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Preface 

The textbook "Computational Fluid Dynamics by Finite Element and 
Finite Volume Methods" has been translated from the latest Thai edition (4th 
edition). It is published and distributed in both hardcopy and e-book formats by 
Chulalongkorn University Press in Bangkok, Thailand. 

This textbook is divided into four main parts. The first part covers the 
fundamentals of fluid flows and the derivation of the Navier-Stokes equations. The 
second part presents the finite element formulations for four types of fluid flows: 
(a) inviscid incompressible flow, (b) inviscid compressible flow, (c) viscous
incompressible flow, and (d) viscous compressible flow. The third part revisits
these four types of fluid flows, but using the finite volume method. The final part
covers the characteristics and significance of turbulent flow, explores various
turbulence models, and discusses numerical simulation techniques. The book
includes numerous basic examples that are easy to understand, along with computer
programs in MATLAB, Mathematica, and Fortran. It also contains a large number
of application problems.

The computer programs and files mentioned in this book can be 
downloaded from the following website:  https://goo.gl/57hUHE. 

The author extends heartfelt gratitude to his esteemed former Professor, 
Dr. Earl A. Thornton, and his supervisor, Dr. Allan R. Wieting, from the Aerothermal 
Loads Branch at NASA Langley Research Center.  Appreciation is also extended 
to the students at NASA Langley Research Center, Old Dominion University, and 
Chulalongkorn University who actively participated in the finite element and finite 
volume method courses he offered. 

Special thanks go to Chulalongkorn University Press for their role in 
publishing the book, contributing to its dissemination and impact. Lastly, the author 
expresses deep appreciation to his wife, Mrs. Yupa Dechaumphai, for her understand-
ing and unwavering support throughout the writing process, acknowledging the 
significant role she played in bringing the book to fruition. 

Pramote  Dechaumphai 
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Computational Fluid Dynamics 
 
 
 
 

1.1 Introduction 

  The use of Computational Fluid Dynamics (CFD) has become 
increasingly crucial in both engineering design and scientific research for analyzing 
flow behaviors such as velocity, pressure, and temperature. CFD integrates the 
application of numerical methods and computer technology to solve partial 
differential equations that describe the dynamics of fluid flow. This approach yields 
results that can be visually represented through color graphics, greatly enhancing 
the ability of analysts to comprehend complex flow phenomena. Consequently, 
CFD facilitates the refinement and optimization of design models, allowing for the 
validation of designs on computer screens before proceeding to actual construction 
or further experimental validation. This preventive verification process boosts 
confidence in the design's feasibility and performance. 

  Incorporating CFD into the design process markedly diminishes both 
costs and timeframes when compared to traditional experimental methods that 
dominated earlier engineering practices. A prime example of this shift can be seen 
in the development of early Boeing aircraft models intended for commercial 
transcontinental flights. Previously, engineers were tasked with constructing scale 
models of the airplanes from wood and testing these models in wind tunnels to 
analyze airflow conditions, including lift generated by the wings and the plane's 
underbelly. This method was not only labor-intensive but also required significant 
investment in materials and experimental setups, extending the development cycle 
from construction to testing over years. Furthermore, should the testing reveal any 
design flaws, such as wings that were too large or insufficiently long, the process 
of making corrections was cumbersome. Adjustments necessitated additional time 
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for modifications and subsequent testing, which, although occasionally leading to 
improvements, did not always result in the sought-after enhancements. 

By leveraging CFD, the design timeline and experimental costs associated 
with aircraft development can be drastically reduced. Engineers proficient in CFD 
can effortlessly generate simulation models of Boeing aircraft to analyze airflow 
conditions, a process depicted in Figure 1.1. A significant benefit of this approach 
is the agility with which modifications can be applied to the aircraft's design, such 
as alterations to the wing configuration or other components. Additionally, CFD 
enables rapid acquisition of detailed flow field information in specific areas, a task 
that could be exceedingly challenging or time-intensive with traditional experimental 
methods. 

 

 

 
 

Figure 1.1  Contour lines illustrate pressure distribution on aircraft surfaces.  

 

Moreover, the versatility of CFD extends beyond aircraft models. The 
same software used for assessing flow conditions around the Boeing aircraft can 
also be applied to analyze airflow through other intricate shapes, such as 
determining air conditions around fighter jets, illustrated in Figure 1.2. These 
examples underscore the value of CFD in providing detailed insights into pressure 
variations across different sections of the aircraft, from the nose, along the wings, 
to the vicinity of underwing areas. This capability not only enhances design precision 
but also streamlines the development process, illustrating the comprehensive 
advantages of CFD in modern aerospace engineering. 
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Figure 1.2  Contour lines illustrate pressure distribution on the surface 
                             and around a fighter jet aircraft.   

 
 Addressing modern challenges in design often confronts the limitation 

that many contemporary issues are impractical to test experimentally, or such 
testing would entail prohibitively high expenses. Take, for instance, the development 
of an aerospace plane designed for high-speed travel, capable of circumnavigating 
half the globe in merely two hours at velocities reaching 25 times the speed of 
sound, as illustrated in Figure 1.3. At these extraordinary speeds, the friction with 
the atmosphere generates heat up to 70,000 Btu/ft2-sec. This is starkly contrasted 
with the mere 0.12 Btu/ft2-sec one might experience from sunlight on a particularly 
bright day. The significant heat produced through atmospheric friction has the 
potential to melt the spacecraft's external surface. 

The most extensive continuous experiments on the ground are capped at 
2 minutes duration, achieving speeds only up to 8 times the speed of sound within 
a wind tunnel at NASA Langley Research Center, the place where the author 
previously worked. Conducting each experiment demands an enormous energy 
input to drive hot gas at high velocities across a spacecraft component under test. 
This process induces severe vibrations in the facility, necessitating the suspension 
of all other activities during the 2-minute test interval. Furthermore, the average 
cost for equipment and labor per test approaches several thousand US dollars, 
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underscoring the significant resource investment required for such pioneering 
explorations in aerospace design. 
 
 
 

 
 

Figure 1.3  Contour lines illustrate pressure distribution on the surface 
                             and around the National Aerospace Plane.   
 
 
 

Beyond addressing the overt challenges outlined previously, CFD has 
been instrumental in tackling various issues that enhance our current quality of life, 
such as analyzing ventilation efficiency within energy-saving buildings. Through 
experiments conducted in different scenarios of window operation for ventilation 
purposes, insightful data have been gathered. Figure 1.4 illustrates the airflow 
derived from these calculations, demonstrating how air impacts the building's left 
side. Some of this air traverses over the roof, while another portion enters through 
an open balcony door on the second floor's left side, circulates through the building, 
and exits upwards through an open window on the right side of the roof. Figure 1.5 
depicts a similar setup for doors and windows as seen in the first instance, but with 
an additional door opened on the right side of the lower floor to enhance ventilation. 
The airflow conditions showcased in Figures 1.4 and 1.5, obtained through CFD, 
demonstrate the capability of this technology to efficiently model and predict the 
effects of various window configurations on air circulation in a relatively short time 
frame. 
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Figure 1.4  Velocity vectors depicting airflow through a house 
       with an open skylight. 

 
 
 
 

 
 

Figure 1.5  Velocity vectors depicting airflow through a house 
 with an open skylight and a porch door. 
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  CFD has become a cornerstone in engineering, extensively applied 
across a broad spectrum of research and development initiatives to amplify 
operational efficiency. This includes optimizing impeller designs in pumps for 
enhanced thrust, refining fuel distribution for uniform and complete combustion in 
engine cylinders, and shaping ship hulls to minimize water resistance during 
navigation. Furthermore, CFD aids in assessing the spread of wastewater in rivers, 
ensuring effective ventilation in electronic devices through microchip cooling to 
avert overheating, and providing precise weather forecasts for vast regions or 
specific microclimates within air-conditioned office spaces. An example of CFD’s 
application is depicted in Figure 1.6, which visualizes the airflow in a 543 meter 
room, featuring a 1.5-meter tall cabinet centrally located. The walls of this room 
experience varied heat loads, and an air conditioner, positioned at one ceiling 
corner, emits air at 10°C, illustrating the detailed insight CFD offers into 
environmental and mechanical engineering challenges. 

 

 
 

Figure 1.6  Particle tracing paths in an air-conditioned room 
with a cabinet placed in the middle of the room. 

 
 

 Figure 1.7 illustrates the temperature distribution across the same room's 
cross-section, demonstrating the application of CFD to effortlessly predict the flow 
conditions within. Moreover, CFD extends its utility beyond traditional engineering, 
facilitating research in scientific fields where physical experiments are either not 

3 m

5 m
4 m

Cabinet

Air Conditioner

40  W/m2

10  W/m2
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feasible or potentially dangerous. This includes, but is not limited to, simulating the 
blood flow in veins and the heart, as well as modeling the interaction of hazardous 
chemicals.  

 

 

Figure 1.7  Temperature distribution in an air-conditioned room 
      with a cabinet placed in the middle of the room. 

 

The examples highlighted above demonstrate the profound impact of 
CFD across a wide spectrum of flow-related challenges. By significantly cutting 
down on the time and expenses associated with design processes, CFD enhances 
analytical capabilities and streamlines the experimental phase, particularly when 
physical experimentation is impractical or impossible. Furthermore, CFD facilitates 
a granular examination of flow dynamics in targeted areas, enabling the acquisition 
of accurate results and insights. Crucially, these instances underscore CFD's 
capacity to unlock extensive possibilities for tackling diverse flow issues, spanning 
practical applications to research and development initiatives. 

 
1.2 Process of Solving Problems 
 

 Analyzing engineering problems, ranging from solid mechanics like 
stress analysis in structures and components, to heat transfer phenomena such as 
temperature distribution in cooling systems of transformers and motors, to fluid 

5 m
4 m

10  C

25  C

15  C

Cabinet

Air Conditioner

40  W/m2

10  W/m2

3 m
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dynamics like the study of airflow in air-conditioned environments, or even tackling 
problems in diverse scientific areas, depends on three major factors or components. 
These are: (a) the partial differential equations that describe the reality of the 
problem, (b) the boundary conditions for the problem under study, and (c) the 
geometry or shape of the problem. If any of these components changes, the resulting 
outcomes will also change accordingly. A deep understanding of these three 
components is crucial for problem analysis through computation. The importance 
of each component that needs to be understood can be summarized as follows. 
 
  1.2.1 Governing Differential Equations   

Most of engineering problems are governed by partial differential 
equations that vary in complexity. Partial differential equations are considered the 
core that represents the reality of each problem. For example, analyzing solid 
mechanics problems requires starting from a set of partial differential equations that 
describe the equilibrium of forces in three directions, which are always valid at any 
point in the problem. Heat transfer analysis must begin with partial differential 
equation that describe the equilibrium of heat transfer, while fluid dynamics 
analysis must start from a set of partial differential equations that represents the 
conservation of mass, momentum, and energy. These partial differential equations 
consist of various terms in derivative form, using symbols similar to an inverted of 
the number "six". As an example, the set of partial differential equations for two-
dimensional steady-state viscous incompressible flow without considering 
temperature change (the details and meanings of each term will be presented in the 
later chapter) are, 
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The three differential equations above consist of three unknown dependent variables 
that vary with the independent variables x and y. These three dependent variables 
are the velocity u in the x-direction, the velocity v in the y-direction, and the pressure 
p, all of which are functions of both x and y-coordinates. The symbols ρ and μ 
represent the density and the viscosity of the fluid, respectively.  

Solving the above set of differential equations for a complex flow problem 
in order to find an exact solution is generally impossible. This is due to two main 
reasons. The first reason is that these partial differential equations are coupled, 
meaning that the solutions of the velocity components u, v and the pressure p must 
satisfy all equations. The second difficulty is that the partial differential equations 
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(1.2) and (1.3) are nonlinear since the unknown variables u and v appear as 
coefficients in the first terms of both equations.  Such the set of nonlinear 
differential equations does not only makes finding an exact solution impossible but 
also greatly complicates the use of numerical methods for solving them.  

These two main reasons significantly slow down the development of 
solutions for fluid flow problems compared to those for solid mechanics or heat 
transfer problems. The non-linear nature of the partial differential equations in fluid 
flow problems can lead to extremely complex outcomes when compared to solid or 
heat transfer problems, which are often linear and result in simpler, more 
straightforward distributions of solutions. For example, applying a certain force on 
a beam results in a stress on that beam. If the force applied to the beam is increased, 
the stress in the beam also increases in a proportional manner. However, in the case 
of fluid flow problems governed by the non-linear partial differential equations, it 
is different.  As an example, turning on an air conditioner at a low speed in a room, 
it creates a certain circulation pattern of air. But if the air speed of the air conditioner 
is increased, the circulation pattern of the air in the room might change completely. 
That is the circulation does not just remain in the same pattern with an increased 
speed. Understanding the implications of the partial differential equations is thus 
critically important. Those looking to solve such problems must first understand 
and familiarize themselves with these equations, not just viewing them as mere 
mathematical equations, but also understanding their physical significance. This 
positive attitude towards solving these partial differential equations correctly can 
lead to meaningful and insightful outcomes that enhance the understanding of the 
problems at hand. 
 
  1.2.2 Boundary Conditions   
  In the process of solving the set of partial differential equations, 
boundary conditions are a crucial component that leads to appropriate solutions. If 
the problem being analyzed is unsteady, initial conditions must also be applied. 
Changing boundary conditions lead to changing solutions as well. Figure 1.8 
illustrates the temperature distribution at the mouth of the Chao Phraya River during 
the flood season. The boundary condition for this problem is set so that water flows 
from the upper left corner at a speed of 3 meters per second and at a temperature of 
25°C. On the upper right side, hot water at a temperature of 40°C is released from 
a factory, causing downstream temperatures to rise, which may affect the damage 
to aquatic animal farming in the downstream area. Figure 1.9 (a) shows the details 
of the temperature level contours in a small frame of Figure 1.8, where hot water 
from the factory is released and mixed with the cold river water near the Butterfly 
Island. Due to the flood season, the hot water from the factory is quite quickly 
dispersed. Figure 1.9 (b) also shows the solutions of the temperature distribution 
from the mixing of water near the Butterfly Island but in the dry season case. That 
is, it is assumed that the cold water in the Chao Phraya River flows from the upper 
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left corner of the image at a reduced speed of 1.5 meters per second, resulting in a 
generally higher temperature in a broader area. 

 

 
 

Figure 1.8  Contour lines indicate the temperature distribution at the mouth  
of the Chao Phraya River due to the factory releasing hot water       
during the flood season. 

 

                 
 

                     (a)  Flood season                  (b)  Dry season      
 

Figure 1.9  Details of contour lines show the temperature distribution 
 from the mixing of waters at different temperatures in the 
 area around the Butterfly Island. 
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The different temperature distributions shown in Figure 1.9 result from 
setting different boundary conditions. The specification of boundary conditions for 
flow problems in computational fluid dynamics depends on the type of partial 
differential equations, whether they are elliptic, parabolic, or hyperbolic, which in 
turn depends on the flow velocity. For example, flow at speeds greater than the 
speed of sound around a blunt body creates a bow shock wave positioned in front 
of the blunt body. In the area between the bow shock wave and the blunt body, the 
flow speed is lower than the speed of sound, making the differential equation elliptic 
in nature. However, just beyond this region, where the flow speed increases to 
exceed the speed of sound, the differential equation becomes hyperbolic. Such 
problems have historically been challenging to solve to obtain results, as the partial 
differential equation system can change from one type to another within the same 
computational domain. Therefore, in the chapters on different types of flows that 
will be presented, the boundary conditions will be clearly explained to facilitate 
understanding and to correctly and appropriately set the boundary conditions for 
each type of flow. 
 
 
 1.2.3 Geometries   

  In general basic problem-solving in classrooms, the geometry or shape 
of the problem is often not considered. Most studies focus only on the steps for 
solving the differential equations along with given boundary conditions. If the 
shapes of the problem are specified, they are typically just rectangles or squares. 
Not considering the problem shapes leads students to almost completely overlook 
the complexities of solving problems arising from the geometry. In engineering and 
science, problems are always designed with complex geometries, such as airflow 
through a house with rooms at different levels under a sloping roof, as shown in 
Figures 1.4 and 1.5. Problems may inherently have complex geometries, like the 
flow in the area near the mouth of the Chao Phraya River in Figures 1.8-1.9. The 
geometry, which covers changing flow areas, results in changing the flow solutions, 
even though the set of partial differential equations and boundary conditions remain 
the same. Figure 1.10 shows a flow through a narrow channel with a linear 
expansion, causing a small area of circulation in the lower left. Figure 1.11 shows 
the results from solving the same set of partial differential equations and boundary 
conditions near the entrance similar to Figure 1.10, but the geometry in the lower 
left of the problem has been expanded further, resulting in an increased area of 
circulation. 
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Figure 1.10  Velocity vectors indicate the flow behavior through a narrow 
         channel geometry with a linear expansion. 

 

 
 

Figure 1.11  Velocity vectors indicate the flow behavior through a narrow 
channel geometry with a complicated expansion. 

 

From these examples, it can be seen that the flow solutions are diverse, 
depending on the three main components mentioned above. These examples also 
demonstrate that if an efficient method for obtaining the solutions of these flow 
problems can be found, the analyst can modify the boundary conditions or the shape 
of the problem, which will lead to the desired outcomes. This idea makes CFD 
highly beneficial for design work nowadays. 

 The knowledge of problem-solving methods combined with the potential 
of solving problems using computers has led to the development of numerous 
commercial software. The primary function of these software is to find solutions by 
solving the three main components as described above. These software are 
generally expensive, and users must have sufficient knowledge in mathematics and 
computational methods to ensure that the solutions obtained from these software 
are accurate. It must be emphasized that these software are not like graphic software 
used for drawing or drafting. Using a Computer Aided Design (CAD) software to 
draw a circle on a computer screen and seeing it as the desired circle allows users 
to know they have the correct result. However, using a CFD software that provides 
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the flow solutions, which are displayed in forms of velocity vectors and pressure in 
colors, requires deep understanding. If users do not understand what the software is 
doing internally, they cannot be sure that the solutions are accurate.  

  The operational steps of any CFD software are to solve a set of partial 
differential equations of flow, with the appropriate boundary conditions and the 
given problem geometry. Generally, every software follows the three main steps: 
(a) the step of defining the problem geometry and boundary conditions, which is 
called the pre-processing; (b) the analysis, which is the heart of the software; and 
(c) the post-processing for displaying the solutions obtained from the calculations. 

   (a) Pre-processing  The initial process begins with the creation of the 
flow domain to be analyzed, consisting of steps ranging from creating lines, 
creating surfaces, to creating volumes if it's a three-dimensional flow. Then, this 
created flow domain is divided into small elements, where these elements are 
connected at nodes.  The nodes are the positions to calculate the flow solution 
values such as the velocity components, pressure, and temperature. Finally, the 
properties of the fluid and the boundary conditions for the problem are defined 
accordingly. 

   This initial process, although it can be easily performed in commercial 
software today, often takes a considerable amount of time due to the complexity of 
the geometry of flow problems. For example, the flow over an engine under the 
wing attached to the aircraft's fuselage, as shown in Figure 1.12, requires the flow 
domain to be created accurately. The surface of this flow domain must be smooth 
along the curved surfaces of the engine under the wing, the curved surface of the 
aircraft's fuselage, and also where these various curved surfaces intersect in three 
dimensions. Then, the created flow domain is divided into a large number of small 
elements to be used in the next analysis step. 

   (b) Analysis  The analysis step is considered the heart of these 
commercial software. Dividing the flow domain into too many small elements 
results in an increased number of the nodes with more unknowns, which in turn 
increases the computational time and the amount of computer memory required. 
However, conversely, this leads to higher solution accuracy. Experienced analysts 
must therefore weigh the pros and cons before performing the calculation. 

   The concept of discretization, dividing the flow domain into small 
elements, is to enable the use of simple functions to represent the characteristics of 
the flow through these small elements. These functions are then substituted into the 
set of the governing partial differential equations, combined with certain 
mathematical processes to minimize errors, resulting in a large system of algebraic 
equations that must be solved by numerical methods. 
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Figure 1.12  A finite element mesh on the surfaces of the engine 
                under the wing attached to the aircraft fuselage. 

 

   The popular analysis methods include the Finite Difference Method 
(FDM), the Finite Element Method (FEM), and the Finite Volume Method (FVM). 
Currently, these three methods are integrated into the curriculum to assist in solving 
problems in various subjects at both the undergraduate and graduate levels for 
different fields in engineering and science. 

   In overview, the Finite Difference Method uses the Taylor series to 
approximate the derivative terms appearing in partial differential equations with 
values at the junction point under consideration and at adjacent junction points. This 
results in a system of algebraic equations that must be solved using the 
aforementioned numerical methods. The Finite Difference Method comprises 
straightforward steps that are easy to understand, but it has the limitation of not 
being easily applicable to problems with complex geometries. 

   At the same time, if the Finite Element Method or the Finite Volume 
Method is used, problems of any complex two-dimensional shape can easily be 
divided into elements such as triangles, irregular quadrilaterals. These elements do 
not need to be arranged in an orderly fashion like the rectangular grid required in 
the Finite Difference Method. The feasibility of the Finite Element and Finite 
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Volume Methods has made them increasingly popular for solving various 
engineering problems, which often have complex geometries. However, both of 
these methods, such as the Finite Element Method, involve more complex steps of 
formulating internal equations. Starting with the creation of element interpolation 
functions and applying the method of weighted residuals, thereby generating finite 
element equations for each element before assembling these equations into a large 
system of equations that also must be solved by numerical methods. 
 

   (c)  Post-processing  Results from the flow analysis process typically 
consist of velocity components in different directions, pressure, and temperature at 
nodes in the flow domain. These nodal solutions are all in the form of numerical 
values. Visualizing these solutions in the form of graphics is thus essential, such as 
vector plots at every nodes throughout the flow domain as shown in figures 1.4 and 
1.5 of air flowing through a house. Contour lines, for example, the temperature 
distribution in an air-conditioned room as shown in figures 1.7, and in the area of 
the Chao Phraya River mouth as shown in figures 1.8 and 1.9. These plots are 
displayed in different colors on a computer screen to help understand the problem 
more quickly and effectively. Additionally, the results can be presented in the form 
of particle tracing paths, as shown in figure 1.6, among others. These various 
formats can be viewed from multiple directions, including showing fluid motion to 
create a more realistic feeling. 
 
 

1.3  Essential Knowledge 
 

   Capabilities of computer software for analyzing fluid dynamics problems, 
as described earlier, often leads analysts to believe that these software can easily 
obtain flow solutions for any problem. However, in reality, since these software are 
based on advanced mathematics and computational methods, those who can use 
these software correctly and efficiently must have sufficient knowledge. The 
necessary knowledge components can be categorized into five aspects: (a) 
understanding of the set of partial differential equations and the physical meaning 
of different terms in these equations, (b) knowledge of numerical methods, (c) 
knowledge of finite element or finite volume methods, (d) basic knowledge of 
computer programming, and (e) sufficient experience in using the software. These 
five knowledge components are like five doors that must all be opened; if any door 
is closed, it will limit the potential of the users to use these software, leading to 
issues such as longer analysis times or excessive memory usage than necessary, 
incorrect use of the software, unawareness of what the software is doing while it is 
executing, results with low accuracy. Worst of all, getting incorrect results or being 
unable to explain why the results are valid. The above five knowledge components 
will help users understand the problem-solving process and be confident in the 
solutions obtained. These five foundational knowledge aspects can be summarized 
as follows. 
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   (a) Knowledge in the differential equations CFD software is funda-
mentally based on solving a set of partial differential equations. Therefore, it is 
necessary to study the specific set of partial differential equations that the software 
is designed to solve, and to understand the physical phenomena governing the flow 
problems. Moreover, understanding the physical significance of each term in the 
set of equations is crucial in indicating the capabilities and limitations of the 
software itself. The terms in these equations further indicate the depth of 
computational methods required and how this affects the time taken to solve 
specific problems. Thus, understanding the set of partial differential equations is 
essential before starting to use any CFD software. 

   (b) Good background on numerical methods Numerical methods have 
become a mandatory subject in the study of many engineering disciplines today. 
They are a fundamental knowledge and a necessary component for computation. 
The basics of numerical methods include knowledge of interpolation functions, 
numerical differentiation and integration, solving ordinary differential equations, 
and partial differential equations.  Most importantly, it involves knowledge of 
various techniques used to solve systems of algebraic equations.  As an example, to 
solve a set of n linear algebraic equations in the form,  

             
 

 
 1 nnn

XA    =    
 1n

B           (1.4) 

where {X} is a vector or column matrix composed of unknown values x1, x2, x3, 

….., xn; {B} is a vector containing n known values. In this case, [A] is a square 

matrix consisting of nn coefficients. In practical problem-solving, the time spent 
solving this system of equations significantly exceeds the time spent on other 
calculations. As an example, consider a three-dimensional flow problem that might 
consist of only 50,000 equations (10,000 nodes, with each node having 5 unknowns 
of velocities in three directions, pressure, and temperature), which is considered a 
relatively small problem today. The matrix [A] would consist of a total of 2.5 billion 
coefficients. Assuming writing down such 50,000 equations on paper by hand, 
taking 1 second per coefficient, it would take approximately 80 years to write all of 
these down. This estimate does not even begin to address solving this set of 
equations. 

   The example mentioned illustrates the benefits of numerical methods, 
which can be efficiently used on current computers. Moreover, due to the set of 
partial differential equations, as shown in equations (1.1)-(1.3), which consist of 
nonlinear terms, the resulting system of the algebraic equations is also in a nonlinear 
form, 

              
 

 
 1 nnn

XxA    =    
 1n

B       (1.5) 

The system of nonlinear algebraic equations above needs an iterative process, such 
as the Newton-Raphson iteration method, to solve for solutions. The foundation of 
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this nonlinear equation solving technique is also included in the study of numerical 
methods. 

   (c)  Knowledge in finite element and finite volume methods  Analyzing 
any problem as described in section 1.2, the solution depends on three main 
components: the set of partial differential equations covering the problem, the 
boundary conditions, and the problem's geometry. The finite element and finite 
volume methods are techniques that fulfill these three main requirements. Starting 
with representing the problem's geometry using small elements, making the 
computation domain more accurate than the rectangular grid used with the finite 
difference method. Figure 1.13 (a) shows the computation domain on a cross-
section of a large cylindrical pipe wrapped in insulation, with two smaller 
cylindrical pipes inside at high and low temperatures, filled with fluid between these 
pipe surfaces. The aim is to study the flow behavior and temperature of this fluid. 
Figure 1.13 (b) displays the rectangular grid using the finite difference method. The 
figure shows that the computation domain's boundaries cannot be accurately 
represented, appearing as steps along the pipe's curved surface. To reduce the size 
of these steps, it's necessary to densify the rectangular grid, resulting in an increased 
number of grid points and unknowns. Meanwhile, Figure 1.13 (c) illustrates the 
triangular elements created for the finite element method, which can better 
represent the pipe's curves, leading to more accurate results. Figure 1.13 (d) displays 
the contour lines of the temperature distribution obtained by the finite element 
method. The details of these results will be presented in Chapter 8. 

   After discretizing the computation domain into small elements, the 
finite element equations are then generated for each element. These equations are 
derived from the governing partial differential equations of the problem, combined 
with the use of the interpolation functions that approximate the unknown 
distributions over that element. This process will be described in detail in Chapter 
3. Then, the equations of each element are assembled to form a large system of 
equations, which, in physical terms, is akin to assembling all elements together to 
form the actual shape or geometry of the problem. Subsequently, the boundary 
conditions of the problem are applied to this large system of equations, which is in 
the form of equations (1.4) or (1.5), before solving the entire system of equations 
by the numerical methods. 

   From the above explanation, it is evident that the finite element method 
fully meets the requirements of all three main components: the governing partial 
differential equations, the boundary conditions, and the geometry of the problem. 
Furthermore, since the finite element method is a numerical technique for finding 
an approximate solution by using simple functions to represent the unknown 
distribution, it implies that employing a more number of elements leads to higher 
solution accuracy. 
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(a) Geometry 

 

 
 

    (b) Finite difference model 

 
 

 
 

  (c) Finite element model 

 

 
 

   (d) Temperature contours 
 

Figure 1.13  Fluid temperature on pipe section with hot and cold tubes. 

 
   Figure 1.14 shows the use of the finite element method to solve the 
problem of flow in converging pipes. The problem includes a large horizontal pipe 
with flow entering from the left side. In the middle section of this large pipe, there 
is a smaller, curved pipe that converges and has flow entering from the top. Figure 
1.14 (a) displays the finite element model, consisting of triangular elements that 
effectively represent the curved shape. Due to the complexity of the flow occurring 
where the two pipes converge, the elements in this area are made smaller to yield 
more accurate solutions in this region. Figure 1.14 (b) shows the flow behavior by 
the velocity vectors, with the details of the flow at the convergence of the pipes 
displayed in the top right insert. 

Insulated 

Cold 

Hot 
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(a) Finite element model 
 
 

 

 
 

(b) Flow behavior by velocity vectors 
 

Figure 1.13  Merging pipe flow by finite element method. 
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    (d)  Knowledge of computer programming  Understanding the steps of 
computation, which are developed into the corresponding computer programs, is 
very important for analyzing problems. A significant number of users try to use off-
the-shelf computer programs to solve complex flow problems. The computations 
may take several days to complete. Understanding the computational steps in these 
computer programs can lead to approaches that significantly reduce computational 
time while still achieving equally accurate solutions. A lack of understanding of the 
computational processes used in computer programs can sometimes lead to not 
achieving any solution at all after spending a large computational time, or, if results 
are obtained, they may not be accurate. 

   The reasons mentioned above indirectly compel program users to have 
a relatively profound understanding of the problem analysis process. This 
understanding can be acquired from classes or from having solved similar problems 
several times before. Therefore, when purchasing these computer programs or 
software from vendors, the vendors often include training classes to at least provide 
a basic understanding of how to correctly use the software. However, the best 
method remains to accumulate fundamental knowledge from classes, which, 
although it may take time, leads to a deep and permanent understanding of various 
processes that can be applied to other problems in the future. 
 
   (e)  Sufficient experience in using the software The ability to use soft-
ware efficiently can indeed depend on the time spent practicing in front of a 
computer screen. The more time spent practicing in front of the computer screen, 
the more experience one gains. These experiences cannot be acquired merely by 
sitting and listening in class but arise from hands-on practice. Anything that is 
attempted and does not produce the desired flow solutions becomes a valuable 
lesson for solving other flow problems in the future. 

  From the five components of knowledge as described above, it is 
understandable that solving flow problems by CFD is not just about having 
knowledge in the finite element method or finite volume method alone. It requires 
a comprehensive understanding of various fundamental areas, which must be 
accumulated over a certain period. This knowledge is not only applicable to solving 
flow problems but also opens opportunities to solve many other engineering and 
scientific problems governed by the differential equations, under different boundary 
conditions, and with complicated geometries. 
 
 

1.4 Conclusion 
 
   Computational fluid dynamics (CFD) has become significantly impor-
tant in both the study and design of various engineering tasks today. From 
calculating the flow conditions around airplanes, cars, or trucks, to analyzing the 



Computational Fluid Dynamics by Finite Element and Finite Volume Methods  23 

lift and drag forces of aircrafts, the flow through water pump impellers, the air flow 
and temperature levels in air-conditioned rooms or large buildings, predicting 
weather conditions over large areas, or simply controlling the air flow through 
microchips to reduce the temperature of small electronic devices.  The benefits of 
solving fluid flow problems computationally have led to extensive research and 
development. This, in turn, has resulted in sophisticated commercial software 
available at high prices. 

   This chapter broadly discusses three main factors that lead to different 
outcomes, whether it be problems of flow, solids, heat transfer, or others. The 
results depend on: (a) the differential equations that describe the fact of the problem, 
(b) the boundary conditions, and (c) the geometry of the problem. In practice, these 
three factors are inherently complex, such as the set of the Navier-Stokes differential 
equations and complex boundary conditions in flow problems, combined with the 
complicated geometries of the problem. This complexity makes it impossible to 
find exact solutions in the same way as one might have found in certain academic 
courses. This is a reason why students may not fully realize the potential and the 
deep benefits of fluid mechanics courses as they ought to. 

   Therefore, solving complicated fluid flow problems using numerical 
methods on the computers is the only way to produce meaningful and valuable 
practical results. However, the process leading to such results requires the analyst 
to possess knowledge components in various areas.  This can be categorized into 
five main parts: (a) understanding of the governing differential equations and their 
physical significance, (b) knowledge of the numerical methods necessary for 
computation, (c) knowledge in finite element method or finite volume method, 
which can model the complex shapes of problems, (d) a brief understanding of 
computer programs to help improve the efficiency of calculations and confidence 
in the accuracy of the solutions obtained, and (e) experience in using computer 
software, which depends on self-practice. These five components not only enable 
the analyst to solve fluid flow problems effectively but also open opportunities to 
analyze other engineering and scientific problems as well. 
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 2 

 

 

 

The Navier-Stokes Equations 
 
 
 
 

2.1 Introduction 

Analyzing any problem in engineering or science, the nature of the 
results obtained as described in Chapter 1 typically depends on three main 
components which are the system of differential equations, the boundary 
conditions, and the geometry of the problem.  For solving computational fluid 

dynamics problems, understanding the system of differential equations of flow is 
crucial.  These differential equations describe the realities of flow which must 

conserve mass, momentums, and energy. These equations are composed of terms in 

derivative forms.  Therefore, it is essential to understand and be familiar with these 

systems of differential equations, not just viewing them in the mathematical 
equation aspect, but also understanding the physical significance of them.  Such 

understanding not only leads to successful problem-solving but also results in 
accurate, verifiable solutions, leading to a better understanding of the problem. 

To easily understand the physical meaning of terms in the system of 
differential equations and their origins, this chapter will show the steps to derive 
the equations for two-dimensional flow. This significantly reduces the length of the 

equations as compared to three- dimensional flow.  However, the understanding 

gained can be extended to three- dimensional flow directly.  The terms in these 

equations are in the form of derivatives, which might not seem familiar when 
starting to study.  However, understanding the physical meaning of these terms is 

necessary and crucial for solving CFD problems. The accuracy and precision of the 

computed solutions heavily rely on a deep understanding of these systems of 
differential equations. 
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2.2  Substantial Derivative 
 

The substantial derivative is essential to understand before starting to 
develop a system of differential equations for fluid flow.  To explain the meaning 
of such derivative, Figure 2.1 illustrates the path of an infinitesimally small fluid 
element moving from position 1 at time 1t  to position 2 at time 2t  on the x-y plane. 

On this plane, î  and ĵ  are the unit vectors in the x and y-direction, respectively. The 

fluid element has a velocity 1V


 at position 1 and 2V


 at position 2. These velocities 

are the vector quantities, which can be expressed as, 

 V


 =   jviu ˆˆ                          (2.1) 

where u and v are the velocity components in the x and y-direction, respectively. 
These velocity components u and v depend on the coordinates x, y and time t as, 

      u =    tyxu ,,                        (2.2a) 

         v =    tyxv ,,    (2.2b) 

 
Figure 2.1  Flow path of a fluid element from position 1 at time 1t  

    to position 2 at time 2t .  

 

As this fluid element moves, its properties change depending on the 
coordinate position and time. For example, if we consider the fluid density, 
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       =    tyx ,,  (2.3a) 

The density of the fluid element at position 1 is,  

      1  =    111 ,, tyx   (2.3b) 

As the fluid element moves to position 2, its density is,  

   2  =    222 ,, tyx  (2.3c) 

Since the change is continuous, the density at position 2 can be expressed in terms 
of the density at position 1 by using the Taylor series as,  

     2   =  x
x












1

1


  H.O.T.t

t
y

y























11


             (2.4) 

where H.O.T. denotes the Higher Order Terms containing the higher orders of ,x

y  and t .  By moving 1 from the right to the left side of the equation and divide 

through by t , we obtain, 

        
t

 12 
  =  

t

x

x 
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
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
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


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





11


      (2.5) 

As 0t , i.e., position 2 approaches position 1, terms in Eq. (2.5) become, 

  
0t

lim
t

 12 
 =   

Dt
D

    (2.6) 

     
0t

lim
t
x




 =   u     (2.7) 

     
0t

lim
t
y




 =   v     (2.8) 

and the terms in H.O.T. containing ,x y  and t  all approach zero.  Hence, Eq. 

(2.5) becomes,  

     
Dt
D

  =  
ty

v
x

u









 

             (2.9) 

Each term in Eq.  (2.9)  has its physical meaning.  The derivative term 
DtD  on the left side of the equation represents the rate of change of density as 

a fluid element passes through position 1.  That is, an observer follows this fluid 
element and observes the overall change in density within it.  This term, which has 
such a physical meaning, is in the form of the substantial derivative DtD , which 

defines the absolute change throughout the flow past any position.  The substantial 
derivative DtD  like this differs in meaning from the local derivative t , 

which is the last term on the right side of Eq.  (2.9) .  The local derivative t  

indicates the rate of change of density of any fluid element passing through position 
1.  That is, this time the observer remains stationary at position 1 to observe the 
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changes in density of various fluid elements passing through. From this description, 
it is evident that the derivative terms DtD  and t  have different physical 

meanings and values, as clearly seen from Eq. (2.9). 

The relationship as shown in Eq.  (2.9)  can be applied to other flow 
properties.  Therefore, this relationship's equation can generally be written as 
follows, 

  
Dt
D

       
y

v
x

u
t 











            (2.10) 

Or,   
Dt
D

       

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V
t

    (2.11) 

where  


    j
y

i
x

ˆˆ







            (2.12) 

Equation (2.11) can further emphasize the understanding of the explana-
tion in the previous paragraph. The term at the end on the right side of this equation 
is, 

   
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             (2.13) 

which consists of two terms that have the velocity component in each direction 
multiplied in front. These two terms are called the flow convection derivatives since 
they are the product of the flow velocity components and derivatives of other flow 
properties.  We will find that these terms will create difficulty in solving fluid 
mechanics problems.  The first noticeable role at this preliminary stage is that the 
coefficients of this term include velocity components u and v, which are unknown 
variables in fluid flow solutions.  Therefore, when such terms appear in any 
equation, that equation becomes nonlinear, directly leading to the complexity and 
difficulty in solving the problem by any numerical method. 

When we observe a fluid element moving continuously, the properties 
of this fluid element change constantly as well. This includes the values of density 
ρ, velocity u and v, and temperature T, leading to the corresponding substantial 
derivatives DtD , DtDu , DtDv  and DtDT , respectively.  For example, the 

substantial derivative of the temperature,   

 
Dt
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This means the total change in temperature (the left-hand side term) of 
a fluid element we are observing as it moves, consists of the change in temperature 
at a specific location (the first right-hand side term) plus the change in temperature 
due to convection as the fluid element moves through that location ( the terms in 
bracket on the right-hand side). Equation (2.15) can be further explained to create 
a clearer picture by using the following example. Suppose we are walking through 
a door into an air- conditioned room, we will feel cooler.  This sensation is the 
derivative term of convection ( convective term in the right-hand bracket) , due to 
walking from a warmer place through the door at speeds u and v into a cooler air-
conditioned room. At the same time, at the position of the door, there are cool water 
droplets spraying onto us, causing a further decrease in temperature (the first right-
hand side term). Therefore, the overall sensation of cooling (the left-hand side term) 
includes the change in temperature as we walk into the cooler room combined with 
the coolness from the water droplets sprayed at the door. 

Equation ( 2.14)  is a commonly encountered equation in various 
subjects related to differential equations at the undergraduate level. The temperature 
of a fluid element depends on its coordinate position and time,  

 T =    tyxT ,,   (2.16) 

If we apply the chain rule, we obtain,  

 dT  =   dt
t
T

dy
y
T

dx
x
T












  (2.17) 

and divide through by dt to obtain, ,  

   
dt
dT

 =   
t
T

dt

dy

y
T

dt
dx

x
T












  (2.18) 

Since dtdx  = u and dtdy  = v, then,   

 
dt
dT

 =   
y
T

v
x
T

u
t
T












           (2.19) 

The term dtdT  on the left side of this equation is called the total derivative, which 

has the same meaning as the substantial derivative mentioned above because the 
terms on the right side of Eqs.  (2.19) and (2.15) are the same.  However, the 
explanation of the substantial derivative in Eq.  (2.15) leads to a more understand-
able physical interpretation, which will lead to a better understanding of various 
terms in the Navier- Stokes equations, including how to deal with them in the 
computational process. 
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2.3  Conservation of Mass 
 

The equations in the system of partial differential equations for fluid 
flow need to represent physical realities that are meaningful and easily under-
standable.  The first equation in this fluid flow partial differential equation system 
is the conservation of mass equation, which can be simply understood as the mass 
is conserved.  The derivation of this conservation equation can be done easily by 
considering the flow through a small element with dimensions of dx and dy, and a 
depth of one unit, at any given fixed position in the flow domain as illustrated in 
Figure 2.2. 
 

 

Figure 2.2  Mass fluxes through a small element fixed in the flow domain 

  for constructing the conservation of mass equation.  
 

Along the left edge dy of this small element, the mass flux entering is 
 dyu . Since the density ρ and the velocity u changing continuously, therefore, 

the mass flux exiting on the right edge of the frame is    dydxxuu   . That 

is, the increase in mass flux in the x- direction through the dy edge of the flow 
through this small frame is, 
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    (2.20) 

Similarly, the mass flux through the edge dx from the bottom to the top of the 
element is,  
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Since the mass of this small element is  dx dy, therefore, the rate of change of mass 
or the decrease in mass flux is,   

      dx dy
t





            (2.22) 

But because the mass in this small element must be conserved, it means that the 
increase in mass flux from the flow through the edges dx and dy must equal the 
decrease in mass flux within this small element, i.e.,  

 
   u v

dx dy dx dy
x y

  


 
 =   dx dy

t





   

Dividing through by dx dy and arrange the equation to obtain,  

   
   u v

t x y

     
     

 =   0  (2.23) 

Or,  V
t





  



 
 =   0 (2.24) 

This Eq. (2.24) is the conservation of mass equation, which is the first 
equation in the system of partial differential equations for fluid flow.  It indicates 
that mass is not lost. This equation is in the form of first-order derivatives, involving 
three unknowns of ρ, u, and v, which can change throughout the flow domain. 
Therefore, this single mass conservation equation cannot be used to solve the 
problem alone.  It is necessary to develop additional equations so that the flow 
behavior can be solved.  
 

 
2.4  Conservation of Momentums 
 

The second type of physical reality of flow that can be formulated into 
additional partial differential equations comes from applying the Newton's second 
law. The law states that the force equals mass times acceleration.  In applying the 
Newton's second law, we consider a mass element with dimensions of dx and dy, 
and a depth of one unit as shown in Figure 2.3, which is moving with the flow. 

Figure 2. 3 illustrates only the forces acting in the x- direction.  The 
Newton's second law in the x-direction is, 

  xF  =   xma   (2.25) 

where xF  is the total force in the x-direction, m is the mass of the element, and xa  

is the acceleration of the element in the x-direction. 

The total force in the x-direction consists of forces acting on edges and 
the body force. The forces acting on edges include forces due to pressure p, normal 
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stress, and shear stress. For shear stress, the first subscript (y in this case) specifies 
the edge perpendicular to the y- axis, where this shear stress is acting.  The second 
subscript (x in this case)  indicates the direction of the shear stress.  Therefore, the 
total force acting on edges in the x-direction of this element is,   

 

Figure 2.3  Forces in the x-direction acting on an element of fluid moving with    
                   the flow used in formulating the conservation of momentum equation.  
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             (2.26) 
 
The body force of the element in the x-direction is, 

           xf dx dy   (2.27) 

Thus the total force in the x-direction from Eqs. (2.26) and (2.27) is, 
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  (2.28) 

while the mass of this element is, 

     m   =    dx dy    (2.29) 

The acceleration xa  of the element in Eq. (2.25) is the rate of change 

of the velocity u with respect to time t.  Since we are observing this element as it 
moves with the flow, this acceleration is the total derivative of u, that is, 
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    xa   =   
Du

Dt
  (2.30) 

By substituting Eqs. (2.28)-(2.30) into the Newton’s second law in Eq.(2.25) and 
dividing it through by dx dy, we obtain,  

  
Du

Dt
  =         

yxx
x

p
f

x x y





   
  

          (2.31a) 

Similarly, application of the Newton’ s second law in the y-direction 
leads to,   
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   
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          (2.31b) 

Equations (2.31a-b) are called the Navier- Stokes equations, in honor of the 
Frenchman named M. Navier and the Englishman named G. Stokes, who indepen-
dently derived these equations.  

The Navier-Stokes equations (2.31a-b) are in the form of the substantial 
derivatives resulting from the formulation of the equations by observing a moving 
fluid element.  This substantial derivative can be transformed into the form of the 
local or partial derivatives, which is akin to an observer standing still at a certain 
position and watching the changes of the moving fluid.  This is done by applying 
the relationship in Eq. (2.11) to the velocity u as follows,  

          
Du

Dt
  =     

u
V u

t


 



 
   (2.32) 

Then, 
Du

Dt
    =     

u
V u

t
 


 


 
  (2.33) 

That is, the term on the left-hand side of the Navier-Stokes equations in the form of 
substantial derivatives can be represented by both terms on the right-hand side of 
equation (2.33), which are in the form of the local or partial derivatives, and can be 
used in conjunction with the conservation of mass Eq. (2.24). This is because every 
term in these equations is already in the form of partial derivatives.  Note that the 
two terms on the right-hand side of Eq.  ( 2. 33)  can be simplified by using the 
following relationships. 

Since,  
 u
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
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  (2.34) 
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Also, since     uV
 

 =   ( )  ( )u V V u    
   

   

Then,   V u 
 

  =   ( )  ( )uV u V     
   

  (2.35) 

By substituting Eqs. (2.34)-(2.35) into Eq. (2.33), we obtain, 
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 (2.36) 

Since the sum of the two terms in the square bracket equals zero according to the 
conservation of mass Eq. (2.24), then Eq. (2.36) becomes, 
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 (2.37) 

Substitute Eq. (2.37) into Eq. (2.31a) to obtain,   
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   (2.38a) 

Similarly, Eq. (2.31b) can be written as,  
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   (2.38b) 

Equations (2.38a-b) are known as the Navier-Stokes equations in the conservation 
form. 

The terms on the right-hand side of the Navier-Stokes equations consist 
of normal stresses and shear stress, which must be written in terms of the velocities 
along the x- and y-coordinates. In the late 17th century, Sir Isaac Newton proposed 
that these stress components vary directly with the change in velocity (velocity 
gradient).  This proposal was found to be applicable to fluids in general, leading to 
its acceptance and calling fluids with such properties as Newtonian fluids.  This 
proposal led to the establishment of a relationship between stress and velocity 
components as follows, 
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where  is the dynamic viscosity or sometimes called the first viscosity, and  is 
the second viscosity. Stokes proposed that, 

      =   
2

3
   (2.40) 

The above relation is known as the Stokes's hypothesis, and has been found that it 
works well when the fluid is a gas.  However, for liquids, the fluid density  for 
most of the flow problems remains constant, the conservation of mass Eq. (2.4) 

simplifies to V

 = 0 or Vdiv


= 0. This results in the second viscosity  not being 

used in calculations, and the normal stress components in Eqs. (2.39a-b) becomes 
twice the product of the dynamic viscosity and the velocity gradient. For this reason, 
research into the true value of the second viscosity  has not been extensively 
pursued, leading to a lack of clarity and definitive confirmation up to the present 
day. 

By substituting the stress components, which are in terms of the velocity 
components, from Eqs. (2.39a-c) into Eqs. (2.38a-b), it results in the Navier-Stokes 
equations in conservation form as, 
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Equations (2.41a-b) illustrate the complexity of the Navier- Stokes 
equations, where the terms are in the form of derivatives of unknown variables. 
Moreover, the second and third terms on the left-hand side of both these equations 
are nonlinear terms, which add to the complexity of solving such a system of partial 
differential equations, regardless of the numerical methods used. 

 

 

2.5  Conservation of Energy 
 

For many types of flow, such as the flow around spacecraft moving at 
several times the speed of sound to the flow of hot air under a roof, the velocity of 
the flow and the changing temperature within the fluid depend on each other. 
Therefore, the third fundamental truth of any flow that can be used to formulate an 
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additional partial differential equation is the law of conservation of energy.  Figure 
2.4 illustrates a fluid element with dimensions of dx and dy, having a depth of one 
unit, which is moving with the flow. 

The conservation of energy equation can be formulated using the first 
law of thermodynamics, which states that the rate of energy change in a fluid 
element is equal to the heat flux supplied to the element plus the rate of work done 
due to forces acting on that element, that is, 
 

 

 

Figure 2.4  Work done and flux quantities in the x-direction acting on 
an element of fluid moving with the flow used in  
formulating the conservation of energy equation. 
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Or, A = B     C (2.42) 

where the terms A, B and C have their physical meanings as stated in Eq. (2.42). 

  If we begin by considering term C, which represents the rate of work 
resulting from forces acting on this element, the first type of force is the force from 
the weight of the element itself, which, when multiplied by the speed of the flow in 
that direction, results in the rate of work as, 
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From Figure 2 .4 , the rate of work resulting from the pressure p acting on the side 
dy in the x-direction is,  
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The rate of work resulting from the normal stress x  acting on the side dy in the x-

direction is,  
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The rate of work resulting from the shear stress yx  acting on the side dx in the x-

direction is,  

   
 

dx u    dxdy
y

u
    u yx

yx

yx 


 










  =   

 
dydx

y

u yx



 
 

Similarly, the rate of work resulting from forces acting on the mass in the y-
direction can also be derived, leading to the total rate of work arising from the forces 
on this mass as,  
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   (2.43) 

  For term B, which represents the heat flux supplied to the element, it 
consists of two parts.  The first part is the heat flux occurring within the volume of 
the element.  For example, the heat flux generated internally within the element 
which is normally called the internal heat generation.  If the amount of heat flux 

generated per unit mass is Q , then the amount of internal heat flux for this element 

is, 

 dydxQ  

From Figure 2.4, the net heat flux resulting from heat transfer in the x-  direction 
through the edge dy on both on the left and right edges of the element is,  
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Similarly, the net heat flux resulting from heat transfer in the y-direction through 
the edge dx on both at the bottom and top edges of the element is,  
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Therefore, the total heat flux on this element is,  
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  B  =   
yx

qq
Q    dx dy

x y


 
    

   (2.44) 

But according to the Fourier’s law, the amount of heat fluxes xq  and yq  that vary 

with the temperature gradient are,   

 xq  =  
x
T

k



  and    yq  =  
y
T

k



   (2.45) 

where k is the fluid thermal conductivity coefficient. Then, term B becomes, 

       B     =          
T T

Q k k dx dy
x x y y


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           (2.46) 

  Term A, which represents the rate of change of energy within the 
element consisting of the internal and kinetic energy. The internal energy arises 
from the movement of molecules within the fluid, while the kinetic energy occurs 
from the fluid’s motion. If e represents the internal energy and 22V  represents the 

kinetic energy of the element flowing at speed V, then the total energy, which has 
units per unit mass, is 22Ve  .  Since the total mass of this element is dydx , 

therefore, term A is, 

    A   =   
2

2

D V
e dx dy

Dt


 
 

 
  (2.47) 

  By substituting term A, which is the rate of change of energy in the 
element from Eq. (2.47), and term B, which is the heat flux provided to the element 
from Eq. (2.46), along with term C, which is the rate of work resulting from various 
forces on the element from Eq. (2.43), into Eq. (2.42) and then dividing throughout 
by dx dy, it results in the conservation of energy equation as,  
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   (2.48) 

   The derived conservation of energy Eq.  (2.48)  is in the form of the 
substantial derivative, which needs to be converted into the form of local derivatives 
to be used in conjunction with the mass conservation equation (2.24) and the 
momentum conservation equation (2.41).  The substantial derivative in the energy 
conservation equation (2.48) acts on both the internal energy term e and the kinetic 
energy term.  Therefore, to simplify the derivation process, let's first demonstrate 
the steps to convert the substantial to local derivative of only the internal energy e, 
as follows. 
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  The steps to convert such derivative form start from multiplying Eqs. 
(2.31a) and (2.31b) by the velocities u and v, respectively, as,  
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By combining the above two equations together and using the relation, 22 vu   = 
2V , we obtain,  
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             x xuf vf    (2.50) 

Then, subtracting Eq.  (2.50)  from Eq.  (2.48)  and using the relation,  f V 
 

 = 
 x yuf vf  , this leads to, 
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The terms on the left-hand side of the above equation consist only the substantial 
derivative acting on the internal energy e.  The terms on the right-hand side this 
equation are less complex than those in the energy conservation Eq. (2.48), which 
includes the derivatives involving velocities and stresses multiplied together, as 
well as the inclusion of body forces.  Equation (2.51)  can be further simplified 

because xy  must equal yx , otherwise the small mass element in Figure 2.4 would 

rotate about itself. Therefore, Eq. (2.51) becomes, 
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Then, by substituting the stress components, Eq.  (2.52) , in form of the velocity 
components through Eqs. (2.39a)-(2.39c), we obtain,  
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  (2.53) 
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  The substantial derivative of the internal energy can be transformed into 
the form of local derivatives.   This can be done by starting from the use of the 
definition of the substantial derivative in Eq. (2.11), applied to the internal energy 
value e, and then multiplied throughout by the density ρ, 
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In addition, by applying the divergence theorem onto the product of a scalar and a 
vector,  
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By substituting Eq. (2.55) and (2.56) into Eq. (2.54) and arranging terms to obtain,  
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It is noted that the summation within the square bracket is zero according to the 
conservation of mass, Eq. (2.24), thus,  
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Equations (2.57) is then substituted into the left-hand side of Eq. (2.53) to yield,  
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 (2.58) 

which is the conservation of energy equation written only in form of the internal 
energy e. 

  However, since the rate of change of the total energy within an element 
consists of the internal energy e and the kinetic energy 22V , the absolute derivative 

term on the left-hand side of Eq.  (2.48)  must be written in the form of the local 
derivative. This is done by following the steps from Eq. (2.54) to Eq. (2.57), with 
the substitution of the internal energy term e by the total energy term 22Ve  to 

obtain,  
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Finally, by substituting Eq. (2.59) into Eq. (2.48) leads to,  
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which is the conservation of energy equation written in term of the total energy. A 
detailed examination of this equation reveals that each term has its own mathematical 
complexity.  Most terms are nonlinear, which contributes to the complexity in 
applying numerical methods. Specifically, several terms on the right-hand side are 
derivative terms of the product of velocity and stress components in different 
directions. 

 
 
2.6  System of the Navier-Stokes Equations 
 

  The conservation of mass, momentum, and energy equations, which are 
derived from the fact that mass is not lost, the application of the Newton’ s second 
law, and energy is not lost, respectively, are elaborately detailed in sections 2.3-2.5. 
This leads to a system of the partial differential equations that can be summarized 
as follows. 
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Conservation of energy 
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The four partial differential equations above are in conservation form.  
The observer keeps his eyes on an element of size dx and dy fixed in the flow 
domain, without moving with the flow, and monitor the flux quantities entering and 
leaving this element.  A detailed examination of all four equations reveals that on 
the left side of each equation, there are terms related to the divergence of the flux 

quantity, i.e., 


 (flux quantity) as follows. 

Eq. (2.61):  V


    is the mass flux 

Eq. (2.62a): Vu


   is the momentum flux in x-direction 

Eq. (2.62b): Vv


    is the momentum flux in y-direction 

Eq. (2.63):  
2

2

V
e V

 
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 


 is the total energy flux 

Furthermore, upon closer inspection of all four equations, it is found that these four 
equations can be written in the same form, which is, 
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where  U ,  E ,  F  and  H  are vectors as follows. 
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  The advantage of writing all four partial differential equations in the 
same form, as shown in Eq. (2.64), is that in any process of applying numerical methods 
to the system, these equations can be viewed as essentially a single equation with 
similar characteristics, that is, 
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   =   H              (2.69) 

This leads to the development of a generalized continuous equation resulting from 
the application of numerical methods, without concern for whether the equation is 
for conservation of mass, momentum, or energy.  The derived continuous equation 
can be applied to any of the four partial differential equations, simplifying the process 
of formulating equations, enhancing confidence in their accuracy, and most impor-
tantly, facilitating the development of coherent computer programming.  This 
significance becomes especially evident in the context of solving problems related 
to high-speed compressible flow, as discussed in Chapters 9 and 12. 

  However, regardless of the form in which the system of four partial 
differential equations comprising conservation of mass, momentums in the x and y-
directions, and energy are written, these equations illustrate the significant difficulty 
of finding an exact solution through purely mathematical analysis.  Even today, no 
exact solutions have been found for general flow problems governed by these four 
equations.  This difficulty primarily arises from two main challenges.  The first 
challenge is that these are coupled partial differential equations, where the results 
obtained, such as velocity components u, v, pressure p, and temperature T, must 
simultaneously satisfy all the four equations.  The second challenge is that these 
equations are nonlinear, making it difficult to find exact solutions regardless of how 
simple the boundary conditions and geometry of the problem may be.  These 
challenges have significantly contributed to the importance of Computational Fluid 
Dynamics (CFD). If one can solve this system of equations, a variety of results can 
be obtained, reflecting the characteristics of the flow and leading to a deeper 
understanding of the problem at hand.  Additionally, it impresses upon those 
conducting calculations that sometimes, this set of four partial differential equations 
can produce remarkably diverse and complex flow behaviors.  

  As described in section 2.4, historically, the conservation of momentum 
Eqs. (2.41a-b) were referred to as the Navier-Stokes equations. However, in current 
computational fluid dynamics, this entire set of such partial differential equations, 
which includes the conservation of mass, momentums, and energy equations, has 
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commonly come to be referred to as the system of the Navier-Stokes equations. 
This is because solving fluid dynamics problems requires addressing the entire set 
of these equations, and referring to them collectively as the Navier-Stokes equations 
simplifies communication and understanding, rather than having to separately 
mention the conservation of mass and energy equations. 

  When examining the four Navier-Stokes equations as presented in Eqs. 
(2.61)-(2.63), it's observed that these equations comprise five unknowns: ρ, u, v, p, 
and e.  For incompressible flow, ρ is typically a constant and known beforehand, 
making the number of equations equal to the number of unknowns.  However, for 
gas flows, ρ is not constant and becomes an unknown, especially in the case of 
compressible flow.  Therefore, an additional equation is required.  If the gas is 
considered a perfect gas, this additional equation could be the equation of state, 
such as, 

         p   =    R T  (2.70) 

where R is the universal gas constant.  However, this equation introduces another 
unknown, which is the temperature T, necessitating the derivation of an additional 
equation. This new equation might be another type of state equation that illustrates 
the relationship between the temperature T and the internal energy e. For example, 

     e    =   vc T  (2.71) 

where vc  is the specific heat of the gas at constant volume, making the total number 

of equations equal to the number of unknowns, thereby the problem can be solved.  
 
 

2.7  Boundary Conditions 

  All topics discussed in this chapter are related to the system of Navier-
Stokes equations.  The outcomes resulting from solving this system of Navier-
Stokes equations depend on the boundary conditions and geometry of the problem. 
For example, in calculating the flow conditions in an air- conditioned room of a 
certain shape, if the cool air emitted from the air conditioner has different speeds, 
it will result in different flow conditions in the room, even though the same set of 
Navier-Stokes equations and the room's geometry remain unchanged.  

  At first glance, setting boundary conditions for flow problems may 
seem straightforward and uncomplicated, but in reality, regardless of the CFD 
method used, establishing correct and appropriate boundary conditions can be far 
from simple.  In some cases, it can affect the construction of the domain size used 
in calculations, such as ensuring the domain is sufficiently large to make the boundary 
conditions along its edges as realistic as possible. Inappropriate or unrealistic boundary 
conditions can lead to significantly inaccurate results.  Moreover, correctly setting 
appropriate boundary conditions depends on under-standing the type of Navier-
Stokes equations under the flow conditions being studied, whether they are elliptic, 
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