

ค าน า

ในยุคที่แอปพลเิคชนัเวบ็มบีทบาทส าคญัต่อธุรกิจและผู้ใช้ปลายทาง การพฒันาเว็บแอปพลเิคชนัที่มี
ประสทิธภิาพ ปลอดภยั และปรบัตวัไดอ้ย่างรวดเรว็กลายเป็นสิง่จ าเป็น “Express.js” ซึ่งเป็นเวบ็เฟรม
เวริก์ยอดนิยมของ Node.js ได้กลายมาเป็นเครื่องมอืหลกัส าหรบันักพฒันาในการสรา้งระบบเวบ็ที่มี
ความยดืหยุ่นและสามารถปรบัแต่งได้สูง ด้วยโครงสร้างที่เรยีบง่ายแต่ทรงพลงั Express.js จงึเป็น
ทางเลอืกอนัดบัตน้ ๆ ส าหรบัการสรา้ง API, Web Services และเวบ็แอปพลเิคชนัทีม่โีครงสรา้งซบัซอ้น
หนังสอื Express.js Web Programming: Advance เล่มนี้ถูกออกแบบขึน้เพื่อต่อยอดความรูจ้าก
ระดบัพื้นฐานสู่ระดบัสูง ครอบคลุมหวัขอ้ที่ส าคญัในการพฒันาเวบ็แอปพลเิคชนัที่มคีุณภาพในโลกแห่ง
ความเป็นจรงิ โดยเจาะลกึไปที ่4 หวัขอ้หลกัซึง่เป็นองคป์ระกอบส าคญัของระบบเวบ็ระดบัองคก์ร ได้แก่
การจดัการ Session และ Authentication, การเช่ือมต่อฐานข้อมูล, การจดัการ Error และ
Logging, และ การออกแบบ RESTful API อย่างเป็นระบบ
บทท่ี 9: การจดัการ Session และ Authentication
บทนี้เริม่ต้นด้วยแนวคดิพื้นฐานของการจดัการ Session และกระบวนการ Authentication ซึ่งเป็น
รากฐานของระบบรกัษาความปลอดภยัของเวบ็แอปพลเิคชนั จากนัน้ได้น าเสนอการใชง้าน express-
session ส าหรบัการเกบ็ session ฝัง่ server อย่างมปีระสทิธภิาพ และแนะน า Passport.js ซึง่เป็น
middleware ยอดนิยมส าหรบัจดัการ Authentication ในรูปแบบต่าง ๆ ไม่ว่าจะเป็น Local Login,
OAuth, JWT หรอืกลยุทธ์อื่น ๆ โดยมุ่งเน้นให้ผู้อ่านเขา้ใจกลไกเบื้องหลงัการยนืยนัตวัตนของผู้ใช ้
รวมถงึสามารถออกแบบระบบ Login/Logout ไดอ้ยา่งปลอดภยั
บทท่ี 10: การเช่ือมต่อฐานข้อมูล
เพื่อให ้Express.js สามารถท างานร่วมกบัขอ้มลูในระดบัองคก์ร บทนี้ไดล้งลกึถงึการเชื่อมต่อฐานขอ้มลู
ทัง้แบบ NoSQL และ SQL โดยเริม่จากการใชง้าน Mongoose เพื่อเชื่อมต่อกบั MongoDB อย่างมแีบบ
แผน พรอ้มอธบิายการออกแบบ Schema และเทคนิคการ Query ขอ้มลูอย่างมปีระสทิธภิาพ จากนัน้จงึ
ขยายไปสู่การเชื่อมต่อฐานขอ้มลูเชงิสมัพันธ ์เช่น MySQL และ PostgreSQL พรอ้มแนวทางการท า
ORM และการจดัการ Connection Pool อยา่งมอือาชพี ทัง้หมดน้ีช่วยใหผู้อ่้านสามารถเลอืกฐานขอ้มลูที่
เหมาะสมกบัระบบของตน และเชื่อมต่อกบั Express.js ไดอ้ยา่งมัน่ใจ
บทท่ี 11: การจดัการ Error และ Logging ขัน้สงู
ในระบบจรงิ การจดัการ Error และ Logging ที่ดจีะช่วยลดความเสี่ยง เพิม่ความเสถยีร และอ านวย
ความสะดวกในการ Debug ระบบ บทนี้จงึเน้นการจดัการ Error อย่างเป็นระบบผ่าน Middleware โดย
อธบิายการตัง้ค่า Error Handler อย่างเหมาะสม และแนะน าการใช้ Winston และ Morgan ซึง่เป็น
เครื่องมอื Logging ยอดนิยมใน Node.js เพื่อเกบ็ขอ้มลูเหตุการณ์ทีส่ าคญั เช่น Access Logs, System
Errors, หรอื Activity Logs พรอ้มตวัอย่างโปรเจกต์ทีบู่รณาการการจดัการ Error และ Logging อย่าง
ครบวงจร ช่วยใหน้กัพฒันาสามารถวเิคราะหปั์ญหาไดแ้ม่นย าและรวดเรว็ขึน้

บทท่ี 12: RESTful API Design
RESTful API เป็นหวัใจส าคญัของระบบสมยัใหมท่ีต่อ้งการการสื่อสารระหว่าง Client และ Server อย่าง
เป็นระบบ บทนี้น าเสนอหลกัการออกแบบ REST API อย่างถูกต้อง ครอบคลุมเรื่องการตัง้ชื่อ Route,
การใช ้HTTP Method ทีเ่หมาะสม, การจดัการ Status Code, การจดัโครงสรา้ง Resource และการ
ออกแบบ Versioning ส าหรบั API ทีเ่ปลีย่นแปลงไดใ้นอนาคต นอกจากนี้ยงัมตีวัอย่างการเขยีน API
Documentation อย่างมอือาชีพ รวมถึงโปรเจกต์บูรณาการที่ช่วยให้ผู้อ่านสามารถน าแนวคดิไป
ประยกุตใ์ชใ้นระบบจรงิไดท้นัท ี

หนังสือเล่มนี้ เหมาะส าหรบันักพัฒนาระดับกลางถึงขัน้สูงที่ต้องการยกระดับทักษะการใช ้
Express.js ในการพฒันาเวบ็แอปพลเิคชนัอย่างมรีะบบแบบแผน โดยทุกบทมาพรอ้มตวัอย่างโค้ดที่
เขา้ใจงา่ย อธบิายกระบวนการอยา่งชดัเจน และเน้นการลงมอืปฏบิตัจิรงิ เพื่อใหผู้อ่้านสามารถน าความรู้
ไปใชก้บัโปรเจกตข์องตนไดท้นัท ี

หวงัเป็นอย่างยิง่ว่าหนังสอื Express.js Web Programming: Advance เล่มนี้จะเป็นคู่มอืที่มี
คุณค่า และช่วยใหคุ้ณก้าวสู่การเป็น Full-Stack Developer ทีส่ามารถสรา้งระบบ Express.js ไดอ้ย่าง
มัน่ใจ แขง็แรง และพรอ้มส าหรบัการใชง้านจรงิในระดบัมอือาชพี

ดว้ยรกัและปรารถนาด ี
ศนูยห์นังสือราคานักเรียน

สารบญั

หน้า
บทที ่9 การจดัการ Session และ Authentication (Session and Authentication) 1

 การจดัการ Session และ Authentication
 การจดัการ Session และ Authentication (เชงิลกึ)
 การใชง้าน express-session
การใช ้Passport.js ส าหรบั Authentication

บทที ่10 การเชื่อมต่อฐานขอ้มลู (Database Connectivity) ... 61
 การเชื่อมต่อฐานขอ้มลู
 การเชื่อมต่อฐานขอ้มลู (Database Connectivity) เพิม่เตมิ
 การเชื่อมต่อกบั MongoDB ดว้ย Mongoose
 การเชื่อมต่อกบั MySQL / PostgreSQL ใน Express.js
 การออกแบบ Schema และการ Query ขอ้มลู

บทที ่11 การจดัการ Error และ Logging ขัน้สงู (Advanced Error and Logging) 129
 การจดัการ Error และ Logging ขัน้สงู
 การจดัการ Error และ Logging ขัน้สงู — รายละเอยีดเชงิลกึ
 การจดัการ Error อยา่งเป็นระบบใน Express.js
 การใช ้Winston และ Morgan ส าหรบั Logging ใน Express.js
 การตัง้ค่า Error Middleware ใน Express.js เพื่อส่ง Error Response ทีเ่หมาะสม
 ตวัอยา่งโปรเจกต ์บรูณาการ

บทที ่12 RESTful API Design (RESTful API Design) .. 189
 RESTful API Design
 RESTful API Design (รายละเอยีดเชงิลกึ)
 การออกแบบ API ตามหลกั REST
 การจดัการ Versioning ของ API
 การเขยีน API Documentation
 ตวัอยา่งบรูณาการ

บรรณานุกรม ... 256

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 1

บทท่ี 9
การจดัการ Session และ Authentication

(Session and Authentication)

เน้ือหา

 การจดัการ Session และ Authentication
 การจดัการ Session และ Authentication (เชงิลกึ)
 การใชง้าน express-session
 การใช ้Passport.js ส าหรบั Authentication

บทน าบทท่ี 9: การจดัการ Session และ Authentication
ในการพฒันาเว็บแอปพลิเคชนัที่มผีู้ใช้งานหลายคน การจดัการ session และระบบยนืยนัตัวตน
(authentication) ถอืเป็นองคป์ระกอบส าคญัทีช่่วยใหร้ะบบสามารถจดจ าผูใ้ช ้และรกัษาความปลอดภยั
ของขอ้มลูไดอ้ยา่งเหมาะสม บทที ่9 นี้จงึมุง่เน้นการเรยีนรูว้ธิจีดัการ session และการสรา้งระบบลอ็กอนิ
อยา่งมปีระสทิธภิาพดว้ยเครือ่งมอืยอดนิยมใน Express.js

หวัขอ้แรกของบทนี้จะเริม่จากการใช้งาน express-session ซึ่งเป็น middleware ส าหรบั
จดัการ session บนฝัง่เซริฟ์เวอร ์โดย session จะท าหน้าทีเ่กบ็ขอ้มลูผูใ้ชช้ัว่คราวหลงัจากเขา้สู่ระบบ
เช่น user ID, role หรอืค่าการตัง้ค่าต่าง ๆ ผูอ่้านจะไดเ้รยีนรูก้ารตัง้ค่า session อย่างปลอดภยั รวมถงึ
การใช ้session รว่มกบั cookie เพื่อเชื่อมโยงขอ้มลูกบัผูใ้ชง้านแต่ละราย

ต่อมาจะเป็นการน า session ไปประยุกต์ใชใ้น ระบบลอ็กอินพื้นฐาน โดยบทนี้จะสอนวธิสีรา้ง
หน้า login และตรวจสอบรหสัผ่าน พรอ้มตวัอยา่งการจดัเกบ็ session เมือ่ผูใ้ชเ้ขา้สู่ระบบส าเรจ็ และการ
ป้องกนัหน้าเวบ็ทีต่้องมกีารเขา้สู่ระบบก่อนถงึจะเขา้ถงึได ้(protected route) ซึง่เป็นพืน้ฐานของระบบ
สมาชกิในเวบ็แอปพลเิคชนัสมยัใหม่

หลงัจากเขา้ใจพืน้ฐานแล้ว บทนี้จะต่อยอดไปสู่การใช้ Passport.js ซึง่เป็นไลบรารยีอดนิยม
ส าหรบัจดัการ authentication แบบ modular โดยรองรบักลยุทธ์การยนืยนัตวัตนหลากหลายรปูแบบ
เช่น local login, OAuth, หรอื JWT ผูอ่้านจะไดเ้รยีนรูก้ารตดิตัง้และตัง้ค่า Passport.js พรอ้มใชง้าน
รว่มกบั express-session เพื่อสรา้งระบบลอ็กอนิทีย่ดืหยุน่และปลอดภยัมากยิง่ขึน้

เมือ่จบบทนี้ ผูอ่้านจะมคีวามเขา้ใจทัง้ในเชงิเทคนิคและแนวคดิเกี่ยวกบัการจดัการ session และ
authentication ใน Express.js และสามารถน าไปพฒันาระบบผู้ใช้งานที่ปลอดภยัและมปีระสทิธภิาพ
พรอ้มส าหรบัการขยายต่อในโปรเจกตข์นาดใหญ่หรอืระบบ production จรงิ.

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 2

การจดัการ Session และ Authentication

1. การใช้งาน express-session
ความหมายและหน้าท่ี

 express-session เป็น middleware ทีช่่วยใหแ้อป Express สามารถเกบ็ขอ้มลู session ของ
ผูใ้ชแ้ต่ละคนไดร้ะหว่างการใชง้าน

 Session คอืการเกบ็ขอ้มลูสถานะของผูใ้ชบ้นเซริฟ์เวอร ์เช่น ขอ้มลูการลอ็กอนิ ขอ้มลูการตัง้ค่า
เฉพาะตวัผูใ้ช ้เป็นตน้

 โดยปกต ิHTTP เป็น protocol แบบ stateless คอืไมม่กีารเกบ็สถานะของ client กบั server แต่
session จะช่วยแก้ปัญหานี้ได ้

การติดตัง้และใช้งานเบือ้งต้น
 ตดิตัง้ดว้ยค าสัง่:
 npm install express-session
 ตัง้ค่าใน Express app เช่น
 const session = require('express-session');

 app.use(session({
 secret: 'your-secret-key', // รหสัลบัส าหรบัเซสชนั
 resave: false, // ไมบ่นัทกึเซสชนัถา้ไม่มกีารเปลีย่นแปลง
 saveUninitialized: true, // เซสชนัทีไ่มไ่ดใ้ชก้เ็กบ็ไวไ้ด ้
 cookie: { secure: false } // ตัง้ค่า cookie ส าหรบั session (secure: true ใชเ้ฉพาะ https)
 }));

การใช้งาน session
 สามารถเกบ็ขอ้มลูใน session ผ่าน req.session
 req.session.user = { id: 1, username: 'admin' };
 ดงึขอ้มลูไดต้ลอดระยะเวลาการเชื่อมต่อ session นัน้ ๆ

2. การสร้างระบบลอ็กอินง่าย ๆ
แนวทางการท างาน

 มหีน้า login form เพื่อรบั username/password
 เมือ่ผูใ้ชก้รอกขอ้มลูและส่ง form ระบบจะตรวจสอบขอ้มลูกบัฐานขอ้มลูหรอืขอ้มลูทีก่ าหนดไว้
 หากถูกตอ้ง จะบนัทกึสถานะผูใ้ชล้งใน session
 ใช ้session ในการตรวจสอบสทิธิก์ารเขา้ถงึหน้าอื่น ๆ

ตวัอย่างขัน้พื้นฐาน

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 3

app.post('/login', (req, res) => {
 const { username, password } = req.body;

 // ตวัอยา่งตรวจสอบ username/password แบบงา่ย
 if (username === 'admin' && password === '1234') {
 req.session.user = { username: 'admin' };
 res.redirect('/dashboard');
 } else {
 res.send('Invalid credentials');
 }
});

app.get('/dashboard', (req, res) => {
 if (req.session.user) {
 res.send(`Welcome ${req.session.user.username}`);
 } else {
 res.redirect('/login');
 }
});
ฟีเจอรเ์พ่ิมเติม

 การออกจากระบบ (logout) ลบ session
 การตัง้เวลา session หมดอายุ
 ป้องกนั session fixation

3. การใช้ Passport.js ส าหรบั Authentication
Passport.js คืออะไร?

 Passport.js เป็น middleware ส าหรบัจดัการ Authentication ทีม่คีวามยดืหยุ่นและขยายตวัได้
ด ี

 รองรบักลยุทธ ์(strategies) หลากหลาย เช่น local (username/password), OAuth (Facebook,
Google), JWT เป็นตน้

 ช่วยแยกส่วนของ Authentication ออกจาก business logic ไดง้า่ย
การติดตัง้
npm install passport passport-local express-session
การตัง้ค่า Passport แบบ local strategy เบือ้งต้น

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 4

const passport = require('passport');
const LocalStrategy = require('passport-local').Strategy;

app.use(session({ secret: 'secret' }));
app.use(passport.initialize());
app.use(passport.session());

// ก าหนด local strategy
passport.use(new LocalStrategy((username, password, done) => {
 // ตรวจสอบ username/password จากฐานขอ้มลู
 if (username === 'admin' && password === '1234') {
 return done(null, { id: 1, username: 'admin' });
 } else {
 return done(null, false, { message: 'Incorrect credentials.' });
 }
}));

// จดัการ serialize session
passport.serializeUser((user, done) => {
 done(null, user.id);
});

passport.deserializeUser((id, done) => {
 // ดงึขอ้มลูผูใ้ชจ้ากฐานขอ้มลู
 done(null, { id: 1, username: 'admin' });
});

// Route login
app.post('/login', passport.authenticate('local', {
 successRedirect: '/dashboard',
 failureRedirect: '/login',
 failureFlash: false
}));

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 5

// Route ป้องกนัส าหรบัหน้าทีต่อ้ง login
app.get('/dashboard', (req, res) => {
 if (req.isAuthenticated()) {
 res.send(`Hello ${req.user.username}`);
 } else {
 res.redirect('/login');
 }
});
ข้อดีของ Passport

 รองรบักลยุทธ ์login หลากหลาย
 ม ีplugin และ community เยอะ
 งา่ยต่อการจดัการ session รว่มกบั Express

การจดัการ Session และ Authentication (เชิงลึก)

1. การใช้งาน express-session
แนวคิดและการท างานของ Session ในเวบ็

 HTTP protocol เป็น stateless — หมายความว่าแต่ละค าขอ HTTP (request) จะถูก
ประมวลผลแยกจากกนั ไม่มกีารเกบ็สถานะระหว่างค าขอ

 Session คือกลไกเกบ็สถานะของผู้ใช้ ทีฝั่ง่เซริฟ์เวอร ์เพื่อใหท้ราบว่า request ใดมาจากผูใ้ช้
คนเดยีวกนั โดยเชื่อมโยงผ่าน session ID ทีส่่งใน cookie

 Session ID จะถูกสรา้งขึน้ตอนแรกเมือ่ client เชื่อมต่อและเกบ็ไวใ้น cookie เพื่อส่งกบัทุก
request ถดัไป

express-session ท างานอย่างไร
 เมือ่ตดิตัง้และใช ้middleware express-session ในแอป จะมกีารสรา้งและจดัการ session ID

ส าหรบัผูใ้ชแ้ต่ละคน
 Session data จะถูกเกบ็ไวใ้น server memory (default) หรอื external store เช่น Redis,

MongoDB (แนะน าใน production เพื่อประสทิธภิาพและความปลอดภยั)
 Client จะไดร้บั cookie ทีม่ ีsession ID (ชื่อ default คอื connect.sid) เพื่อใชส้่งกบั request

ถดัไป
การตัง้ค่า express-session
app.use(session({
 secret: 'your-secret-key', // รหสัลบัส าหรบัเขา้รหสั session ID cookie
 resave: false, // ถา้ session ไมเ่ปลีย่นแปลง จะไมเ่ซฟซ ้า (ช่วยลด overhead)

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 6

 saveUninitialized: false, // ไมส่รา้ง session ใหมถ่า้ยงัไมไ่ดใ้ช ้(ช่วยลดจ านวน session ว่าง)
 cookie: {
 secure: false, // ตอ้งเป็น true ถา้ใช ้https (ป้องกนั cookie ถูกส่งผ่าน HTTP
ธรรมดา)
 maxAge: 1000 * 60 * 60 * 2 // อาย ุcookie 2 ชัว่โมง (หน่วยเป็นมลิลวินิาท)ี
 }
}));

 secret: ตอ้งตัง้ใหม้ัน่คงและปลอดภยั เพื่อป้องกนัการปลอมแปลง session
 resave: ควรตัง้เป็น false เพื่อไมใ่หเ้ซฟ session ทุกครัง้ถา้ไมม่กีารเปลีย่นแปลง
 saveUninitialized: ตัง้ false เพื่อไมส่รา้ง session ถา้ผูใ้ชไ้มไ่ดล้อ็กอนิ หรอืไมไ่ดเ้กบ็ขอ้มลู

อะไร
ตวัอย่างการใช้งาน session ใน route
app.get('/set', (req, res) => {
 req.session.user = { id: 123, username: 'testuser' };
 res.send('Session data set');
});

app.get('/get', (req, res) => {
 if (req.session.user) {
 res.send(`Hello, ${req.session.user.username}`);
 } else {
 res.send('No session data');
 }
});
การเกบ็ session ใน production

 ไม่แนะน าให้เกบ็ session ในหน่วยความจ า server ตรงๆ เพราะจะสญูหายเมือ่ restart
server หรอืเมือ่ scaling

 ควรใช ้store เช่น connect-redis, connect-mongo เพื่อเกบ็ session ในฐานขอ้มลูหรอื cache
ที ่persistent และแชรข์า้ม server ได ้

2. การสร้างระบบลอ็กอินง่าย ๆ ด้วย session
ขัน้ตอนหลกัของระบบลอ็กอิน

1. สรา้งฟอรม์ login รบัขอ้มลู username/password จากผูใ้ช ้
2. เมือ่ผูใ้ชส้่งขอ้มลูเขา้มา ตรวจสอบ username/password กบัฐานขอ้มลูหรอืขอ้มลูในระบบ

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 7

3. หากตรวจสอบผ่าน ใหส้รา้ง session เพื่อเกบ็สถานะผูใ้ช ้(เช่น userId, username)
4. ใช ้session ในทุก route ทีต่อ้งการตรวจสอบการลอ็กอนิ
5. ม ีroute ส าหรบั logout เพื่อลา้ง session

ตวัอย่างระบบลอ็กอินง่าย ๆ
// middleware เพื่ออ่าน body form data
app.use(express.urlencoded({ extended: true }));

// หน้า login form
app.get('/login', (req, res) => {
 res.send(`
 <form method="POST" action="/login">
 <input name="username" required />
 <input name="password" type="password" required />
 <button>Login</button>
 </form>
 `);
});

// ตรวจสอบขอ้มลูลอ็กอนิ
app.post('/login', (req, res) => {
 const { username, password } = req.body;

 // ตรวจสอบกบัฐานขอ้มลูจรงิหรอื hardcode (ตวัอยา่ง)
 if (username === 'admin' && password === '1234') {
 req.session.user = { username: 'admin' };
 res.redirect('/dashboard');
 } else {
 res.send('Invalid credentials');
 }
});

// หน้า dashboard ทีต่อ้งลอ็กอนิก่อนเขา้
app.get('/dashboard', (req, res) => {
 if (!req.session.user) {

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 8

 return res.redirect('/login');
 }
 res.send(`Welcome, ${req.session.user.username}! Logout`);
});

// Logout - ลบ session
app.get('/logout', (req, res) => {
 req.session.destroy(err => {
 if (err) {
 return res.send('Error logging out');
 }
 res.redirect('/login');
 });
});
ฟีเจอรแ์ละการพฒันาเพ่ิมเติม

 ตัง้เวลา session หมดอาย ุ(timeout)
 ป้องกนั Session Fixation (เช่น regenerate session id หลงั login)
 ใช ้HTTPS เพื่อป้องกนั cookie session ถูกขโมย
 การเขา้รหสั password ดว้ย bcrypt ก่อนเกบ็ในฐานขอ้มลู
 การใช ้CSRF token เพื่อป้องกนัการโจมต ีcross-site request forgery

3. การใช้ Passport.js ส าหรบั Authentication
เหตผุลท่ีควรใช้ Passport.js

 Passport.js เป็น middleware ส าหรบัจดัการ Authentication โดยเฉพาะ
 มรีะบบกลยุทธ ์(strategies) หลากหลาย ครอบคลุมทัง้แบบ local (username/password),

OAuth, OpenID, JWT ฯลฯ
 ช่วยแยกส่วนโคด้ authentication ออกจาก business logic
 ม ีcommunity และ plugin เยอะ ท าใหข้ยายระบบง่าย
 จดัการ session ใหแ้บบอตัโนมตัริว่มกบั express-session

แนวคิดหลกัของ Passport.js
 Strategies คอืโมดลูทีร่บัผดิชอบวธิตีรวจสอบตวัตน เช่น passport-local
 serializeUser และ deserializeUser ใชเ้กบ็และดงึขอ้มลูผูใ้ชเ้ขา้สู่ session
 Middleware passport.initialize() และ passport.session() เพื่อเชื่อมกบั Express

ตวัอย่างการใช้งาน Passport.js (Local Strategy)

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 9

const passport = require('passport');
const LocalStrategy = require('passport-local').Strategy;

app.use(session({ secret: 'secret', resave: false, saveUninitialized: false }));
app.use(passport.initialize());
app.use(passport.session());

// ก าหนด local strategy
passport.use(new LocalStrategy((username, password, done) => {
 // ตวัอยา่ง: ตรวจสอบ username/password แบบงา่ย
 if (username === 'admin' && password === '1234') {
 return done(null, { id: 1, username: 'admin' });
 } else {
 return done(null, false, { message: 'Incorrect credentials.' });
 }
}));

// บนัทกึขอ้มลูผูใ้ชใ้น session
passport.serializeUser((user, done) => {
 done(null, user.id);
});

// ดงึขอ้มลูผูใ้ชจ้าก session
passport.deserializeUser((id, done) => {
 // ในระบบจรงิจะดงึขอ้มลู user จากฐานขอ้มลู
 done(null, { id: 1, username: 'admin' });
});

// Route login ใชง้าน passport.authenticate
app.post('/login', passport.authenticate('local', {
 successRedirect: '/dashboard',
 failureRedirect: '/login'
}));

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 10

// Route dashboard ตรวจสอบว่า logged in หรอืไม่
function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) return next();
 res.redirect('/login');
}

app.get('/dashboard', ensureAuthenticated, (req, res) => {
 res.send(`Hello, ${req.user.username} Logout`);
});

// Logout
app.get('/logout', (req, res) => {
 req.logout(() => {
 res.redirect('/login');
 });
});
การขยายระบบด้วยกลยุทธอ่ื์น

 OAuth (Google, Facebook, Twitter)
 JWT (ส าหรบั API)
 LDAP, SAML ส าหรบัองคก์ร

ข้อควรระวงัและแนวปฏิบติั
 ตัง้ค่า session secret ใหป้ลอดภยัและไมเ่ปิดเผย
 ใช ้HTTPS เสมอเพื่อปกป้อง cookie session
 ไมเ่กบ็ขอ้มลูส าคญั เช่น password ใน session โดยตรง
 ใช ้bcrypt หรอื library ทีป่ลอดภยัส าหรบั hash รหสัผ่าน
 ตรวจสอบ input และป้องกนั injection

การใช้งาน express-session

1. express-session คืออะไร?

 เป็น middleware ส าหรบัจดัการ session ใน Express
 ช่วยใหเ้กบ็ขอ้มลูสถานะผูใ้ช ้(session data) ไวท้ีฝั่ง่ server และเชื่อมโยงกบั client ผ่าน

session ID ใน cookie

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 11

 ใชส้ าหรบัเกบ็ขอ้มลูส าคญั เช่น การลอ็กอนิ, ตะกรา้สนิคา้, ค่าทีใ่ชใ้นระหว่าง session ของผูใ้ช้
แต่ละคน

2. การติดตัง้ express-session
npm install express-session

3. วิธีใช้งานเบือ้งต้น
const express = require('express');
const session = require('express-session');

const app = express();

app.use(session({
 secret: 'your-secret-key', // รหสัลบั ใชส้ าหรบัเซน็ session ID cookie (ตอ้งตัง้ใหป้ลอดภยั)
 resave: false, // ไมเ่ซฟ session ใหมถ่า้ไม่มกีารเปลีย่นแปลงขอ้มลูใน session
 saveUninitialized: false, // ไมเ่ซฟ session ถา้ session ยงัไมไ่ดถู้กแกไ้ข (ช่วยลดจ านวน session
เปล่าๆ)
 cookie: {
 secure: false, // ตอ้งเป็น true ถา้ใช ้HTTPS (ป้องกนั cookie ถูกส่งใน HTTP ธรรมดา)
 maxAge: 1000 * 60 * 60 // อาย ุcookie 1 ชัว่โมง (หน่วยมลิลวินิาท)ี
 }
}));

app.get('/', (req, res) => {
 // เชค็ว่าม ีsession อยูไ่หม ถา้ไม่ม ีสรา้งใหม่
 if (!req.session.views) {
 req.session.views = 0;
 }
 req.session.views++;

 res.send(`คุณเขา้มาดหูน้านี้ ${req.session.views} ครัง้`);
});

app.listen(3000, () => {

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 12

 console.log('Server running on http://localhost:3000');
});

4. ค่าคอนฟิกส าคญัใน express-session

ตวัเลือก รายละเอียด ค าแนะน า

secret
รหสัลบัทีใ่ชเ้ซน็ session ID cookie เพื่อป้องกนัการปลอม
แปลง ตอ้งตัง้ใหป้ลอดภยัและเป็นความลบั

ตัง้รหสัทีซ่บัซอ้นและ
เกบ็ใหด้ ี

resave
ถา้ false จะไมเ่ซฟ session ถา้ไมม่กีารเปลีย่นแปลง (ลด
ภาระ)

ควรตัง้เป็น false

saveUninitialized
ถา้ false จะไมเ่ซฟ session ทีย่งัไมไ่ดถู้กแกไ้ข เช่น
session เปล่า ๆ

ควรตัง้เป็น false

cookie.secure ถา้ตัง้เป็น true จะส่ง cookie เฉพาะ HTTPS เท่านัน้
ส าหรบั production
ใหต้ัง้ true

cookie.maxAge ก าหนดอาย ุcookie (หน่วย ms) เช่น 1 ชัว่โมง = 10006060 ตัง้ตามความตอ้งการ

5. การใช้งาน session ใน route ต่าง ๆ

 เขยีนขอ้มลูลงใน session
req.session.username = 'admin';

 อ่านขอ้มลูจาก session
const username = req.session.username;

 ลบขอ้มลู session หรอืท าลาย session
req.session.destroy(err => {
 if (err) console.error(err);
 else console.log('Session destroyed');
});

6. การเกบ็ session ใน production

 โดยดฟีอลต ์express-session จะเกบ็ session ใน หน่วยความจ าของ server
(MemoryStore) ซึง่ไมเ่หมาะกบั production

 ควรใช ้external store เช่น
o Redis: connect-redis
o MongoDB: connect-mongo
o MySQL: express-mysql-session

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 13

เพื่อให ้session คงอยูไ่ดแ้ม ้server รสีตารท์ และรองรบัระบบแบบหลาย instance

7. ตวัอย่างใช้งาน Redis เป็น store
npm install connect-redis redis
const session = require('express-session');
const RedisStore = require('connect-redis')(session);
const redis = require('redis');

const redisClient = redis.createClient();

app.use(session({
 store: new RedisStore({ client: redisClient }),
 secret: 'your-secret',
 resave: false,
 saveUninitialized: false,
 cookie: { secure: false, maxAge: 3600000 }
}));

8. ข้อควรระวงั

 อยา่ใช ้secret ทีเ่ดาง่าย หรอืเปิดเผยสู่สาธารณะ
 อยา่ลมืตัง้ค่า cookie.secure เป็น true เมือ่ใช ้HTTPS
 อยา่เกบ็ขอ้มลูส าคญัหรอืความลบัลงใน session โดยตรง ควรเกบ็แค่ id หรอืตวัชีว้ดั
 ระวงัการโจมต ีsession fixation, session hijacking โดยตัง้ session ใหมห่ลงัลอ็กอนิส าเรจ็

นี่คอืตวัอยา่งโปรแกรม Express.js 3 ตวัอยา่งพืน้ฐาน + 3 ตวัอยา่งแนวประยกุต ์ทีใ่ช ้express-
session พรอ้มโครงสรา้งไฟล,์ ค าอธบิายโคด้ และผลการรนั

ตวัอย่างโปรแกรมพื้นฐาน 3 ตวัอย่าง

ตวัอย่าง 1: นับจ านวนครัง้ท่ีเข้าเวบ็ (Session Counter)
โครงสร้างโปรเจกต์
session-basic-1/
 └── app.js
 └── package.json

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 14

app.js
const express = require('express');
const session = require('express-session');

const app = express();

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: false,
 cookie: { maxAge: 60000 }
}));

app.get('/', (req, res) => {
 if (!req.session.views) {
 req.session.views = 0;
 }
 req.session.views++;
 res.send(`คุณเขา้หน้านี้มาแลว้ ${req.session.views} ครัง้`);
});

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});
วิธีรนัและผลการรนั
npm init -y
npm install express express-session
node app.js
เปิดเบราวเ์ซอรไ์ปท่ี http://localhost:3000
ผลลพัธจ์ะแสดงขอ้ความ "คุณเขา้หน้านี้มาแลว้ x ครัง้" โดยนบัเพิม่ทุกครัง้ทีร่เีฟรช (ส าหรบั session
เดยีวกนั)

ตวัอย่าง 2: เกบ็ข้อมลูผู้ใช้ลงใน session
โครงสร้างโปรเจกต์

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 15

session-basic-2/
 └── app.js
 └── package.json
app.js
const express = require('express');
const session = require('express-session');

const app = express();

app.use(express.urlencoded({ extended: true }));

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: false,
 cookie: { maxAge: 60000 }
}));

app.get('/', (req, res) => {
 if (req.session.username) {
 res.send(`สวสัด,ี ${req.session.username}! ออกจากระบบ`);
 } else {
 res.send(`
 <form method="POST" action="/login">
 ชื่อผูใ้ช:้ <input name="username" />
 <button type="submit">เขา้สู่ระบบ</button>
 </form>
 `);
 }
});

app.post('/login', (req, res) => {
 const { username } = req.body;
 if (username) {

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 16

 req.session.username = username;
 res.redirect('/');
 } else {
 res.send('กรณุากรอกชื่อผูใ้ช'้);
 }
});

app.get('/logout', (req, res) => {
 req.session.destroy(err => {
 if (err) return res.send('เกดิขอ้ผดิพลาด');
 res.redirect('/');
 });
});

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});
วิธีรนัและผลการรนั

 รนั node app.js
 เขา้ http://localhost:3000
 กรอกชื่อผูใ้ชใ้นฟอรม์
 หน้าเวบ็จะแสดงขอ้ความต้อนรบัและลงิก ์logout
 logout จะลบ session และกลบัไปหน้า login

ตวัอย่าง 3: ก าหนด session timeout (หมดอาย ุsession)
โครงสร้างโปรเจกต์
session-basic-3/
 └── app.js
 └── package.json
app.js
const express = require('express');
const session = require('express-session');

const app = express();

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 17

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: false,
 cookie: { maxAge: 10000 } // หมดอาย ุsession หลงั 10 วนิาท ี
}));

app.get('/', (req, res) => {
 if (!req.session.views) {
 req.session.views = 1;
 } else {
 req.session.views++;
 }
 res.send(`คุณเขา้หน้านี้มาแลว้ ${req.session.views} ครัง้ (session จะหมดอายใุน 10 วนิาท)ี`);
});

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});
วิธีรนัและผลการรนั

 เปิดเวบ็และรเีฟรชหน้าหลายครัง้ จะเหน็นับ views เพิม่ขึน้
 ปล่อยทิง้ไวเ้กนิ 10 วนิาทแีลว้รเีฟรช จะเริม่นบัใหมเ่พราะ session หมดอายุ

ตวัอย่างโปรแกรมแนวประยกุต ์3 ตวัอย่าง

ตวัอย่าง 1: ระบบลอ็กอินด้วย username/password ง่าย ๆ เกบ็สถานะด้วย session
โครงสร้างโปรเจกต์
session-app-1/
 └── app.js
 └── package.json
app.js
const express = require('express');
const session = require('express-session');

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 18

const app = express();

app.use(express.urlencoded({ extended: true }));

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: false,
 cookie: { maxAge: 600000 }
}));

// ตวัอยา่งฐานขอ้มลูผูใ้ชแ้บบงา่ย
const users = {
 admin: '1234',
 user1: 'abcd'
};

app.get('/login', (req, res) => {
 res.send(`
 <form method="POST" action="/login">
 ชื่อผูใ้ช:้ <input name="username" />
 รหสัผ่าน: <input type="password" name="password" />
 <button type="submit">เขา้สู่ระบบ</button>
 </form>
 `);
});

app.post('/login', (req, res) => {
 const { username, password } = req.body;
 if (users[username] && users[username] === password) {
 req.session.user = username;
 res.redirect('/dashboard');
 } else {

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 19

 res.send('ชื่อผูใ้ชห้รอืรหสัผ่านไมถู่กตอ้ง');
 }
});

function requireLogin(req, res, next) {
 if (!req.session.user) {
 return res.redirect('/login');
 }
 next();
}

app.get('/dashboard', requireLogin, (req, res) => {
 res.send(`ยนิดตีอ้นรบั ${req.session.user} ออกจากระบบ`);
});

app.get('/logout', (req, res) => {
 req.session.destroy(err => {
 if (err) return res.send('เกดิขอ้ผดิพลาด');
 res.redirect('/login');
 });
});

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});
วิธีรนัและผลการรนั

 เปิดเวบ็ http://localhost:3000/login
 ลอ็กอนิดว้ย username และ password จาก users
 เขา้ dashboard ไดถ้า้ลอ็กอนิถูกตอ้ง
 ออกจากระบบไดด้ว้ย logout

ตวัอย่าง 2: นับจ านวนผู้เข้าชมแยกตาม session และแสดง session ID
โครงสร้างโปรเจกต์
session-app-2/

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 20

 └── app.js
 └── package.json
app.js
const express = require('express');
const session = require('express-session');

const app = express();

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: true,
 cookie: { maxAge: 600000 }
}));

app.get('/', (req, res) => {
 if (!req.session.views) {
 req.session.views = 0;
 }
 req.session.views++;
 res.send(`
 Session ID: ${req.sessionID}

 คุณเขา้หน้านี้ ${req.session.views} ครัง้ใน session นี้
 `);
});

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});
วิธีรนัและผลการรนั

 เปิดเวบ็และสงัเกต session ID จะไมเ่ปลีย่นแปลงจนกว่าจะหมดอายหุรอื cookie ถูกลบ
 จ านวนครัง้ทีเ่ขา้จะนบัแยกตาม session ของแต่ละผูใ้ช ้

ตวัอย่าง 3: ระบบเกบ็ตะกร้าสินค้า (Shopping Cart) ด้วย session

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 21

โครงสร้างโปรเจกต์
session-app-3/
 └── app.js
 └── package.json
app.js
const express = require('express');
const session = require('express-session');

const app = express();

app.use(express.urlencoded({ extended: true }));

app.use(session({
 secret: 'mySecretKey123',
 resave: false,
 saveUninitialized: true,
 cookie: { maxAge: 600000 }
}));

// สนิคา้ตวัอยา่ง
const products = {
 1: { name: 'Laptop', price: 25000 },
 2: { name: 'Smartphone', price: 15000 },
 3: { name: 'Tablet', price: 12000 }
};

app.get('/', (req, res) => {
 let productList = '';
 for (const id in products) {
 productList += `
 ${products[id].name} - ${products[id].price} บาท
 <form method="POST" action="/add-to-cart" style="display:inline;">
 <input type="hidden" name="productId" value="${id}" />
 <button type="submit">เพิม่ลงตะกรา้</button>

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Advance หนา้ 22

 </form>

 `;
 }

 const cart = req.session.cart || {};
 let cartList = '';
 let total = 0;
 for (const id in cart) {
 const qty = cart[id];
 const product = products[id];
 cartList += `${product.name} x ${qty} = ${product.price * qty} บาท`;
 total += product.price * qty;
 }
 cartList += '';

 res.send(`
 <h1>สนิคา้</h1>
 ${productList}
 <h2>ตะกรา้สนิคา้</h2>
 ${cartList}
 <p>ราคารวม: ${total} บาท</p>
 `);
});

app.post('/add-to-cart', (req, res) => {
 const { productId } = req.body;
 if (!req.session.cart) {
 req.session.cart = {};
 }
 if (!req.session.cart[productId]) {
 req.session.cart[productId] = 0;
 }
 req.session.cart[productId]++;

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 9

