
AGENT2AGENTAGENT2AGENT
PROTOCOLPROTOCOL

สร้างเครือข่ายเอเจนต์อัจฉริยะแห่งอนาคตสร้างเครือข่ายเอเจนต์อัจฉริยะแห่งอนาคต

สำนักพิมพ์ก๊อปวางสำนักพิมพ์ก๊อปวางอนุชิต ชโลธรอนุชิต ชโลธร

AGENT2AGENT PROTOCOL

สร้างเครือข่ายเอเจนต์อัจฉริยะแห่งอนาคต

อนุชิต ชโลธร

บทนำ

ในช่วงทศวรรษที่ผ่านมา การพัฒนาปัญญาประดิษฐ์ (Artificial

Intelligence - AI) ได้ก้าวหน้าอย่างรวดเร็ว โดยเฉพาะในด้านของ

ระบบที่มีความสามารถเฉพาะทาง (specialized agents) ไม่ว่าจะ

เป็นระบบประมวลผลภาษา ระบบวางแผนอัตโนมัติ หรือระบบแนะนำ

(recommender systems) อย่างไรก็ตาม แม้ AI เหล่านี้จะมีความ

สามารถสูงในการทำงานแต่ละด้าน แต่การเชื่อมโยงและประสานงาน

ระหว่างกันยังคงเป็นความท้าทายที่สำคัญ

แนวคิดในการออกแบบระบบ AI ที่ประกอบด้วยเอเจนต์อิสระหลายตัว

(multi-agent systems) ได้รับความสนใจเพิ่มขึ้นอย่างต่อเนื่อง โดย
เฉพาะในบริบทของระบบที่ต้องการความสามารถแบบองค์รวม

(holistic intelligence) เช่น ระบบช่วยเหลือผู้ใช้ในชีวิตประจำวัน

ระบบสนับสนุนการตัดสินใจในองค์กร หรือระบบอัตโนมัติที่ทำงานใน

สภาพแวดล้อมที่ซับซ้อน การทำให้ AI agents เหล่านี้สามารถ

“เข้าใจ” และ “ทำงานร่วมกัน” ได้อย่างมีประสิทธิภาพ จึงกลายเป็นจุด

เปลี่ยนสำคัญของการพัฒนาเทคโนโลยี AI ในระดับระบบ

Agent2Agent Protocol (A2A) เป็นมาตรฐานเปิด ออกแบบมาเพื่อ

ตอบโจทย์ข้างต้น โดยมีวัตถุประสงค์เพื่อสร้างรูปแบบการสื่อสารที่

เป็นกลาง มีโครงสร้างชัดเจน และสามารถใช้งานร่วมกันได้ระหว่าง AI

agents จากระบบ เทคโนโลยี หรือองค์กรที่แตกต่างกัน A2A มุ่งเน้น

การลดความซับซ้อนของการออกแบบระบบ multi-agent ในทาง

ปฏิบัติ พร้อมทั้งให้สามารถนำ AI ที่มีอยู่แล้วมาทำงานร่วมกันได้ โดย

ไม่จำเป็นต้องพัฒนาขึ้นใหม่ทั้งหมด

หนังสือเล่มนี้มีเป้าหมายเพื่อเป็นแนวทางเชิงปฏิบัติสำหรับนักพัฒนา

นักวิจัย และผู้สนใจทั่วไป ที่ต้องการทำความเข้าใจและประยุกต์ใช้

Agent2Agent Protocol ในบริบทต่างๆ ภายในเล่ม ผู้อ่านจะได้เรียน

รู้ ตั้งแต่แนวคิดพื้นฐาน โครงสร้างของโปรโตคอล รูปแบบการสื่อสาร

ไปจนถึงกรณีศึกษาที่แสดงให้เห็นถึงศักยภาพของ A2A ในการสร้าง

ระบบ AI ที่สามารถร่วมมือกันได้อย่างมีประสิทธิภาพ

เราหวังว่าหนังสือเล่มนี้จะเป็นจุดเริ่มต้นสำหรับทุกท่านที่ต้องการก้าว

เข้าสู่ยุคของ AI ที่ทำงานร่วมกันได้อย่างแท้จริง

สารบัญ

ทำความรู้ จัก A2A Protocol 1

แนวทางของ A2A 2

หลักการออกแบบ A2A 2

ประโยชน์ของการใช้ A2A 3

แนวคิดหลักของโปรโตคอล A2A 5

บทบาทหลักในระบบ A2A 5

องค์ประกอบพื้นฐานในการสื่อสาร 6

รูปแบบการโต้ตอบ 9

แนวคิดสำคัญ 11

A2A และ MCP 13

ทำไมต้องมี 2 โปรโตคอล 14

AI Agent คุยกับเครื่องมือ 14

AI Agent คุยกับ AI Agent อื่นๆ 14

Model Context Protocol (MCP) 15

MCP คืออะไร 15

MCP ทำงานยังไง 15

ตัวอย่างการใช้งาน MCP 15

MCP Ecosystem (ระบบนิเวศ) 16

Agent2Agent Protocol 16

A2A ทำอะไร 16

A2A ทำงานยังไง 16

ตัวอย่างการใช้ A2A 17

A2A แตกต่างจากการใช้เครื่องมือยังไง 17

A2A กับ MCP ทำงานร่วมกันยังไง 17

ตัวอย่าง อู่ซ่อมรถอัจฉริยะ 18

A2A เป็น MCP ได้มั๊ย 20

การค้นหา Agent 21

Agent Card คืออะไร 21

วิธีค้นหา Agent Card 22

ใช้ที่อยู่มาตรฐาน (Well-Known URI) 22

การใช้ระบบ Registry 23

การกำหนดค่าโดยตรง (Direct Configuration) หรือการ

ค้นหาแบบส่วนตัว (Private Discovery)
24

การรักษาความปลอดภัยของ Agent Card 25

A2A ออกแบบมาสำหรับองค์กร 27

ความปลอดภัยในการสื่อสารข้อมูล 27

การพิสูจน์ตัวตน (Authentication) 28

การกำหนดสิทธิ์ (Authorization) 29

ความเป็นส่วนตัวของข้อมูล (Data Privacy) 30

การตรวจสอบและสังเกตการณ์ (Tracing, Observability,

Monitoring)
30

การจัดการ API (API Management) 31

Streaming และการทำงานแบบ Asynchronous ใน A2A 32

การ Streaming ด้วย Server-Sent Events (SSE) 32

ขั้นตอนการทำงานของ Streaming 32

ควรใช้ Streaming ตอนไหน 34

การแจ้งเตือนแบบ Push Notification 35

ขั้นตอนการแจ้งเตือนแบบ Push Notification 35

ระบบ Push Notification ฝั่ งไคลเอนต์ 37

ข้อควรระวังด้านความปลอดภัยสำหรับ Push Notifications 38

ความปลอดภัยฝั่ งเซิร์ฟเวอร์ A2A 38

ความปลอดภัยฝั่ ง Webhook ไคลเอนต์ 40

เริ่มต้นใช้งาน Python กับ Agent2Agent (A2A) 43

การตั้งค่าสภาพแวดล้อมสำหรับการพัฒนา 44

สิ่งที่คุณต้องมีก่อนเริ่ม 44

สร้างโปรเจกต์ใหม่ 45

ตั้งค่า Python Virtual Environment และติดตั้ง SDK 45

สร้างและเปิดใช้งาน Virtual Environment 45

ติดตั้ง A2A SDK และ Dependencies 46

ตรวจสอบการติดตั้ง 46

Agent Skills และ Agent Card 46

Agent Skill คืออะไร 47

Agent Card คืออะไร 48

ทำไม Agent Card ถึงสำคัญ 50

ตัวจัดการการทำงานของ Agent (Agent Executor) 53

Interface ของ AgentExecutor 53

HelloWorld Agent Executor 54

เอเจนต์ (Agent): HelloWorldAgent 54

ตัวจัดการ (Executor): HelloWorldAgentExecutor 55

การตั้งค่า A2A เซิร์ฟเวอร์ 59

การรันเซิร์ฟเวอร์ Helloworld 62

เชื่อมต่อและใช้งานด้วย A2A Client 63

ทดสอบด้วย HelloWorld Test Client 64

ทำความเข้าใจโค้ดฝั่ งไคลเอนต์ 64

ดึง Agent Card และเริ่มต้นไคลเอนต์ 64

การส่งข้อความแบบไม่ใช่สตรีมมิ่ง (send_message) 65

ส่งข้อความแบบสตรีมมิ่ง (send_message_streaming) 66

ขั้นตอนการใช้งาน 67

ปิดเซิร์ฟเวอร์ 69

ตัวอย่างการส่งข้อมูลแบบ Streaming และ Multi-Turn

Conversation
72

ตั้งค่าโปรเจกต์ LangGraph 72

เตรียม API Key 73

ติดตั้ง Dependencies 73

สร้าง CurrencyAgent 73

สร้าง Agent Executor 80

สร้าง A2AServer 84

เรียกใช้งาน Agent ผ่าน A2AClient 88

การรันโปรเจกต์ 96

ผลลัพธ์การรัน 97

ผลการรันแบบ Single turn request 98

ผลการรันแบบ Single turn แบบ Stream response 104

ผลการรันแบบ Multi-turn 109

ตัวอย่าง Multi-Agent System 116

สร้าง Event Search Agent 119

Event Search Agent 120

Event Search Agent Executor 124

A2A Server 128

การรัน Agent 132

สร้าง Place Search Agent 132

Place Search Agent 133

Place Search Agent Executor 137

A2A Server 141

การรัน Agent 144

สร้าง Hotel Search Agent 145

Hotel Search Agent 146

Hotel Search Agent Executor 150

A2A Server 154

การรัน Agent 157

สร้าง Agent Registry 157

สร้าง Travel Agent (Orchestrator) 160

Orchestrator Agent 161

Orchestrator Agent Executor 171

A2A Server 175

การรัน Agent 178

สร้าง Chatbot 178

สร้าง Chatbot ด้วย Streamlit 179

การรัน Streamlit App 184

การตรวจสอบและสังเกตการณ์ 196

การติดตั้ง Jaeger และ Grafana 196

การตั้งค่า OpenTelemetry สำหรับ Python SDK 198

การติดตามการทำงาน Agent ใน Jaeger 200

การติดตามการทำงาน Agent ใน Grafana 204

ดาวน์โหลดซอร์สโค้ด 211

ทำความรู้ จัก A2A Protocol

Agent2Agent (A2A) Protocol เป็นมาตรฐานเปิดที่สร้างขึ้นมา
เพื่อช่วยให้ AI ต่างๆ คุยกันรู้ เรื่องและทำงานร่วมกันได้ง่ายขึ้น

หัวใจสำคัญคือ ทำยังไงให้ AI จากคนละทีม คนละเทคโนโลยี หรือ

แม้แต่คนละบริษัท สามารถคุยกันและทำงานด้วยกันได้

ทุกวันนี้ AI เก่งเฉพาะด้านมากขึ้นเรื่อยๆ ทำให้เรายิ่งต้องการให้ AI

หลายๆ ตัวมาช่วยกันแก้ปัญหา ตัวอย่างเช่น ถ้าเราสั่งให้ AI ผู้ช่วย
ส่วนตัวของเราวางแผนเที่ยวต่างประเทศ แค่คำสั่งเดียวนี้ อาจต้อง

ใช้ AI หลายตัวมาช่วยกันทำงาน เช่น

AI จองตั๋วเครื่องบิน
AI จองโรงแรม

AI แนะนำและจองทัวร์ท้องถิ่น

AI ให้ข้อมูลแลกเปลี่ยนเงินตรา

AI ให้คำแนะนำด้านความปลอดภัย

ถ้าจะให้ AI เหล่านี้ทำงานร่วมกันโดยไม่มีมาตรฐานกลางในการ

สื่อสาร อาจจะกลายเป็นเรื่องยุ่งยากมากสำหรับนักพัฒนา เพราะ

1

ต้องเชื่อมต่อ AI แต่ละตัวเข้าด้วยกันโดยตรง ทำให้ระบบทั้งซับซ้อน

ขยายระบบยาก และดูแลรักษาลำบาก

แนวทางของ A2A

A2A มีวิธีช่วยให้ AI ที่ทำงานแยกกัน เหมือนกล่องดำที่เราไม่เห็นข้าง

ใน สามารถเชื่อมต่อและคุยกันได้ โดยกำหนดเรื่องสำคัญๆ ไว้ เช่น

วิธีส่งข้อมูล ใช้มาตรฐาน JSON-RPC 2.0 ผ่าน HTTP(S) เป็น

รูปแบบกลางในการส่งข้อความหากัน

วิธีหา AI ตัวอื่น (Agent Cards) ให้ AI แต่ละตัวมี “นามบัตร”
บอกว่าตัวเองทำอะไรได้บ้าง เพื่อให้ AI ตัวอื่นค้นหาและเรียก

ใช้ได้

ขั้นตอนการทำงาน กำหนดวิธีเริ่มงาน ทำงาน และจบงานให้

ชัดเจน แม้จะเป็นงานที่ใช้เวลานานหรือมีหลายขั้นตอน

รองรับข้อมูลได้หลายแบบ ไม่ได้คุยกันได้แค่ตัวหนังสือ แต่ส่ง
ไฟล์ ส่งข้อมูลที่เป็นตาราง เช่น ฟอร์ม หรือสื่ออื่นๆ ก็ได้

ความปลอดภัยและการทำงานแบบไม่รอได้

(Asynchronous) ออกแบบมาให้ปลอดภัย และรองรับงานที่

เวลาประมวลผลนาน หรือมีคนเข้ามาเกี่ยวข้องในบางขั้นตอน

หลักการออกแบบ A2A

2

A2A ออกแบบโดยเน้นหลักการเหล่านี้

เน้นเรียบง่าย (Simplicity) ใช้เทคโนโลยีที่คนคุ้นเคยกันดีอยู่

แล้ว เช่น HTTP, JSON-RPC และ Server-Sent Events (SSE)

ไม่ต้องเรียนรู้ ของใหม่ให้วุ่นวาย

พร้อมสำหรับองค์กรใหญ่ (Enterprise Readiness) คิดเรื่อง

ความปลอดภัย การยืนยันตัวตน การอนุญาตให้ใช้สิทธิ์ การ

ติดตามงาน และการตรวจสอบระบบไว้ตั้งแต่ต้น

ทำงานแบบไม่รอได้ (Asynchronous First) เหมาะกับงานที่

ใช้เวลานาน หรือเวลาที่ AI หรือคนอาจจะไม่ได้ออนไลน์ตลอด

เวลา โดยมีวิธีส่งข้อมูลแบบต่อเนื่อง (streaming) หรือแจ้งเตือน

เมื่อพร้อม

ข้อมูลแบบไหนก็ได้ (Modality Agnostic) AI คุยกันได้ด้วย

ข้อมูลหลายรูปแบบ ไม่ใช่แค่ข้อความอย่างเดียว

ไม่ต้องโชว์ไส้ใน (Opaque Execution) AI ทำงานร่วมกันได้

โดยไม่ต้องเปิดเผยว่าข้างในทำงานยังไง (เหมือนกล่องดำที่เรา

ไม่เห็นข้างใน) หรือใช้เครื่องมืออะไรเป็นพิเศษ เพื่อช่วยรักษา

ความลับทางการค้าและเพิ่มความปลอดภัย

ประโยชน์ของการใช้ A2A

3

ถ้าใช้ A2A ในระบบ AI จะมีข้อดีหลายอย่าง เช่น

ทำงานร่วมกันได้ดีขึ้น (Interoperability) AI จากคนละค่าย

คนละคนสร้าง ก็ยังทำงานด้วยกันได้

AI เก่งขึ้น นักพัฒนาเอาความสามารถของ AI หลายๆ ตัวมา

รวมกัน สร้างเป็นแอปพลิเคชันที่ทำอะไรซับซ้อนได้มากขึ้น

เชื่อมต่อง่าย ไม่ปวดหัว มีมาตรฐานกลางแล้ว ทีมพัฒนาก็ไป
เน้นสร้าง AI ให้เก่งๆ ดีกว่า ไม่ต้องเสียเวลากับการเชื่อมระบบ

เกิดนวัตกรรมใหม่ เปิดทางให้มี AI เฉพาะทางเยอะขึ้น แล้ว AI

เหล่านี้ก็มารวมพลังกันเป็นระบบที่ใหญ่และเก่งขึ้นได้ง่ายๆ

พร้อมสำหรับอนาคต โครงสร้างของ A2A ยืดหยุ่นพอที่จะปรับ

ตัวตามเทคโนโลยี AI ที่เปลี่ยนไปได้เสมอ

การมีมาตรฐานกลางให้ AI คุยกันได้ ก็เหมือนการวางเสาหลักให้

ระบบ AI ต่างๆ ทำงานร่วมกันได้จริงและมีประสิทธิภาพ A2A จึง

เป็นเครื่องมือชิ้นสำคัญที่จะช่วยให้เรานำ AI ไปใช้ในงานต่างๆ ได้เร็ว
ขึ้น และสร้างระบบอัจฉริยะที่ทำงานประสานกันได้อย่างลงตัวใน

อนาคต

4

แนวคิดหลักของโปรโตคอล A2A

โปรโตคอล Agent2Agent (A2A) ออกแบบมาเพื่อให้ AI Agent
ต่างๆ ทำงานร่วมกันได้ โดยกำหนดวิธีที่ระบบ AI จะเข้าใจและ

สื่อสารกันอย่างมีประสิทธิภาพ การทำความเข้าใจแนวคิดหลักของ

A2A จึงสำคัญมากสำหรับนักพัฒนาที่ต้องการสร้างระบบใหม่ หรือ

ปรับปรุงระบบเดิมให้เป็นไปตามมาตรฐานนี้

บทบาทหลักในระบบ A2A

บทบาทหลักในระบบ A2A

ผู้ใช้ (User)

คือผู้ที่ต้องการความช่วยเหลือจาก Agent อาจเป็นคนจริงๆ หรือ

ระบบอัตโนมัติก็ได้ ผู้ใช้จะเป็นคนเริ่มส่งคำขอหรือตั้งเป้าหมายให้
Agent

5

A2A Client (Client Agent)

A2A Client (Client Agent) คือแอปพลิเคชัน, บริการ หรือ AI

Agent ที่ทำหน้าที่เป็นตัวแทนของผู้ใช้ Client Agent จะใช้

โปรโตคอล A2A เพื่อส่งคำขอไปยัง Agent ที่อยู่ไกลออกไป

(Remote Agent) เพื่อขอข้อมูลหรือสั่งให้ทำงานบางอย่าง

A2A Server (Remote Agent)

A2A Server (Remote Agent) คือ Agent หรือระบบ Agent ที่ทำ

หน้าที่เป็นผู้ให้บริการ โดยจะเปิด HTTP endpoint ให้ Client

Agent อื่นๆ เข้ามาเชื่อมต่อตามมาตรฐาน A2A Server จะรับคำขอ

จาก Client, ประมวลผล แล้วส่งผลลัพธ์หรือสถานะกลับไป Client

ไม่จำเป็นต้องรู้ ว่า Server ทำงานอย่างไรเบื้องหลัง (เป็นเหมือน
กล่องดำ หรือ opaque system)

องค์ประกอบพื้นฐานในการสื่อสาร

Agent Card

Agent Card เป็นไฟล์ JSON ที่ให้ข้อมูลสำคัญ (metadata) เกี่ยว

กับ Agent หนึ่งๆ Client Agent สามารถค้นหา Agent Card นี้ได้
จาก URL มาตรฐาน เช่น /.well-known/agent.json ภายใน

Agent Card จะบอกรายละเอียด เช่น

6

ชื่อและคำอธิบายของ Agent

URL ของ endpoint ที่ใช้ติดต่อ

เวอร์ชันของระบบ
ความสามารถพิเศษที่รองรับ เช่น การส่งข้อมูลแบบสตรีมมิง,

การแจ้งเตือนแบบ push

ทักษะ (skills) ที่ Agent นี้ทำได้

รูปแบบข้อมูลนำเข้า (input) และผลลัพธ์ (output) ที่รองรับ

ข้อกำหนดในการยืนยันตัวตน (authentication) Agent Card

ช่วยให้ Client Agent ค้นหาและเชื่อมต่อกับ Server Agent ได้
อย่างถูกต้อง ปลอดภัย และมีประสิทธิภาพ

Task

เมื่อ Client ส่งคำขอไปยัง Server Agent, Server อาจสร้าง “งาน”

(Task) ขึ้นมาเพื่อจัดการคำขอนั้นๆ แต่ละ Task จะมีสถานะที่ชัดเจน

เช่น

submitted ส่งงานแล้ว

working กำลังทำงาน

input-required ต้องการข้อมูลเพิ่มเติม
completed ทำงานเสร็จแล้ว

failed ทำงานไม่สำเร็จ

7

ทุกๆ Task จะมี task ID ที่ไม่ซ้ำกัน เพื่อใช้อ้างอิง การทำงานหนึ่งๆ

อาจมีการส่งข้อความโต้ตอบกันหลายครั้งระหว่าง Client และ

Server จนกว่า Task นั้นจะเสร็จสมบูรณ์

Message

Message คือข้อมูลที่ Client และ Agent ส่งหากันในแต่ละครั้งของ

การโต้ตอบ โครงสร้างของ Message ประกอบด้วย

role ระบุว่าผู้ส่งเป็น user (ฝั่ ง Client) หรือ agent (ฝั่ ง

Server)

Part เนื้อหาของข้อความ ซึ่งอาจมีได้อย่างน้อยหนึ่งส่วน (ดูราย

ละเอียด Part ด้านล่าง)

messageId ID ของข้อความที่ไม่ซ้ำกัน (ผู้ส่งเป็นคนกำหนด)

Message ใช้สำหรับส่งคำสั่ง, คำถาม, คำตอบ หรือการอัปเดต

สถานะทั่วไปที่ไม่ใช่ผลลัพธ์หลักของงาน (Artifact)

Part

Part เป็นหน่วยย่อยที่สุดของเนื้อหาที่อยู่ใน Message หรือ Artifact

มีหลายประเภท ได้แก่

TextPart สำหรับข้อความธรรมดา

8

FilePart สำหรับไฟล์แนบ อาจเป็นข้อมูลไฟล์ที่เข้ารหัสแบบ

base64 หรือเป็น URI (ที่อยู่ของไฟล์) พร้อมระบุประเภทไฟล์

(MIME type) และชื่อไฟล์
DataPart สำหรับข้อมูลที่มีโครงสร้างแบบ JSON เหมาะ

สำหรับข้อมูลแบบฟอร์ม หรือข้อมูลที่ให้โปรแกรมคอมพิวเตอร์

อ่านและเข้าใจได้ง่าย

Artifact

Artifact คือผลลัพธ์ที่เป็นชิ้นเป็นอันที่ได้จากการทำงานของ

Remote Agent เช่น ไฟล์เอกสาร, รูปภาพ, ไฟล์ Excel หรือข้อมูล
JSON Artifact สามารถส่งกลับมาให้ Client แบบต่อเนื่อง

(streaming) ได้

รูปแบบการโต้ตอบ

Request/Response (Polling)

Request/Response (Polling) เป็นรูปแบบพื้นฐานที่ Client ส่ง

คำขอ (request) ไปยัง Server และรอรับผลลัพธ์ (response)

1. Client ส่งคำขอผ่าน message/send
2. ถ้า Server ทำงานเสร็จทันที ก็จะส่งผลลัพธ์กลับมา

9

3. ถ้างงานนั้นต้องใช้เวลานาน Server อาจตอบกลับมาก่อนว่า

working (กำลังทำงาน) พร้อมให้ task ID มา

4. จากนั้น Client จะต้องคอยสอบถามสถานะของ Task เป็นระ
ยะๆ (polling) โดยใช้ tasks/get พร้อมกับ task ID จนกว่า

Task นั้นจะเสร็จ

Streaming (Server-Sent Events - SSE)

Streaming เหมาะสำหรับงานที่ผลลัพธ์ทยอยออกมาเรื่อยๆ หรือ

ต้องการการอัปเดตแบบ real-time

1. Client เรียกใช้ message/stream เพื่อเริ่มการเชื่อมต่อแบบ

สตรีม

2. Server จะตอบกลับด้วยการเชื่อมต่อ HTTP ที่เปิดค้างไว้
(keep-alive) และจะทยอยส่งข้อมูล (event) กลับมาให้ Client

อย่างต่อเนื่อง

3. Event ที่ Server อาจส่งมา เช่น TaskStatusUpdateEvent

(อัปเดตสถานะงาน) หรือ TaskArtifactUpdateEvent (อัปเดต

ผลลัพธ์งาน) Server Agent ต้องประกาศความสามารถในการ

ทำ Streaming นี้ไว้ใน Agent Card ด้วย

Push Notifications

10

Push Notifications ใช้ในกรณีที่ Task ใช้เวลานานมาก หรือ

Client ไม่สามารถเปิดการเชื่อมต่อค้างไว้เพื่อรอได้

1. ตอนที่ Client เริ่ม Task, Client จะระบุ URL ของตัวเอง (เรียก

ว่า webhook URL) ที่ต้องการให้ Server แจ้งเตือนกลับไป

(หรือตั้งค่าผ่าน tasks/pushNotificationConfig/set ในภาย

หลัง)
2. เมื่อ Task มีการเปลี่ยนแปลงสถานะที่สำคัญ เช่น ทำงานเสร็จ

แล้ว หรือเกิดข้อผิดพลาด Server จะส่งข้อมูลแจ้งเตือน (POST

request) ไปยัง webhook URL ที่ Client ได้ให้ไว้

Server Agent ต้องประกาศความสามารถในการทำ Push

Notification นี้ไว้ใน Agent Card ด้วย

แนวคิดสำคัญ

Context (contextId) เป็น ID ที่ใช้เชื่อมโยง Task หลายๆ

Task ที่เกี่ยวข้องกันเข้าไว้ด้วยกัน ทำให้เห็นภาพรวมและความ

ต่อเนื่องของงาน

Transport และ Format (ช่องทางและรูปแบบการส่งข้อมูล)
A2A ใช้โปรโตคอล HTTP หรือ HTTPS ในการรับส่งข้อมูล และ

ใช้ JSON-RPC 2.0 เป็นรูปแบบของข้อความที่สื่อสารกัน

11

