

ค าน า

หนังสอื Express.js Web Programming: Intermediate เล่มนี้จดัท าขึน้เพื่อเสรมิสรา้งความรูแ้ละทกัษะ
ใหก้บันักพฒันาเวบ็ทีม่พีืน้ฐาน Express.js อยู่แลว้ และต้องการก้าวไปสู่ระดบักลางถงึขัน้สูง โดยเน้น
การใชง้านจรงิและการประยกุตใ์ชอ้งคป์ระกอบส าคญัของ Express.js ในการพฒันาเวบ็แอปพลเิคชนัทีม่ ี
โครงสรา้งชดัเจน มปีระสทิธภิาพ และสามารถขยายไดใ้นระดบัองคก์ร

ผูเ้ขยีนตระหนักดวี่า แม ้Express.js จะมลีกัษณะเรยีบง่ายและยดืหยุ่นสูง แต่การพฒันาแอป
พลเิคชนัทีซ่บัซอ้นโดยไมจ่ดัโครงสรา้งใหด้ตีัง้แต่ตน้ อาจน าไปสู่โคด้ทีดู่แลรกัษายากและเกดิขอ้ผดิพลาด
ไดง้า่ย หนงัสอืเล่มนี้จงึออกแบบใหผู้อ่้านไดเ้รยีนรูก้ารปรบัปรุงโคด้ใหม้คีวามเป็นระบบ ผ่านเทคนิคการ
แยกโมดูล การสรา้ง middleware ทีม่ปีระสทิธภิาพ การเชื่อมโยงกบั template engine และการจดัการ
ขอ้มลูจากฟอรม์ของผูใ้ช ้

เริม่ต้นจาก บทท่ี 5: Router Module และการแยกไฟล์ ผู้อ่านจะได้เรยีนรู้การใช้
express.Router() เพื่อแยกเส้นทาง (routes) ออกเป็นโมดูลย่อย ท าให้โค้ดมคีวามเป็นระเบยีบและ
จดัการงา่ย พรอ้มตวัอย่างการจดัการ route hierarchy อย่างเป็นระบบ ซึง่เป็นพืน้ฐานส าคญัส าหรบัการ
พฒันาแอปพลเิคชนัขนาดกลางถงึขนาดใหญ่

ถดัมา บทท่ี 6: Middleware ขัน้สูง จะเน้นไปทีก่ารใชง้าน middleware แบบเจาะลกึ ทัง้จาก
third-party เช่น body-parser และ cookie-parser และการสรา้ง middleware ขึน้มาเองเพื่อรองรบั
กระบวนการเฉพาะ รวมถงึการจดัการขอ้ผดิพลาดดว้ย error-handling middleware อย่างเป็นระบบ ซึง่
มคีวามส าคญัในการเพิม่ความเสถยีรใหก้บัแอปพลเิคชนั

บทท่ี 7: Template Engine จะพาผูอ่้านเขา้สู่โลกของการแสดงผล HTML แบบไดนามกิ โดยใช ้
template engine ยอดนิยมอย่าง Pug และ EJS ผูอ่้านจะไดเ้รยีนรูก้ารตดิตัง้ การส่งขอ้มลูจาก server
ไปยงั template การสรา้ง layout และ partials เพื่อใชโ้ครงสรา้ง HTML ร่วมกนัหลายหน้า ท าใหก้าร
ออกแบบหน้าจอเวบ็งา่ยขึน้และสามารถปรบัแต่งไดอ้ย่างยดืหยุน่

สุดทา้ย บทท่ี 8: การจดัการ Form และการรบัข้อมูลจาก Client จะสอนวธิรีบัขอ้มลูจากผูใ้ช้
อย่างปลอดภยัและมปีระสิทธิภาพ ไม่ว่าจะเป็นการอ่านข้อมูลจากแบบฟอร์ม POST การจดัการ
multipart/form-data ส าหรบัการแนบไฟล์ และการใช้งาน multer เพื่ออปัโหลดไฟลไ์ปยงัเซริฟ์เวอร ์
พรอ้มตวัอยา่งการใชง้านในสถานการณ์จรงิทีส่ามารถน าไปปรบัใชก้บัโปรเจกตข์องผูอ่้านไดท้นัที

หนังสอืเล่มนี้เหมาะส าหรบันักพฒันาทีต่้องการต่อยอดจากพืน้ฐาน Express.js ไปสู่การพฒันา
แอปพลิเคชันระดับมืออาชีพ ผู้เรียนจะได้ฝึกคิดเชิงโครงสร้าง รู้จ ักการจัดการระบบที่มีหลาย
องค์ประกอบ และสามารถสร้างระบบที่พร้อมใช้งานในโลกจรงิได้อย่างมัน่ใจ ขอให้หนังสอืเล่มนี้เป็น
เครือ่งมอืส าคญัทีจ่ะช่วยใหคุ้ณพฒันาแอปพลเิคชนัเวบ็ไดอ้ยา่งมปีระสทิธภิาพและยัง่ยนืในระยะยาว.

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือราคานักเรียน

สารบญั

หน้า
บทที ่5 Router Module และการแยกไฟล ์(Router Module and Modularization) 1

 Router Module และการแยกไฟล ์
 Router Module และการแยกไฟล ์— รายละเอยีดเชงิลกึ
 การใชง้าน express.Router()
 การแยก route ออกเป็นไฟลย์อ่ย (Modular Routes in Express.js)
 การจดัการ Route Hierarchy และ Modularization ใน Express.js
ตวัอยา่งบรูณาการ Express.js

บทที ่6 Middleware ขัน้สงู (Advanced Middleware) ... 59
 Middleware ขัน้สงู
 รายละเอยีดเชงิลกึของ Middleware ขัน้สงู
 การใชง้าน third-party middleware เช่น body-parser, cookie-parser
 การสรา้ง Middleware ของตวัเอง (Custom Middleware) ใน Express.js
 การใชง้าน Error-handling Middleware ใน Express.js
 ตวัอยา่งโปรแกรม Express.js แบบบรูณาการ

บทที ่7 Template Engine (Template Engine) ... 103
 Middleware เบือ้งตน้ใน Express.js
 Template Engine ใน Express.js
 Template Engine ใน Express.js - รายละเอยีดเชงิลกึ
 การตดิตัง้และใชง้าน Template Engine (Pug, EJS) ใน Express.js
 การส่งขอ้มลูไปยงั Template และการเรนเดอร ์HTML ใน Express.js
 การสรา้ง Layout และ Partial Templates ใน Express.js กบั Template Engines (Pug,

EJS)
 ตวัอยา่งโปรแกรม Express.js แบบบรูณาการ

บทที ่8 การจดัการ Form และการรบัขอ้มลูจาก Client (Form and Client Input) 151
 การจดัการ Form และการรบัขอ้มลูจาก Client
 รายละเอยีดเชงิลกึ การจดัการ Form และการรบัขอ้มลูจาก Client

 การอ่านขอ้มลูจากฟอรม์ POST ใน Express.js
 การจดัการ multipart/form-data (เช่นการอปัโหลดไฟล)์ ใน Express.js
 การใช ้multer ส าหรบัอปัโหลดไฟลใ์น Express.js
 ตวัอยา่งโปรแกรม Express.js แบบบรูณาการ

บรรณานุกรม ... 203

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 1

บทท่ี 5
Router Module และการแยกไฟล ์

(Router Module and Modularization)

เน้ือหา

 Router Module และการแยกไฟล ์
 Router Module และการแยกไฟล ์— รายละเอยีดเชงิลกึ
 การใชง้าน express.Router()
 การแยก route ออกเป็นไฟลย์อ่ย (Modular Routes in Express.js)
 การจดัการ Route Hierarchy และ Modularization ใน Express.js
 ตวัอยา่งบรูณาการ Express.js

บทน าบทท่ี 5: Router Module และการแยกไฟล ์
ในกระบวนการพฒันาแอปพลเิคชนัดว้ย Express.js เมื่อระบบเริม่มคีวามซบัซอ้นมากขึน้ การจดัการ
routing ภายในไฟลเ์ดยีวจะกลายเป็นเรื่องทียุ่่งยากและไม่ยดืหยุ่น การจดัระเบยีบโครงสรา้งของ route
ใหเ้ป็นระบบจงึเป็นสิง่จ าเป็น เพื่อใหโ้คด้สามารถดูแลรกัษาไดง้่าย มคีวามชดัเจน และสามารถขยายได้
ในอนาคต บทที่ 5 นี้จงึมุ่งเน้นที่แนวทางการแยก routing ออกเป็นโมดูลย่อยด้วยการใช้งาน
express.Router() ซึง่เป็นฟีเจอรส์ าคญัของ Express.js

การใช้งาน express.Router() ช่วยใหน้ักพฒันาสามารถสรา้ง routing เฉพาะส่วนหรอืเฉพาะ
โมดูลไดอ้ย่างเป็นอสิระ โดยไม่ต้องกระจุกอยู่ในไฟลห์ลกั การแยก route แต่ละชุดออกเป็นไฟล์ย่อยที่
รบัผดิชอบเฉพาะดา้น ช่วยใหส้ามารถควบคุมและปรบัปรุงโคด้ในระดบัโมดูลไดอ้ย่างมปีระสทิธภิาพ ซึง่
สอดคลอ้งกบัแนวคดิ modularization ทีน่ิยมใชใ้นการพฒันาระบบขนาดกลางถงึขนาดใหญ่

นอกจากนี้ บทนี้ยงัอธบิายแนวทางการจดัการโครงสรา้ง route hierarchy อย่างมรีะบบ เช่น
การสรา้ง route ซอ้นกนั (nested routing) และการก าหนด prefix เพื่อใหส้ามารถก าหนด path หลกัของ
route ย่อยไดอ้ย่างเหมาะสม การวางโครงสรา้ง route hierarchy อย่างถูกต้อง จะช่วยเพิม่ความเขา้ใจ
ของทมีพฒันาและลดความสบัสนระหว่างเสน้ทางทีม่ลีกัษณะใกลเ้คยีงกนั

เพื่อให้ผู้อ่านสามารถน าไปประยุกต์ใช้งานได้จริง บทนี้จึงมีตัวอย่างการสร้างไฟล์ routing
ส าหรบัโมดูลต่าง ๆ เช่น /users, /products, หรอื /orders พรอ้มแนวทางการน าเขา้มาใชง้านในไฟล์
หลกัของแอปพลเิคชนั (เช่น app.js หรอื server.js) ตวัอย่างเหล่านี้จะช่วยให้ผู้อ่านเหน็ภาพการ
ออกแบบ route แบบแยกไฟลท์ีช่ดัเจนยิง่ขึน้

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 2

เมื่อจบบทนี้ ผูอ่้านจะมคีวามเขา้ใจในหลกัการแยก routing ออกเป็นโมดูลย่อย และสามารถน า
แนวคดิ modular routing ไปใชจ้ดัระเบยีบโปรเจกต์ไดอ้ย่างมปีระสทิธภิาพ ทัง้นี้จะเป็นพืน้ฐานส าคญั
ส าหรบัการพฒันาแอปพลเิคชนัขนาดใหญ่ด้วย Express.js ที่สามารถดูแลรกัษาและขยายได้ในระยะ
ยาว.

Router Module และการแยกไฟล ์

1. การใช้งาน express.Router()

 express.Router() คอืฟีเจอรข์อง Express ทีช่่วยใหเ้ราสามารถสรา้งกลุ่มของ route ทีแ่ยกจาก
กนัไดอ้ยา่งอสิระ

 Router ช่วยท าใหโ้คด้สะอาดและดแูลงา่ยขึน้ โดยเฉพาะโปรเจกตใ์หญ่ทีม่หีลาย route
 Router คอื mini-application ทีส่ามารถใช ้middleware, routes เหมอืนกบัแอปหลกัได ้

ตวัอย่างใช้งาน
const express = require('express');
const app = express();
const router = express.Router();

router.get('/hello', (req, res) => {
 res.send('Hello from router!');
});

app.use('/api', router);

app.listen(3000);
ในตวัอยา่งนี้ เมือ่ client เรยีก /api/hello จะไดข้อ้ความ "Hello from router!"

2. การแยก route ออกเป็นไฟลย่์อย

 แทนทีจ่ะเขยีน route ทัง้หมดในไฟลห์ลกั (เช่น index.js) เราสามารถแยกแต่ละกลุ่ม route ไป
เป็นไฟลย์อ่ยได ้

 แต่ละไฟลจ์ะ export ตวั router ออกมา และในไฟลห์ลกัจะ import และ mount router เหล่านัน้
ตวัอย่างโครงสร้างไฟล ์
project/
├── index.js
└── routes/

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 3

 ├── users.js
 └── products.js
ตวัอย่างไฟล ์routes/users.js
const express = require('express');
const router = express.Router();

router.get('/', (req, res) => {
 res.send('User list');
});

router.get('/:id', (req, res) => {
 res.send(`User ID: ${req.params.id}`);
});

module.exports = router;
ตวัอย่างไฟล ์index.js
const express = require('express');
const app = express();

const usersRouter = require('./routes/users');

app.use('/users', usersRouter);

app.listen(3000, () => {
 console.log('Server started on port 3000');
});

3. การจดัการ route hierarchy และ modularization

 การแยก router ช่วยใหเ้ราสามารถสรา้ง route hierarchy ไดง้า่ย เช่น /users, /users/:id,
/products

 สามารถใช ้middleware ใน router ยอ่ยแต่ละตวัได ้
 เพิม่ความยดืหยุ่นและง่ายต่อการดแูลรกัษาโปรเจกตใ์หญ่

ตวัอย่างเพ่ิม middleware ใน router
// routes/users.js

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 4

router.use((req, res, next) => {
 console.log('Users router middleware');
 next();
});

สรปุ

หวัข้อ รายละเอียด

express.Router() สรา้ง router ยอ่ยทีเ่ป็น mini-app

แยกไฟล ์router แยก route ตามฟีเจอรห์รอืโมดลู

route hierarchy จดัล าดบั route และใช ้middleware ได ้

modularization เพิม่ความสะดวกในการจดัการและขยายระบบ

Router Module และการแยกไฟล ์— รายละเอียดเชิงลึก

1. การใช้งาน express.Router()
ความหมายและหน้าท่ี

 express.Router() คอืออ็บเจกตท์ีใ่หเ้ราสรา้ง กลุ่มของเส้นทาง (routes) และ middleware
แยกกนัได ้

 Router ท างานเหมอืน mini Express app ทีจ่ดัการเฉพาะ route หรอืโมดลูหนึ่ง ๆ
 ช่วยใหโ้คด้มคีวามเป็นโมดลู (modular) และดแูลงา่ย

วิธีสร้างและใช้งาน
const express = require('express');
const router = express.Router();

// สรา้ง route ภายใน router
router.get('/test', (req, res) => {
 res.send('Hello from Router!');
});

module.exports = router;

 น า router นี้ไปใชง้านในแอปหลกั เช่น
const express = require('express');
const app = express();

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 5

const myRouter = require('./myRouter');

app.use('/api', myRouter);

 เสน้ทาง /api/test จะเรยีก router ขา้งตน้
ข้อดีของการใช้ Router

 แยกความรบัผดิชอบของแต่ละ route ชดัเจน
 สามารถใช ้middleware ใน router ไดเ้ฉพาะเจาะจง
 รองรบัการขยายระบบเมือ่โปรเจกตใ์หญ่ขึน้

2. การแยก route ออกเป็นไฟลย่์อย (Modularization)
เหตผุลท่ีต้องแยกไฟล ์

 ถา้เขยีน route ทัง้หมดในไฟลเ์ดยีวจะท าใหโ้คด้ยาวและดแูลยาก
 การแยกไฟลช์่วยใหแ้บ่งแยกฟีเจอรแ์ต่ละส่วน (เช่น users, products, orders) ไดช้ดัเจน
 ทมีพฒันาสามารถท างานแยกกนัได้

โครงสร้างโปรเจกต์แนะน า
project/
├── index.js // แอปหลกั
└── routes/
 ├── users.js // route ส าหรบัผูใ้ช ้
 ├── products.js // route ส าหรบัสนิคา้
 └── orders.js // route ส าหรบัค าสัง่ซือ้
ตวัอย่างไฟล ์routes/users.js
const express = require('express');
const router = express.Router();

// middleware ใน router users
router.use((req, res, next) => {
 console.log('Users router middleware');
 next();
});

// route แสดงรายชื่อผูใ้ช้
router.get('/', (req, res) => {
 res.json([{ id: 1, name: 'Alice' }, { id: 2, name: 'Bob' }]);

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 6

});

// route แสดงรายละเอยีดผูใ้ชต้าม id
router.get('/:id', (req, res) => {
 const id = parseInt(req.params.id);
 res.json({ id, name: `User${id}` });
});

module.exports = router;
การน าไปใช้ในไฟลห์ลกั (index.js)
const express = require('express');
const app = express();

const usersRouter = require('./routes/users');
const productsRouter = require('./routes/products');

app.use('/users', usersRouter);
app.use('/products', productsRouter);

app.listen(3000, () => console.log('Server running at http://localhost:3000'));

3. การจดัการ Route Hierarchy และ Modularization
Hierarchy ของ route

 สามารถจดัล าดบั route ดว้ย prefix ทีเ่หมาะสม เช่น /users, /users/:id
 แต่ละ router มเีสน้ทางแยกกนัตามโมดลู และ mount ไวใ้นแอปหลกั

การใช้ Middleware ใน router
 สามารถก าหนด middleware เฉพาะ router เพื่อจดัการ request ก่อนเขา้ถงึ route ต่าง ๆ
 ตวัอยา่ง:

// middleware ใน router
router.use((req, res, next) => {
 console.log(`[${new Date().toISOString()}] ${req.method} ${req.originalUrl}`);
 next();
});
Modularization เตม็รปูแบบ

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 7

 แยกแต่ละฟีเจอร ์(users, products, orders) เป็น router ต่างหาก
 แต่ละ router อาจม ีmiddleware และ logic ของตวัเอง
 งา่ยต่อการ maintain, ทดสอบ, และขยายระบบ

ตวัอย่างการ mount router หลายระดบั
// ใน index.js
app.use('/api/users', usersRouter);
app.use('/api/products', productsRouter);
ในแต่ละ router เช่น
// routes/users.js
router.get('/:id/orders', (req, res) => {
 // ดงึ order ของ user นัน้ ๆ
});

สรปุข้อดีของการใช้ Router Module และแยกไฟล ์

ข้อดี ค าอธิบาย

Modularization แยกโคด้เป็นโมดลูยอ่ย ดแูลงา่ย

Reusability น า router ยอ่ยไปใชซ้ ้าในหลายทีไ่ด้

Maintainability จดัการงา่ยเมือ่ระบบใหญ่

Middleware Scope Control ก าหนด middleware เฉพาะ router ได ้ไมก่ระทบ router อื่น

Cleaner Main App File ไฟลห์ลกัไมร่ก อ่านง่ายขึน้

การใช้งาน express.Router()

1. ความหมายของ express.Router()

 เป็นออ็บเจก็ตต์วัช่วยใน Express ทีท่ าหน้าที ่จดักลุ่ม route และ middleware ทีเ่กีย่วขอ้งกนั
 ท าใหเ้ราสามารถแยก route เป็นโมดลูยอ่ยๆ ไดส้ะดวก
 Router เหมอืน mini app ทีม่ฟัีงกช์นัครบ เช่น รบั request, ใช ้middleware, ส่ง response

ฯลฯ

2. วิธีสร้าง Router
const express = require('express');
const router = express.Router();

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 8

 สรา้ง instance ของ router ดว้ย express.Router()

3. การเพ่ิมเส้นทาง (Routes) ใน Router
router.get('/hello', (req, res) => {
 res.send('Hello from Router!');
});

router.post('/submit', (req, res) => {
 res.send('Form submitted!');
});

 ก าหนด route และ method ตามปกต ิแต่ใน router นี้

4. การใช้ Middleware ใน Router
router.use((req, res, next) => {
 console.log('Router-level middleware');
 next();
});

 สามารถใช ้middleware เฉพาะ router นี้ได ้เช่น ตรวจสอบ authentication, logging ฯลฯ

5. การเช่ือมต่อ Router กบัแอปหลกั (Mounting Router)
const express = require('express');
const app = express();
const myRouter = require('./myRouter'); // ไฟลท์ี ่export router

app.use('/api', myRouter);

 เสน้ทางทัง้หมดใน myRouter จะถูกต่อดว้ย prefix /api
 เช่น myRouter ม ีroute /hello เวลาเรยีกจรงิจะเป็น /api/hello

6. ตวัอย่างโค้ดครบ
// myRouter.js
const express = require('express');
const router = express.Router();

router.use((req, res, next) => {

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 9

 console.log(`Request to ${req.originalUrl}`);
 next();
});

router.get('/hello', (req, res) => {
 res.send('Hello from Router!');
});

module.exports = router;

// index.js
const express = require('express');
const app = express();
const myRouter = require('./myRouter');

app.use('/api', myRouter);

app.listen(3000, () => {
 console.log('Server started on port 3000');
});

7. สรปุข้อดีของ express.Router()

 แบ่ง route เป็นโมดลูแยกตามฟีเจอร ์
 สามารถใช ้middleware แยกเฉพาะ router ได ้
 ท าใหโ้คด้ดแูลงา่ยและยดืหยุน่ในโปรเจกตใ์หญ่

นี่คอืตวัอยา่งโปรแกรม Express.js แบบเตม็ไฟล ์จ านวน 3 โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนว
ประยกุต ์ทีเ่น้นการใช้งาน express.Router() แยกไฟล ์พรอ้มโครงสรา้งและค าอธบิายโคด้ รวมผลการ
รนั

ตวัอย่างพื้นฐาน 3 โปรแกรม

ตวัอย่าง 1: Router แยกไฟล ์ส าหรบั Users
โครงสร้างโปรเจกต์

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 10

basic-app-1/
├── index.js
└── routes/
 └── users.js
โค้ด routes/users.js
const express = require('express');
const router = express.Router();

router.get('/', (req, res) => {
 res.send('User List');
});

router.get('/:id', (req, res) => {
 res.send(`User ID: ${req.params.id}`);
});

module.exports = router;
โค้ด index.js
const express = require('express');
const app = express();

const usersRouter = require('./routes/users');

app.use('/users', usersRouter);

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});

ค าอธิบาย

 แยก route /users และ /users/:id ไวใ้นไฟล ์routes/users.js
 น า router มาตดิตัง้ที ่path /users ใน index.js
 เมือ่เรยีก http://localhost:3000/users จะไดข้อ้ความ “User List”
 เรยีก http://localhost:3000/users/123 จะได ้“User ID: 123”

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 11

ผลการรนั (curl)
curl http://localhost:3000/users
User List

curl http://localhost:3000/users/123
User ID: 123

ตวัอย่าง 2: Router แยกไฟล ์ส าหรบั Products พร้อม Middleware
โครงสร้างโปรเจกต์
basic-app-2/
├── index.js
└── routes/
 └── products.js
โค้ด routes/products.js
const express = require('express');
const router = express.Router();

// Middleware logger
router.use((req, res, next) => {
 console.log(`Products router: ${req.method} ${req.originalUrl}`);
 next();
});

router.get('/', (req, res) => {
 res.json([{ id: 1, name: 'Laptop' }, { id: 2, name: 'Phone' }]);
});

router.get('/:id', (req, res) => {
 res.json({ id: req.params.id, name: `Product ${req.params.id}` });
});

module.exports = router;
โค้ด index.js

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 12

const express = require('express');
const app = express();

const productsRouter = require('./routes/products');

app.use('/products', productsRouter);

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});

ค าอธิบาย

 เพิม่ middleware logger ภายใน router เพื่อแสดง HTTP method และ URL
 ส่ง response เป็น JSON รายการสนิคา้และสนิคา้แต่ละชิน้
 เรยีก /products ไดร้ายการสนิคา้ทัง้หมด
 เรยีก /products/10 ไดข้อ้มลูสนิคา้ id=10

ผลการรนั (curl)
curl http://localhost:3000/products
[{"id":1,"name":"Laptop"},{"id":2,"name":"Phone"}]

curl http://localhost:3000/products/10
{"id":"10","name":"Product 10"}

ตวัอย่าง 3: Router ส าหรบั Orders พร้อม Route Nested
โครงสร้างโปรเจกต์
basic-app-3/
├── index.js
└── routes/
 └── orders.js
โค้ด routes/orders.js
const express = require('express');
const router = express.Router();

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 13

// รายการออรเ์ดอรท์ัง้หมด
router.get('/', (req, res) => {
 res.send('Orders list');
});

// รายละเอยีดออรเ์ดอรต์าม id
router.get('/:orderId', (req, res) => {
 res.send(`Order ID: ${req.params.orderId}`);
});

// สนิคา้ในออรเ์ดอร ์
router.get('/:orderId/items', (req, res) => {
 res.send(`Items in Order ID: ${req.params.orderId}`);
});

module.exports = router;
โค้ด index.js
const express = require('express');
const app = express();

const ordersRouter = require('./routes/orders');

app.use('/orders', ordersRouter);

app.listen(3000, () => {
 console.log('Server running at http://localhost:3000');
});

ค าอธิบาย

 ม ีroute หลกั /orders ส าหรบัรายการออรเ์ดอร ์
 route nested /orders/:orderId/items ส าหรบัสนิคา้ภายในออรเ์ดอรน์ัน้
 แสดงการใช ้route hierarchy และ parameters

ผลการรนั (curl)

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 14

curl http://localhost:3000/orders
Orders list

curl http://localhost:3000/orders/45
Order ID: 45

curl http://localhost:3000/orders/45/items
Items in Order ID: 45

ตวัอย่างแนวประยกุต์ 3 โปรแกรม

ตวัอย่าง 4: User API พร้อม CRUD Operation
โครงสร้างโปรเจกต์
app-advanced-1/
├── index.js
└── routes/
 └── users.js
โค้ด routes/users.js
const express = require('express');
const router = express.Router();

let users = [
 { id: 1, name: 'Alice' },
 { id: 2, name: 'Bob' },
];

// อ่านผูใ้ชท้ัง้หมด
router.get('/', (req, res) => {
 res.json(users);
});

// อ่านผูใ้ชต้าม id
router.get('/:id', (req, res) => {
 const id = parseInt(req.params.id);

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 15

 const user = users.find(u => u.id === id);
 if (!user) return res.status(404).json({ error: 'User not found' });
 res.json(user);
});

// สรา้งผูใ้ชใ้หม่
router.post('/', express.json(), (req, res) => {
 const { name } = req.body;
 if (!name) return res.status(400).json({ error: 'Name is required' });
 const newUser = { id: users.length + 1, name };
 users.push(newUser);
 res.status(201).json(newUser);
});

// แกไ้ขผูใ้ช ้
router.put('/:id', express.json(), (req, res) => {
 const id = parseInt(req.params.id);
 const { name } = req.body;
 const userIndex = users.findIndex(u => u.id === id);
 if (userIndex === -1) return res.status(404).json({ error: 'User not found' });
 users[userIndex].name = name || users[userIndex].name;
 res.json(users[userIndex]);
});

// ลบผูใ้ช ้
router.delete('/:id', (req, res) => {
 const id = parseInt(req.params.id);
 users = users.filter(u => u.id !== id);
 res.status(204).send();
});

module.exports = router;
โค้ด index.js
const express = require('express');

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 16

const app = express();

const usersRouter = require('./routes/users');

app.use('/users', usersRouter);

app.listen(3000, () => {
 console.log('User API running on port 3000');
});

ค าอธิบาย

 ใช ้router แยกไฟลจ์ดัการ User API แบบ CRUD
 ใช ้express.json() middleware ส าหรบัอ่าน JSON body ใน POST, PUT
 ตรวจสอบ error และส่ง status code ตามมาตรฐาน HTTP

ผลการรนั (curl)
curl -i http://localhost:3000/users
200 OK [{"id":1,"name":"Alice"},{"id":2,"name":"Bob"}]

curl -i http://localhost:3000/users/1
200 OK {"id":1,"name":"Alice"}

curl -i -X POST http://localhost:3000/users -H "Content-Type: application/json" -d
'{"name":"Charlie"}'
201 Created {"id":3,"name":"Charlie"}

curl -i -X PUT http://localhost:3000/users/3 -H "Content-Type: application/json" -d
'{"name":"Charles"}'
200 OK {"id":3,"name":"Charles"}

curl -i -X DELETE http://localhost:3000/users/3
204 No Content

ตวัอย่าง 5: Blog API แยก router พร้อม Middleware ตรวจสอบ Authentication (ง่ายๆ)

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Intermediate หนา้ 17

โครงสร้างโปรเจกต์
app-advanced-2/
├── index.js
└── routes/
 └── posts.js
โค้ด routes/posts.js
const express = require('express');
const router = express.Router();

let posts = [
 { id: 1, title: 'First Post', content: 'Hello World' },
];

// middleware ตรวจสอบ token งา่ยๆ
router.use((req, res, next) => {
 const token = req.headers['x-auth-token'];
 if (!token || token !== 'secret-token') {
 return res.status(401).json({ error: 'Unauthorized' });
 }
 next();
});

router.get('/', (req, res) => {
 res.json(posts);
});

router.post('/', express.json(), (req, res) => {
 const { title, content } = req.body;
 if (!title || !content) {
 return res.status(400).json({ error: 'Title and content required' });
 }
 const newPost = { id: posts.length + 1, title, content };
 posts.push(newPost);
 res.status(201).json(newPost);

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 5

