The Navier-Stokes Equations

2.1 Introduction

Analyzing any problem in engineering or science, the nature of the
results obtained as described in Chapter 1 typically depends on three main
components which are the system of differential equations, the boundary
conditions, and the geometry of the problem. For solving computational fluid

dynamics problems, understanding the system of differential equations of flow is
crucial. These differential equations describe the realities of flow which must

conserve mass, momentums, and energy. These equations are composed of terms in
derivative forms. Therefore, it is essential to understand and be familiar with these

systems of differential equations, not just viewing them in the mathematical
equation aspect, but also understanding the physical significance of them. Such
understanding not only leads to successful problem-solving but also results in
accurate, verifiable solutions, leading to a better understanding of the problem.

To easily understand the physical meaning of terms in the system of
differential equations and their origins, this chapter will show the steps to derive
the equations for two-dimensional flow. This significantly reduces the length of the

equations as compared to three-dimensional flow. However, the understanding
gained can be extended to three-dimensional flow directly. The terms in these

equations are in the form of derivatives, which might not seem familiar when
starting to study. However, understanding the physical meaning of these terms is

necessary and crucial for solving CFD problems. The accuracy and precision of the

computed solutions heavily rely on a deep understanding of these systems of
differential equations.
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2.2 Substantial Derivative

The substantial derivative is essential to understand before starting to
develop a system of differential equations for fluid flow. To explain the meaning
of such derivative, Figure 2. 1 illustrates the path of an infinitesimally small fluid
element moving from position 1 at time ¢, to position 2 at time ¢, on the x-y plane.

On this plane, { and ; are the unit vectors in the x and y-direction, respectively. The
fluid element has a velocity ¥, at position 1 and ¥, at position 2. These velocities
are the vector quantities, which can be expressed as,

V o= ui +v (2.1)

where u and v are the velocity components in the x and y-direction, respectively.
These velocity components # and v depend on the coordinates x, y and time 7 as,

u = u(x, y,t) (2.2a)
v = vx, 1) (2.2b)
Yy
Lo 7,
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Figure 2.1 Flow path of a fluid element from position 1 at time ¢
to position 2 at time ¢, .

As this fluid element moves, its properties change depending on the
coordinate position and time. For example, if we consider the fluid density,
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p = px 1) (2.32)
The density of the fluid element at position 1 is,
p= plx,t) (2.3b)
As the fluid element moves to position 2, its density is,
Py = Pl yh) (2.30)

Since the change is continuous, the density at position 2 can be expressed in terms
of the density at position 1 by using the Taylor series as,

_ 272 p (5_/0)
p= Pt (aleAx +(ayJIAy |3 )ar - HoT 2.4)

where H.O.T. denotes the Higher Order Terms containing the higher orders of Ax,
Ay and Af. By moving p, from the right to the left side of the equation and divide
through by A¢, we obtain,

”2A—_tpl = (Z—i’l% + (‘2—5)1% + (‘Z—fl + HOT. 2.5)
As At — 0, i.e., position 2 approaches position 1, terms in Eq. (2.5) become,
I 5P = 3 @9
Lizao A u 2.7
Atl’% % = v (2.8)

and the terms in H.O.T. containing Ax, Ay and A¢ all approach zero. Hence, Eq.
(2.5) becomes,
%f=ug—/;+vg—§+aa—€ 2.9
Each term in Eq. (2.9) has its physical meaning. The derivative term
Dp/Dt on the left side of the equation represents the rate of change of density as
a fluid element passes through position 1. That is, an observer follows this fluid
element and observes the overall change in density within it. This term, which has
such a physical meaning, is in the form of the substantial derivative Dp/Dt , which
defines the absolute change throughout the flow past any position. The substantial
derivative Dp/Dt like this differs in meaning from the local derivative dp/ot,
which is the last term on the right side of Eq. (2.9). The local derivative dp/dt

indicates the rate of change of density of any fluid element passing through position
1. That is, this time the observer remains stationary at position 1 to observe the
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changes in density of various fluid elements passing through. From this description,
it is evident that the derivative terms D/Dt and /0t have different physical
meanings and values, as clearly seen from Eq. (2.9).

The relationship as shown in Eq. (2.9) can be applied to other flow
properties. Therefore, this relationship's equation can generally be written as
follows,

D 0 0 0
— — — 2.1
Dt ot +u8x+v6y 2.10)

D 0

Or, o = 5+(V-V) (2.11)
where V = a—afor%A' (2.12)

Equation (2.11) can further emphasize the understanding of the explana-
tion in the previous paragraph. The term at the end on the right side of this equation
is,

- n n O~ O ~
7-v) = (ui+vj)-(ai+—jj
= ui+v— (2.13)

which consists of two terms that have the velocity component in each direction
multiplied in front. These two terms are called the flow convection derivatives since
they are the product of the flow velocity components and derivatives of other flow
properties. We will find that these terms will create difficulty in solving fluid
mechanics problems. The first noticeable role at this preliminary stage is that the
coefficients of this term include velocity components u and v, which are unknown
variables in fluid flow solutions. Therefore, when such terms appear in any
equation, that equation becomes nonlinear, directly leading to the complexity and
difficulty in solving the problem by any numerical method.

When we observe a fluid element moving continuously, the properties
of this fluid element change constantly as well. This includes the values of density
p, velocity u and v, and temperature 7, leading to the corresponding substantial
derivatives Dp/Dt, Du/Dt, Dv/Dt and DT/Dt, respectively. For example, the

substantial derivative of the temperature,
DT ol (5 =
— —+\V-VT 2.14
o = o 7VT) (2.14)

pro_ T (or, o
Dt ot ox Oy

(2.15)
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This means the total change in temperature (the left-hand side term) of
a fluid element we are observing as it moves, consists of the change in temperature
at a specific location (the first right-hand side term) plus the change in temperature
due to convection as the fluid element moves through that location (the terms in
bracket on the right-hand side). Equation (2.15) can be further explained to create
a clearer picture by using the following example. Suppose we are walking through
a door into an air- conditioned room, we will feel cooler. This sensation is the
derivative term of convection ( convective term in the right- hand bracket), due to
walking from a warmer place through the door at speeds u and v into a cooler air-
conditioned room. At the same time, at the position of the door, there are cool water
droplets spraying onto us, causing a further decrease in temperature (the first right-
hand side term). Therefore, the overall sensation of cooling (the left-hand side term)
includes the change in temperature as we walk into the cooler room combined with
the coolness from the water droplets sprayed at the door.

Equation (2.14) is a commonly encountered equation in various
subjects related to differential equations at the undergraduate level. The temperature
of a fluid element depends on its coordinate position and time,

T = T(x, 1) (2.16)

If we apply the chain rule, we obtain,

oT oT oT
dT = — — — 2.17
Ew dx + o dy + e dt (2.17)

and divide through by df to obtain, ,

dT oTr dx oTdy oT
_ x  O0Tdy  or 2.1
di  oxdi oy di | a (2.18)

Since dx/dt =u and dy/dt = v, then,

dl _ oT oT oT
E = o + uax + Vay (219)

The term dT/dt on the left side of this equation is called the total derivative, which

has the same meaning as the substantial derivative mentioned above because the
terms on the right side of Egs. (2.19) and (2.15) are the same. However, the
explanation of the substantial derivative in Eq. (2.15) leads to a more understand-
able physical interpretation, which will lead to a better understanding of various
terms in the Navier- Stokes equations, including how to deal with them in the
computational process.



30 Chapter 2 The Navier-Stokes Equations

2.3 Conservation of Mass

The equations in the system of partial differential equations for fluid
flow need to represent physical realities that are meaningful and easily under-
standable. The first equation in this fluid flow partial differential equation system
is the conservation of mass equation, which can be simply understood as the mass
is conserved. The derivation of this conservation equation can be done easily by
considering the flow through a small element with dimensions of dx and dy, and a
depth of one unit, at any given fixed position in the flow domain as illustrated in
Figure 2.2.

X apv)

oy

T

[pv+ dy} dx

[pu]dy — dy —{pu +a(a—iu)dX} dy

dx

T

[ov] dx

Figure 2.2 Mass fluxes through a small element fixed in the flow domain

for constructing the conservation of mass equation.

Along the left edge dy of this small element, the mass flux entering is
[pu]dy . Since the density p and the velocity u changing continuously, therefore,
the mass flux exiting on the right edge of the frame is [pou +(0(ou)/0x)dx]dy . That

is, the increase in mass flux in the x-direction through the dy edge of the flow
through this small frame is,

[pu+a(a—iu)dx}dy — [puldy = %dxdy (2.20)

Similarly, the mass flux through the edge dx from the bottom to the top of the
element is,

[pv+Mdy}dx - [pv]dx = va)dxdy (2.21)
Oy y
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Since the mass of this small element is p dx dy, therefore, the rate of change of mass
or the decrease in mass flux is,

0
~ 9P ixdy (2.22)
ot
But because the mass in this small element must be conserved, it means that the
increase in mass flux from the flow through the edges dx and dy must equal the
decrease in mass flux within this small element, i.e.,

dedy + dedy = —a—pdxdy
Oox oy ot
Dividing through by dx dy and arrange the equation to obtain,
% . {—a(”“h—a(’”)} =0 (2.23)
ot Ox oy
or, L ov(p7) = 0 (2.24)

This Eq. (2.24) is the conservation of mass equation, which is the first
equation in the system of partial differential equations for fluid flow. It indicates
that mass is not lost. This equation is in the form of first-order derivatives, involving
three unknowns of p, u, and v, which can change throughout the flow domain.
Therefore, this single mass conservation equation cannot be used to solve the
problem alone. It is necessary to develop additional equations so that the flow
behavior can be solved.

2.4 Conservation of Momentums

The second type of physical reality of flow that can be formulated into
additional partial differential equations comes from applying the Newton's second
law. The law states that the force equals mass times acceleration. In applying the
Newton's second law, we consider a mass element with dimensions of dx and dy,
and a depth of one unit as shown in Figure 2.3, which is moving with the flow.

Figure 2.3 illustrates only the forces acting in the x-direction. The
Newton's second law in the x-direction is,
F. = ma (2.25)

where F_ is the total force in the x-direction, m is the mass of the element, and a,
is the acceleration of the element in the x-direction.

The total force in the x-direction consists of forces acting on edges and
the body force. The forces acting on edges include forces due to pressure p, normal
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stress, and shear stress. For shear stress, the first subscript (y in this case) specifies
the edge perpendicular to the y-axis, where this shear stress is acting. The second
subscript (x in this case) indicates the direction of the shear stress. Therefore, the
total force acting on edges in the x-direction of this element is,

y
( +ary"d]d
Tyx E y X
op
— > -— £ dx |d
pdy (’”ax XJ ly
dy
T dy — —>(av+%dx)dy
T ox
dx

— > X

7, dx

Figure 2.3 Forces in the x-direction acting on an element of fluid moving with
the flow used in formulating the conservation of momentum equation.

[P—(erg—idxﬂder [ —ax}dy+ [

The body force of the element in the x-direction is,

pf.(dx dy) (2.27)
Thus the total force in the x-direction from Egs. (2.26) and (2.27) is,

oo

o, + axdx
X

0
T, + af;x dyJ—ryx}dx
(2.26)

0
F. = _a_p+%+i dxdy + pf.dxdy (2.28)
ox Ox Oy

while the mass of this element is,
m = p(dxdy) (2.29)

The acceleration a_ of the element in Eq. (2.25) is the rate of change

of the velocity u with respect to time ¢. Since we are observing this element as it
moves with the flow, this acceleration is the total derivative of u, that is,
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Du

a, = —

’ Dt

By substituting Egs. (2.28)-(2.30) into the Newton’s second law in Eq.(2.25) and
dividing it through by dx dy, we obtain,

(2.30)

Du op oo 07,

— = —— 4+ —= + — + 231a
P Di x e Ty TP (231a)
Similarly, application of the Newton’s second law in the y-direction
leads to,
Dv op or,, oo,
— = — + — + + 2.31b
P Dt oy ox oy ZE ( )

Equations (2.31a-b) are called the Navier- Stokes equations, in honor of the
Frenchman named M. Navier and the Englishman named G. Stokes, who indepen-
dently derived these equations.

The Navier-Stokes equations (2.3 1a-b) are in the form of the substantial
derivatives resulting from the formulation of the equations by observing a moving
fluid element. This substantial derivative can be transformed into the form of the
local or partial derivatives, which is akin to an observer standing still at a certain
position and watching the changes of the moving fluid. This is done by applying
the relationship in Eq. (2.11) to the velocity u as follows,

Du ou

== = = + V-Vu 2.32
Dt ot ( )
Du ou o
Then, — = p— + pV-Vu 2.33
P Pa TP (2.33)

That is, the term on the left-hand side of the Navier-Stokes equations in the form of
substantial derivatives can be represented by both terms on the right-hand side of
equation (2.33), which are in the form of the local or partial derivatives, and can be
used in conjunction with the conservation of mass Eq. (2.24). This is because every
term in these equations is already in the form of partial derivatives. Note that the
two terms on the right-hand side of Eq. (2.33) can be simplified by using the
following relationships.

olpu) _ Lo op
ot ot ot

Since,

Then, o _ dlpw) _ op (2.34)
ot ot ot
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Also, since V-(pu?) uV-(pV) + (pV)-Vu

Then, pV -Vu V-(puV) — uV-(pV) (2.35)
By substituting Egs. (2.34)-(2.35) into Eq. (2.33), we obtain,

pPu o) 0P G () — u(p7)

Dt ot ot

Du O(pu) [6p _ _} _ _

_— = —u|l—+V-(pV)| + V- V 2.36
th ot ! ot (p ) (pu ) ( )

Since the sum of the two terms in the square bracket equals zero according to the
conservation of mass Eq. (2.24), then Eq. (2.36) becomes,

Du o(pu) = ~
— = ——= + V-(pulV 2.37
Ly > (pu?) (2.37)
Substitute Eq. (2.37) into Eq. (2.31a) to obtain,
_ _ or
0P g (puir) = -2 4 0% T8y pr (238a)

ot ox ox oy
Similarly, Eq. (2.31b) can be written as,
a (pV) "/ 74 ap a Txy a O-y
——= + V(o) = — + + + 2.38b
ot (,0 ) oy ox oy ZE ( )

Equations (2.38a-b) are known as the Navier- Stokes equations in the conservation
form.

The terms on the right-hand side of the Navier-Stokes equations consist
of normal stresses and shear stress, which must be written in terms of the velocities
along the x- and y-coordinates. In the late 17" century, Sir Isaac Newton proposed
that these stress components vary directly with the change in velocity (velocity
gradient). This proposal was found to be applicable to fluids in general, leading to
its acceptance and calling fluids with such properties as Newtonian fluids. This
proposal led to the establishment of a relationship between stress and velocity
components as follows,

o, = AVTV)+ 2;16— (2.39a)
X

o, = AVV) + 2;1? (2.39b)
y

and (2.39¢)

)
I
s
|
=
1
|
+
|@
L 1
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where 4 is the dynamic viscosity or sometimes called the first viscosity, and A is

the second viscosity. Stokes proposed that,
A = —% y7; (2.40)

The above relation is known as the Stokes's hypothesis, and has been found that it
works well when the fluid is a gas. However, for liquids, the fluid density p for
most of the flow problems remains constant, the conservation of mass Eq. (2.4)
simplifies to V-7 = 0 or div¥V = 0. This results in the second viscosity A not being
used in calculations, and the normal stress components in Egs. (2.39a-b) becomes
twice the product of the dynamic viscosity and the velocity gradient. For this reason,
research into the true value of the second viscosity A has not been extensively
pursued, leading to a lack of clarity and definitive confirmation up to the present
day.

By substituting the stress components, which are in terms of the velocity
components, from Egs. (2.39a-c) into Egs. (2.38a-b), it results in the Navier-Stokes
equations in conservation form as,

o(pu’ _
o) APT) Do) 09542, %)
ot Ox oy ox Ox 0x
0 ov Ou
— —+— || + 2.41a
ayMax ayﬂ Pl 241
opv) | pw) op) _ ap of, @ﬁ_uj
ot Ox oy oy oOx ox Oy

+ i(ﬂ?-?+2y@j+ pf, (241b)
oy oy

Equations (2.41a-b) illustrate the complexity of the Navier- Stokes
equations, where the terms are in the form of derivatives of unknown variables.
Moreover, the second and third terms on the left- hand side of both these equations
are nonlinear terms, which add to the complexity of solving such a system of partial
differential equations, regardless of the numerical methods used.

2.5 Conservation of Energy

For many types of flow, such as the flow around spacecraft moving at
several times the speed of sound to the flow of hot air under a roof, the velocity of
the flow and the changing temperature within the fluid depend on each other.
Therefore, the third fundamental truth of any flow that can be used to formulate an



36 Chapter 2 The Navier-Stokes Equations

additional partial differential equation is the law of conservation of energy. Figure
2.4 illustrates a fluid element with dimensions of dx and dy, having a depth of one
unit, which is moving with the flow.

The conservation of energy equation can be formulated using the first
law of thermodynamics, which states that the rate of energy change in a fluid
element is equal to the heat flux supplied to the element plus the rate of work done
due to forces acting on that element, that is,

y
0
{ur”+%d }dx
0(up)
dy — - ——=dx |d
updy {up+ = x} fy
uo dy <— dy —>[uax+8(u—a‘)dx}dy
Ox
o(q.)
— — ——=dx |d
q.dy i [qﬁ o x}y
— X
ut, dx

Figure 2.4 Work done and flux quantities in the x-direction acting on
an element of fluid moving with the flow used in
formulating the conservation of energy equation.

Rate of energy Heat flux Rate of work done
change in fluid = suppliedtothe + due to forces acting
element element on that element
Or, A = B + C (2.42)

where the terms 4, B and C have their physical meanings as stated in Eq. (2.42).

If we begin by considering term C, which represents the rate of work
resulting from forces acting on this element, the first type of force is the force from
the weight of the element itself, which, when multiplied by the speed of the flow in
that direction, results in the rate of work as,

pf-V (dxdy)

From Figure 2.4, the rate of work resulting from the pressure p acting on the side
dy in the x-direction is,
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[up - (up+%dxﬂdy = —%dxdy

The rate of work resulting from the normal stress ¢, acting on the side dy in the x-
direction is,

[ua + a(u—o-x)dx}dy —uo,dy = dedy
: Ox ! ox

The rate of work resulting from the shear stress 7, acting on the side dx in the x-

direction is,

u Tyx)
oy
Similarly, the rate of work resulting from forces acting on the mass in the y-

direction can also be derived, leading to the total rate of work arising from the forces
on this mass as,

. {_(awpm(vp)j . Aoy | Our.)  olve,) 6<Wy)}dxdy

Ox oy Ox Oy Ox - oy

0
[u T, + Mdy} dx —ur, dx = dxdy

oy

+ pf-Vdxdy (2.43)

For term B, which represents the heat flux supplied to the element, it
consists of two parts. The first part is the heat flux occurring within the volume of
the element. For example, the heat flux generated internally within the element
which is normally called the internal heat generation. If the amount of heat flux

generated per unit mass is O , then the amount of internal heat flux for this element
is,

p O (dxdy)

From Figure 2.4, the net heat flux resulting from heat transfer in the x- direction
through the edge dy on both on the left and right edges of the element is,

— aq’f = aqx
[qx (qx + A dxﬂdy 3 dxdy

X

Similarly, the net heat flux resulting from heat transfer in the y-direction through
the edge dx on both at the bottom and top edges of the element is,

aq, _ _9q,
[qy (qy + P dyﬂdx P dxdy

Therefore, the total heat flux on this element is,
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_ E
B= |p0 - Y _ Ly \geq, (2.44)
ox oy

But according to the Fourier’s law, the amount of heat fluxes ¢, and ¢, that vary

with the temperature gradient are,

0T _ T
q9, = —k Em and g, k o (2.45)
where £ is the fluid thermal conductivity coefficient. Then, term B becomes,
B = |p0 + ﬁ(kﬂ) + Ofpor dxdy (2.46)
ox\ Ox oy\ 0Oy

Term A, which represents the rate of change of energy within the
element consisting of the internal and kinetic energy. The internal energy arises
from the movement of molecules within the fluid, while the kinetic energy occurs
from the fluid’s motion. If e represents the internal energy and ¥'2/2 represents the
kinetic energy of the element flowing at speed V, then the total energy, which has
units per unit mass, is e+ ¥2/2. Since the total mass of this element is pdxdy,
therefore, term 4 is,

D( v?
A Yo, D (e + 5 ]dx dy (2.47)

By substituting term 4, which is the rate of change of energy in the
element from Eq. (2.47), and term B, which is the heat flux provided to the element
from Eq. (2.46), along with term C, which is the rate of work resulting from various
forces on the element from Eq. (2.43), into Eq. (2.42) and then dividing throughout
by dx dy, it results in the conservation of energy equation as,

2 —
p2(6+V_j = pQ + i(kﬂ) + i kg — a(up) — G(Vp)
Dt 2 ox\ Ox oy\ Oy ox oy

M B3 ) B 0 R s
ox oy Ox oy

The derived conservation of energy Eq. (2.48) is in the form of the
substantial derivative, which needs to be converted into the form of local derivatives
to be used in conjunction with the mass conservation equation (2.24) and the
momentum conservation equation (2.41). The substantial derivative in the energy
conservation equation (2.48) acts on both the internal energy term e and the kinetic
energy term. Therefore, to simplify the derivation process, let's first demonstrate
the steps to convert the substantial to local derivative of only the internal energy e,
as follows.
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The steps to convert such derivative form start from multiplying Egs.
(2.31a) and (2.31b) by the velocities u and v, respectively, as,

DE) _ ap 0o, 0%
V7 = x4y + pu 2.49a
P Dt ox ox P ( )
2 0 0
pD(V 2 _ _ o, 9% . 99 ovf (2.49b)
Dt oy ox oy .

By combining the above two equations together and using the relation, u? +1? =

V2, we obtain,

2 0 0 0
Dt ox oy ox oy ox oy
+ p(uf, +vf,) (2.50)

Then, subtracting Eq. (2.50) from Eq. (2.48) and using the relation, pf -V =
p(ufx + vfy) , this leads to,

bt 7T %\"a) T e\ ey ) T Plax oy

ou ou ov ov

t+o,—+71,— +71,— +0,—

tox oy Y ox "oy

The terms on the left-hand side of the above equation consist only the substantial
derivative acting on the internal energy e. The terms on the right-hand side this
equation are less complex than those in the energy conservation Eq. (2.48), which
includes the derivatives involving velocities and stresses multiplied together, as
well as the inclusion of body forces. Equation (2.51) can be further simplified

because 7, must equal 7, , otherwise the small mass element in Figure 2.4 would

(2.51)

rotate about itself. Therefore, Eq. (2.51) becomes,

De — 0 oT 0 oT ou ov
P D P + 6x( 8x)+ 6y( ayj p(@er@y)
ou ov ou , ov
— — — = 2.52
+Jxax+ay6y+r}“(6y+6xj (2.52)
Then, by substituting the stress components, Eq. (2.52), in form of the velocity
components through Egs. (2.39a)-(2.39¢), we obtain,

De = of(,oT o oT ou v ou ovY
p2¢ — 50+ S k9 ¢ G kOE) LV g O Y
Dt ox\ ox oy\ oy ox Oy ox Oy

ouY ov ’ ou ov ’
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The substantial derivative of the internal energy can be transformed into
the form of local derivatives. This can be done by starting from the use of the
definition of the substantial derivative in Eq. (2.11), applied to the internal energy
value e, and then multiplied throughout by the density p,

De  Oe

De _ %, . 2.54
Py ~ Po T PVVe (2.54)
Since, alpe) _ p% + ea—p
ot ot ot
then, p% = Lpe) — ea—’o (2.55)
ot ot ot

In addition, by applying the divergence theorem onto the product of a scalar and a
vector,

V- (pe?)
Or, pV-Ve = v~(pel7) - ev-(pﬁ) (2.56)

eV-(p7) + (pT7) Ve

By substituting Eq. (2.55) and (2.56) into Eq. (2.54) and arranging terms to obtain,
De d(pe) [ 0p = ; = } _ _
— = —e|l—+V-(pV)| + V-(peV
o o etV V)

It is noted that the summation within the square bracket is zero according to the
conservation of mass, Eq. (2.24), thus,

pPe — 9Pe) G (perr) 2.57)

Equations (2.57) is then substituted into the left-hand side of Eq. (2.53) to yield,

Ape) | G (pel?) = o0 + 2(10T) , Ofp0T) _ f(ou ov
ot +V(peV) pQ+ax(k8x)+8y(kayJ p[@x+6yj

2 2 2 2
+ /1(8—”+@J + u 2(a_uj +2(@j +(a_u+@J (2.58)
ox Oy Ox oy oy Ox
which is the conservation of energy equation written only in form of the internal
energy e.

However, since the rate of change of the total energy within an element
consists of the internal energy e and the kinetic energy ¥2/2, the absolute derivative

term on the left-hand side of Eq. (2.48) must be written in the form of the local
derivative. This is done by following the steps from Eq. (2.54) to Eq. (2.57), with
the substitution of the internal energy term e by the total energy terme+V2/2to

obtain,
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pw = a{p[e+V—2ﬂ + v-|:p(e+%2)l7:| (2.59)

Dt ot 2
Finally, by substituting Eq. (2.59) into Eq. (2.48) leads to,

0 Z60 1 - VYol . = e(,eTY o(,oT

A g e ] - A

_a(up)_a(vp) +a(uo-x)_i_a(ur)’x)_i_a(vrﬁ)+6(VO-Y) +pj7'l7 (260)
ox oy 0x Oy ox oy

which is the conservation of energy equation written in term of the total energy. A
detailed examination of this equation reveals that each term has its own mathematical
complexity. Most terms are nonlinear, which contributes to the complexity in
applying numerical methods. Specifically, several terms on the right-hand side are
derivative terms of the product of velocity and stress components in different
directions.

2.6 System of the Navier-Stokes Equations

The conservation of mass, momentum, and energy equations, which are
derived from the fact that mass is not lost, the application of the Newton’s second
law, and energy is not lost, respectively, are elaborately detailed in sections 2.3-2.5.
This leads to a system of the partial differential equations that can be summarized
as follows.

Conservation of mass

P L V(pF) = 0 2.61)
ot
Conservation of momentums

. o(pu) = n op 0o o7,
x-dir: + V. V) = - =+ — + — + 2.62a
ot (,ou ) ox Ox oy 2 ( )

_ _ ort,, 0o,
y-dir: olpv) V(p?) = - @» % 09, pf,  (2.62b)

ot oy ox oy

Conservation of energy

02 I Vol 2 ops 20T, 2,07 _aup)
az{’{ﬁ 2 ﬂw {p[“ 2 JV} pQ+ax(k 8xj+8y(k Gy) ox
_a(vp) +a(uo-x)+a(uz-yx)+6(VTXY)+6(VG.V) i 74 (263)
oy Ox oy Ox oy
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The four partial differential equations above are in conservation form.
The observer keeps his eyes on an element of size dx and dy fixed in the flow
domain, without moving with the flow, and monitor the flux quantities entering and
leaving this element. A detailed examination of all four equations reveals that on
the left side of each equation, there are terms related to the divergence of the flux

quantity, i.e., V - (flux quantity) as follows.

Eq. (2.61): pV is the mass flux

Eq. (2.62a): puv is the momentum flux in x-direction

Eq. (2.62b): pvV is the momentum flux in y-direction
2

Eq. (2.63): p(e + VTJ 14 is the total energy flux

Furthermore, upon closer inspection of all four equations, it is found that these four
equations can be written in the same form, which is,

o} olE)  olF)

ot ety (H} (2.64)

where {U}, {E}, {F} and {H} are vectors as follows.

v = pv (2.65)

pu
pu’+p-o,
{E} = pvu—7t,, (2.66)

V? oT
P e+7 u+pu—ka—uax —-vz,,
pv
puv—r,

{F} = PV +p -0, (2.67)

Ve or
Yo, e+7 v+pv—k@—urﬂ—v0y
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Hy = : 2.68
(1) o 2:68)

p(ufx +vfy)+pQ

The advantage of writing all four partial differential equations in the
same form, as shown in Eq. (2.64), is that in any process of applying numerical methods
to the system, these equations can be viewed as essentially a single equation with
similar characteristics, that is,

ou [ 8k | OF

ot Ox oy

This leads to the development of a generalized continuous equation resulting from

the application of numerical methods, without concern for whether the equation is

for conservation of mass, momentum, or energy. The derived continuous equation

can be applied to any of the four partial differential equations, simplifying the process

of formulating equations, enhancing confidence in their accuracy, and most impor-

tantly, facilitating the development of coherent computer programming. This

significance becomes especially evident in the context of solving problems related
to high-speed compressible flow, as discussed in Chapters 9 and 12.

- H (2.69)

However, regardless of the form in which the system of four partial
differential equations comprising conservation of mass, momentums in the x and y-
directions, and energy are written, these equations illustrate the significant difficulty
of finding an exact solution through purely mathematical analysis. Even today, no
exact solutions have been found for general flow problems governed by these four
equations. This difficulty primarily arises from two main challenges. The first
challenge is that these are coupled partial differential equations, where the results
obtained, such as velocity components u, v, pressure p, and temperature 7, must
simultaneously satisfy all the four equations. The second challenge is that these
equations are nonlinear, making it difficult to find exact solutions regardless of how
simple the boundary conditions and geometry of the problem may be. These
challenges have significantly contributed to the importance of Computational Fluid
Dynamics (CFD). If one can solve this system of equations, a variety of results can
be obtained, reflecting the characteristics of the flow and leading to a deeper
understanding of the problem at hand. Additionally, it impresses upon those
conducting calculations that sometimes, this set of four partial differential equations
can produce remarkably diverse and complex flow behaviors.

As described in section 2.4, historically, the conservation of momentum
Egs. (2.41a-b) were referred to as the Navier-Stokes equations. However, in current
computational fluid dynamics, this entire set of such partial differential equations,
which includes the conservation of mass, momentums, and energy equations, has
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commonly come to be referred to as the system of the Navier- Stokes equations.
This is because solving fluid dynamics problems requires addressing the entire set
of these equations, and referring to them collectively as the Navier-Stokes equations
simplifies communication and understanding, rather than having to separately
mention the conservation of mass and energy equations.

When examining the four Navier-Stokes equations as presented in Egs.
(2.61)-(2.63), it's observed that these equations comprise five unknowns: p, u, v, p,
and e. For incompressible flow, p is typically a constant and known beforehand,
making the number of equations equal to the number of unknowns. However, for
gas flows, p is not constant and becomes an unknown, especially in the case of
compressible flow. Therefore, an additional equation is required. If the gas is
considered a perfect gas, this additional equation could be the equation of state,
such as,

p = pRT (2.70)
where R is the universal gas constant. However, this equation introduces another
unknown, which is the temperature 7, necessitating the derivation of an additional

equation. This new equation might be another type of state equation that illustrates
the relationship between the temperature 7 and the internal energy e. For example,

e = ¢ T (2.71)

where ¢, is the specific heat of the gas at constant volume, making the total number
of equations equal to the number of unknowns, thereby the problem can be solved.

2.7 Boundary Conditions

All topics discussed in this chapter are related to the system of Navier-
Stokes equations. The outcomes resulting from solving this system of Navier-
Stokes equations depend on the boundary conditions and geometry of the problem.
For example, in calculating the flow conditions in an air-conditioned room of a
certain shape, if the cool air emitted from the air conditioner has different speeds,
it will result in different flow conditions in the room, even though the same set of
Navier-Stokes equations and the room's geometry remain unchanged.

At first glance, setting boundary conditions for flow problems may
seem straightforward and uncomplicated, but in reality, regardless of the CFD
method used, establishing correct and appropriate boundary conditions can be far
from simple. In some cases, it can affect the construction of the domain size used
in calculations, such as ensuring the domain is sufficiently large to make the boundary
conditions along its edges as realistic as possible. Inappropriate or unrealistic boundary
conditions can lead to significantly inaccurate results. Moreover, correctly setting
appropriate boundary conditions depends on under-standing the type of Navier-
Stokes equations under the flow conditions being studied, whether they are elliptic,
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