

ค ำน ำ

ในยคุทีโ่ลกอนิเทอรเ์น็ตขบัเคลื่อนดว้ยขอ้มลูและการเชื่อมต่อแบบเรยีลไทม ์การพฒันาแอปพลเิคชนัฝัง่
เซริฟ์เวอรท์ีม่ปีระสทิธภิาพ รวดเรว็ และยดืหยุ่น จงึกลายเป็นปัจจยัส าคญัของการสรา้งบรกิารออนไลน์
Express.js หนึ่งในเฟรมเวริก์ยอดนิยมของ Node.js ไดร้บัความสนใจจากนกัพฒันาทัว่โลกดว้ยจดุเด่น
ดา้นความเรยีบง่าย ใชง้านไมซ่บัซอ้น แต่สามารถน าไปประยกุตใ์ชไ้ดก้บัแอปพลเิคชนัทัง้ขนาดเลก็และ
ใหญ่ไดอ้ยา่งทรงพลงั หนงัสอืเล่มนี้จงึถูกจดัท าขึน้มาเพื่อเป็นแหล่งเรยีนรูท้ีเ่ป็นระบบ ครอบคลุมตัง้แต่
พืน้ฐาน จนสามารถต่อยอดสู่การพฒันาเวบ็เซอรว์สิแบบมอือาชพีไดอ้ย่างมัน่ใจ

Express.js Web Programming: Beginner เขยีนขึน้โดยมวีตัถุประสงคห์ลกัเพื่อปพูืน้ฐานให้
ผูอ่้านเขา้ใจการท างานของ Express.js ตัง้แต่ระดบัเริม่ตน้ โดยไม่จ าเป็นตอ้งมปีระสบการณ์มาก่อนใน
ดา้นการพฒันา Node.js หรอืการเขยีน REST API มาก่อน โดยเนื้อหาภายในถูกเรยีบเรยีงอยา่งเป็น
ล าดบัขัน้ ใหผู้อ่้านสามารถฝึกฝนไดด้ว้ยตนเองผ่านการเขยีนโคด้จรงิในแต่ละบท พรอ้มทัง้มคี าอธบิายที่
ชดัเจน แยกหวัขอ้ยอ่ยอยา่งเหมาะสมส าหรบัผูอ่้านทีต่อ้งการเรยีนรูเ้ฉพาะจดุ

ในบทที ่1 ผูอ่้านจะไดร้บัการแนะน าใหรู้จ้กักบั Express.js ตัง้แต่ความหมาย จดุประสงคข์อง
การใชง้าน รวมถงึประวตัคิวามเป็นมาของเฟรมเวริก์นี้ เพื่อสรา้งความเขา้ใจเบือ้งตน้ ก่อนเขา้สู่การ
ตดิตัง้ Node.js และ npm ซึง่เป็นเครือ่งมอืส าคญัส าหรบัการพฒันา JavaScript ฝัง่เซริฟ์เวอร ์จากนัน้จะ
มกีารแนะน าการสรา้งโปรเจกต ์Express.js แรก พรอ้มอธบิายโครงสรา้งพืน้ฐานของโปรเจกตแ์ละการ
เขยีนเซริฟ์เวอรเ์บือ้งตน้ดว้ย Express

ในบทที ่2 จะเป็นการเจาะลกึเรือ่งการ Routing ซึง่เป็นหวัใจส าคญัของเวบ็เซริฟ์เวอร ์โดย
อธบิายตัง้แต่รปูแบบ HTTP เมธอด (GET, POST, PUT, DELETE) การใช ้Route Parameters และ
Query Parameters การตดิตัง้ curl เพื่อทดสอบ API การจดัการค าตอบทีส่่งกลบั (Response) และ
เทคนิคการจดัการเสน้ทางแบบละเอยีด โดยมตีวัอยา่งทีช่่วยใหเ้ขา้ใจและสามารถทดลองใชง้านไดจ้รงิ

บทที ่3 พาผูอ่้านเขา้สู่โลกของ Middleware ซึง่เป็นองคป์ระกอบส าคญัทีอ่ยูเ่บือ้งหลงั
ความสามารถในการควบคุมการไหลของค าขอและค าตอบใน Express.js โดยอธบิายแนวคดิของ
Middleware การใชง้านแบบงา่ย รวมถงึ Middleware พืน้ฐานอยา่ง Logger และ Static File Handler ที่
ใชใ้หบ้รกิาร HTML, CSS และรปูภาพ ผูอ่้านจะไดเ้หน็ภาพการประยกุต ์Middleware เพื่อจดัการการ
ไหลของขอ้มลูภายในระบบใหเ้ป็นระบบระเบยีบ

ส าหรบับทที ่4 ผูอ่้านจะไดเ้รยีนรูก้ารจดัการกบั Request และ Response อยา่งละเอยีด โดย
เน้นการดงึขอ้มลูจากค าขอ (Request) ในรปูแบบต่าง ๆ ไดแ้ก่ Body, Query, และ Params พรอ้มทัง้
การสรา้งค าตอบทีเ่หมาะสมผ่านเมธอดของ Express เช่น res.send(), res.json(), และ res.status()
โดยอธบิายความแตกต่างและสถานการณ์ทีค่วรใชอ้ยา่งชดัเจน เพื่อใหส้ามารถสรา้ง API ทีถู่กตอ้งตาม
มาตรฐาน และใชง้านรว่มกบั Frontend หรอื Client ภายนอกไดอ้ยา่งราบรื่น

เนื้อหาทัง้หมดในเล่มนี้ไมเ่พยีงแต่มุง่เน้นทีค่วามรูเ้ชงิเทคนิคเท่านัน้ แต่ยงัมุง่หวงัใหผู้อ่้านเขา้ใจ
บรบิทในการน า Express.js ไปใชจ้รงิ ทัง้ในดา้นการออกแบบระบบ การทดสอบ และการบ ารุงรกัษาใน

ระยะยาว โดยจดัวางเนื้อหาใหง้า่ยต่อการเรยีนรู ้และเหมาะส าหรบัทัง้นกัศกึษา ผูเ้ริ่มตน้เขยีนโคด้ และ
นกัพฒันาทีต่อ้งการเสรมิความเขา้ใจดา้นเซริฟ์เวอรด์ว้ย JavaScript

หวงัเป็นอยา่งยิง่ว่าหนงัสอื Express.js Web Programming: Beginner เล่มนี้ จะช่วยเสรมิสรา้ง
ความรู ้พฒันาทกัษะ และเป็นแหล่งอา้งองิส าคญัส าหรบัผูอ่้านทุกคนทีต่อ้งการเริม่ต้นอยา่งมัน่คงกบั
Express.js และต่อยอดสู่การสรา้งแอปพลเิคชนัทีแ่ขง็แกรง่ในอนาคต.

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่1 แนะน า Express.js และการตดิตัง้ (Introduction to Express.js and Installation) 1

 แนะน า Express.js และการตดิตัง้
 Express.js คอือะไร?
 ประวตักิารพฒันา Express.js
 การตดิตัง้ Node.js และ npm (Node Package Manager)
 สรา้งโปรเจกต ์Express.js แรก
 โครงสรา้งโปรเจกต ์Express.js พืน้ฐาน
สรา้ง Server ตวัแรกดว้ย Express.js

บทที ่2 Routing พืน้ฐาน (Basic Routing) .. 25
 Routing พืน้ฐานใน Express.js
 Routing พืน้ฐานใน Express.js เชงิลกึ
 การก าหนดเสน้ทาง HTTP (GET, POST, PUT, DELETE) ใน Express.js
 การตดิตัง้ curl แบบละเอยีด
 ค าสัง่ตดิตัง้ Dependencies
 การใชง้าน Route Parameters และ Query Parameters ใน Express.js
 การตอบกลบั (Response) แบบพืน้ฐานใน Express.js

บทที ่3 Middleware เบือ้งตน้ (Basic Middleware) ... 78
 Middleware เบือ้งตน้ใน Express.js
 รายละเอยีดเชงิลกึ: Middleware ใน Express.js
 Middleware คอือะไร? (ในบรบิทของ Express.js)
 การใช ้Middleware ใน Express
 การจดัการ Static Files (HTML, CSS, รปูภาพ) ใน Express.js
 โปรแกรมบรูณาการ Express.js

บทที ่4 การจดัการ Request และ Response (Request and Response Management) ... 125
 การจดัการ Request และ Response
 การจดัการ Request และ Response (เชงิลกึ)

 การอ่านขอ้มลูจาก Request (Body, Query, Params) ใน Express.js
 การส่ง Response (status codes, headers, JSON)
 การใชง้าน res.send(), res.json(), และ res.status() ใน Express.js

บรรณานุกรม ... 168

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 1

บทท่ี 1
แนะน า Express.js และการติดตัง้

(Introduction to Express.js and Installation)

เน้ือหา

 แนะน า Express.js และการตดิตัง้
 Express.js คอือะไร?
 ประวตักิารพฒันา Express.js
 การตดิตัง้ Node.js และ npm (Node Package Manager)
 สรา้งโปรเจกต ์Express.js แรก
 โครงสรา้งโปรเจกต ์Express.js พืน้ฐาน
 สรา้ง Server ตวัแรกดว้ย Express.js

บทน าบทท่ี 1: แนะน า Express.js และการติดตัง้
ในยคุทีแ่อปพลเิคชนัเวบ็กลายเป็นหวัใจส าคญัของธุรกจิและการใหบ้รกิารออนไลน์ การพฒันาเซริฟ์เวอร์
ฝัง่แบก็เอนดอ์ย่างมปีระสทิธภิาพจงึเป็นสิง่จ าเป็น Express.js จงึถอืก าเนิดขึน้ในฐานะเฟรมเวริก์ทีเ่รยีบ
ง่ายแต่ทรงพลงัส าหรบั Node.js ทีช่่วยใหน้ักพฒันาสามารถสรา้งเวบ็เซริฟ์เวอรแ์ละ RESTful API ได้
อยา่งรวดเรว็ โดยไมต่อ้งเขยีนโคด้ทีซ่บัซอ้นหรอืจดัการกบัรายละเอยีดระดบัต ่ามากเกนิไป

Express.js คอืเฟรมเวริก์แบบ Minimal และ Flexible ส าหรบั Node.js ทีอ่อกแบบมาเพื่อช่วย
ให้การพฒันาเวบ็แอปพลเิคชนัและ API เป็นเรื่องง่ายขึน้ ด้วยรูปแบบการใชง้านที่ชดัเจนและมรีะบบ
middleware ทีย่ดืหยุ่น ท าให ้Express เป็นทีน่ิยมในหมู่นักพฒันา JavaScript ทัว่โลก และกลายเป็น
แกนหลกัของเทคโนโลยแีบก็เอนดใ์นหลายโปรเจกตข์นาดเลก็ไปจนถงึระดบัองคก์ร

ก่อนทีจ่ะเริม่ต้นใช้งาน Express.js จ าเป็นต้องตดิตัง้ Node.js และ npm (Node Package
Manager) ให้พรอ้ม เนื่องจาก Express ท างานอยู่บนแพลตฟอรม์ Node.js ซึ่งเป็นรนัไทมท์ี่ช่วยให้
สามารถเขยีน JavaScript บนฝัง่เซริฟ์เวอรไ์ด ้การตดิตัง้ Node.js และ npm เป็นขัน้ตอนแรกทีส่ าคญั
ซึง่จะเปิดประตูไปสู่การจดัการแพก็เกจและการพฒันาเวบ็แอปพลเิคชนัอยา่งเตม็รปูแบบ

เมื่อเครื่องมอืพื้นฐานพรอ้มแล้ว ผู้อ่านจะไดเ้ริม่ต้นสรา้งโปรเจกต์ Express.js แรกดว้ยตนเอง
โดยสามารถเลอืกใชค้ าสัง่ npm init ส าหรบัสรา้งโครงการดว้ยตนเองทลีะขัน้ตอน หรอืใช้ express-
generator ส าหรบัสรา้งโครงสรา้งโปรเจกต์อย่างรวดเรว็ ซึง่จะช่วยลดเวลาการเตรยีมโครงสรา้งและเพิม่
เวลาในการพฒันาโคด้ทีส่ าคญัแทน

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 2

ภายหลงัจากสร้างโปรเจกต์แล้ว ผู้อ่านจะได้เรยีนรู้เกี่ยวกบัโครงสร้างของโปรเจกต์ Express
เบือ้งต้น เช่น ไฟล์ app.js หรอื index.js ทีเ่ป็นจุดเริม่ต้นของแอปพลเิคชนั โฟลเดอรส์ าหรบั route,
view, public และการแยกโคด้ใหเ้ป็นระบบ ซึง่เป็นแนวทางปฏบิตัทิีด่สี าหรบัการพฒันาโคด้ทีส่ามารถ
ดแูลและขยายไดใ้นระยะยาว

จากนัน้ผูอ่้านจะไดล้งมอืเขยีน Server ตวัแรกดว้ย Express ดว้ยการก าหนดพอรต์ เซต route
แรก และลองรนัแอปพลเิคชนัในเบราวเ์ซอร ์ซึง่จะท าใหเ้ขา้ใจกลไกการท างานของ Express อย่างเป็น
รปูธรรม ทัง้การรบัค าขอ (request) และการส่งกลบัขอ้มลู (response) สู่ผูใ้ช ้

บทแรกนี้จงึเป็นจุดเริม่ต้นทีส่ าคญัของการท าความเขา้ใจ Express.js ตัง้แต่พืน้ฐาน โดยใหท้ัง้
แนวคดิ ภาพรวม และลงมอืปฏบิตัจิรงิ ผูอ่้านจะสามารถตดิตัง้เครือ่งมอืทีจ่ าเป็น สรา้งเซริฟ์เวอรเ์บือ้งต้น
และเตรยีมความพรอ้มส าหรบัการเรยีนรูฟี้เจอรข์ ัน้สงูในบทถดั ๆ ไปอยา่งมัน่ใจ.

แนะน า Express.js และการติดตัง้

1. Express.js คืออะไร? ท าไมต้องใช้?
Express.js คอืเวบ็เฟรมเวริก์ของ Node.js ทีช่่วยใหก้ารสรา้งเวบ็เซริฟ์เวอรห์รอื API งา่ยและเรว็ขึน้
มาก โดย Express.js จะช่วยจดัการเรือ่ง routing, middleware, request/response handling ใหเ้รา
เรยีบง่ายและยดืหยุ่น
ท าไมต้องใช้ Express.js?

 เบาและเรว็ — ไมไ่ดบ้งัคบัโครงสรา้งหรอืฟีเจอรม์ากเกนิไป
 ยืดหยุ่น — เราสามารถเลอืกใช ้middleware หรอืฟีเจอรเ์สรมิต่าง ๆ ไดต้ามตอ้งการ
 ชุมชนขนาดใหญ่ — มแีพก็เกจและเครือ่งมอืเสรมิมากมาย
 เหมาะกบัการสร้าง RESTful API และเวบ็แอป
 ท างานร่วมกบั Node.js ได้ดี — ใช ้JavaScript ทัง้ฝัง่เซริฟ์เวอรแ์ละไคลเอนต์

2. การติดตัง้ Node.js และ npm
Express.js รนับน Node.js ดงันัน้คุณตอ้งตดิตัง้ Node.js ก่อน
วิธีติดตัง้ Node.js

1. เขา้เวบ็ https://nodejs.org
2. ดาวน์โหลดตวัตดิตัง้ (LTS version แนะน าส าหรบัผูเ้ริม่ตน้)
3. ตดิตัง้ตามขัน้ตอน (ตดิตัง้ npm มาใหด้ว้ยอตัโนมตั)ิ

ตรวจสอบการติดตัง้
เปิด Terminal หรอื Command Prompt แลว้พมิพค์ าสัง่
node -v

https://nodejs.org/

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 3

ถา้แสดงเวอรช์นั เช่น v18.15.0 แปลว่าตดิตัง้ส าเรจ็
npm -v
แสดงเวอรช์นั npm (ตวัจดัการแพก็เกจของ Node.js)

3. สร้างโปรเจกต ์Express.js แรก
ขัน้ตอนสร้างโปรเจกต์

1. สรา้งโฟลเดอรโ์ปรเจกตใ์หม่
2. mkdir my-express-app
3. cd my-express-app
4. สัง่สรา้งไฟล ์package.json เพื่อจดัการ dependencies
5. npm init -y

จะไดไ้ฟล ์package.json แบบพืน้ฐานทีบ่อกชื่อโปรเจกตแ์ละรายละเอยีดอื่น ๆ
6. ตดิตัง้ Express
7. npm install express

4. โครงสร้างโปรเจกต ์Express พื้นฐาน
หลงัตดิตัง้และสรา้งโปรเจกตแ์ลว้ โครงสรา้งจะประมาณนี้
my-express-app/
├── node_modules/ # โฟลเดอรเ์กบ็แพก็เกจ npm ทีต่ดิตัง้
├── package.json # ไฟลก์ าหนดรายละเอยีดโปรเจกตแ์ละ dependencies
├── package-lock.json # ไฟลล์อ็คเวอรช์นัของแพก็เกจ
└── index.js # ไฟลเ์ริม่ตน้เขยีนโคด้ Express Server

 node_modules จะถูกสรา้งเมือ่เรารนั npm install
 index.js คอืไฟลท์ีเ่ราจะเขยีนโคด้เซริฟ์เวอร ์(ชื่อไฟลต์ัง้เองได)้
 package.json เป็น metadata และ dependency list ของโปรเจกต์

5. สร้าง Server ตวัแรกด้วย Express
เปิดไฟล ์index.js แลว้เขยีนโคด้ดงันี้
// น าเขา้ Express module
const express = require('express');

// สรา้งแอป Express
const app = express();

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 4

// ก าหนดพอรต์ทีเ่ซริฟ์เวอรจ์ะฟัง (ใช ้3000 เป็นตวัอยา่ง)
const PORT = 3000;

// ก าหนด route พืน้ฐาน (root route)
app.get('/', (req, res) => {
 res.send('Hello, Express!');
});

// สัง่ใหเ้ซริฟ์เวอรเ์ริม่ฟังค าขอบนพอรต์ทีก่ าหนด
app.listen(PORT, () => {
 console.log(`Server is running at http://localhost:${PORT}`);
});
อธิบายโค้ด

 require('express') คอืการน า Express เขา้มาใชง้าน
 express() สรา้งตวัแอป Express
 app.get('/', ...) ก าหนด route HTTP GET ทีเ่สน้ทาง /
 res.send() ส่งขอ้ความตอบกลบั client
 app.listen(PORT, ...) สัง่ใหแ้อปเริม่ฟังพอรต์ 3000 และแสดงขอ้ความเมือ่พรอ้ม

วิธีรนั Server
ใน Terminal ใหร้นัค าสัง่
node index.js
ถา้ทุกอยา่งถูกตอ้ง จะเหน็ขอ้ความ
Server is running at http://localhost:3000
เปิดเวบ็เบราวเ์ซอรแ์ลว้ไปที ่URL: http://localhost:3000
จะเหน็ขอ้ความ
Hello, Express!
แปลว่าเราไดส้รา้ง Express Server ตวัแรกส าเรจ็แลว้!

แนะน า Express.js และการติดตัง้ (เชิงลึก)

1. Express.js คืออะไร? ท าไมต้องใช้?
พื้นฐานของ Express.js

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 5

 Express.js คอื Web Framework ทีส่รา้งบน Node.js ซึง่ช่วยจดัการการรบั-ส่ง HTTP
requests, การก าหนด routing, middleware และการตอบสนอง (response) ใหเ้ป็นเรือ่งงา่ย

 Node.js เป็น environment ส าหรบัรนั JavaScript ฝัง่ server แบบ event-driven และ non-
blocking I/O ซึง่ท าให ้Express.js สามารถรองรบัการท างานพรอ้มกนัไดจ้ านวนมากโดย
ประสทิธภิาพสงู

เหตผุลท่ี Express.js โดดเด่น
 Minimalist & Unopinionated: Express ไมบ่งัคบัโครงสรา้งหรอื pattern ใด ๆ เราจงึเลอืก

วธิกีารจดัการแอปเองไดต้ามตอ้งการ
 Middleware-based architecture: ฟีเจอรส์่วนใหญ่ของ Express เกดิจาก middleware ทีเ่รา

เลอืกเพิม่เขา้ไป ซึง่ท าใหป้รบัแต่งไดย้ดืหยุ่น
 Routing system: จดัการเสน้ทาง URL ไดง้า่ยและซบัซอ้นในระดบัสงู
 Extensive ecosystem: ม ีmiddleware และ plugins จากชุมชนมากมาย เช่น body-parser,

cookie-parser, multer, passport
 JavaScript Full Stack: ใชภ้าษาเดยีวกนัทัง้ client และ server ท าใหท้มีพฒันาสามารถ

ประสานงานงา่ย
การเปรียบเทียบกบั Framework อ่ืน

 เมือ่เทยีบกบัเฟรมเวริก์แบบ monolithic เช่น Ruby on Rails หรอื Django, Express จะเบาและ
ยดืหยุ่นกว่า แต่ตอ้งเขยีนโคด้จดัการเองมากกว่า

 เหมาะกบั microservices และ API backend ทีต่อ้งการความรวดเรว็และควบคุมไดส้งู

2. การติดตัง้ Node.js และ npm (เชิงลึก)
Node.js คืออะไร?

 Node.js คอื runtime ทีร่นั JavaScript บน server โดยใช ้V8 engine ของ Chrome
 เน้นการประมวลผลแบบ non-blocking event-driven ซึง่เหมาะกบั I/O-intensive application

เช่นเวบ็เซริฟ์เวอร ์
npm คืออะไร?

 npm ยอ่มาจาก Node Package Manager
 เป็นเครือ่งมอืส าหรบัจดัการ package (library/module) ของ Node.js
 ใชต้ดิตัง้, อปัเดต, ลบ dependencies ในโปรเจกต์

แนะน าการติดตัง้
 ควรเลอืกเวอรช์นั LTS (Long Term Support) ส าหรบัความเสถยีร
 ตดิตัง้เสรจ็แลว้ แนะน าใหท้ดสอบ node -v และ npm -v ว่าระบบรบัรูค้ าสัง่เหล่านี้

การตัง้ค่า npm
 บางครัง้ตอ้งตัง้ proxy หรอื registry ตามเครอืข่ายทีใ่ชง้าน

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 6

 ค าสัง่พืน้ฐานเช่น npm install <package>, npm uninstall <package>, npm update

3. สร้างโปรเจกต ์Express.js แรก (เชิงลึก)
npm init ท าอะไร?

 ค าสัง่ npm init จะสรา้งไฟล ์package.json ซึง่เป็น metadata ของโปรเจกต์
 ไฟลน์ี้เกบ็ขอ้มลูชื่อโปรเจกต์, เวอรช์นั, รายการ dependencies, สครปิตท์ีร่นัได้
 ใช ้-y เพื่อขา้มการตอบค าถาม และสรา้งไฟลด์ว้ยค่าเริม่ตน้

การติดตัง้ Express
 npm install express จะเพิม่ express ลงใน node_modules
 บนัทกึเวอรช์นัลงใน package.json โดยอตัโนมตั ิ(under dependencies)
 package-lock.json จะลอ็คเวอรช์นั dependencies ใหแ้น่นอน

ท าไมต้องใช้ package.json และ node_modules
 ช่วยใหจ้ดัการ dependencies ไดเ้ป็นระบบ
 ทมีพฒันาสามารถแชรโ์คด้และตดิตัง้ dependencies เดยีวกนัไดง้า่ยแค่รนั npm install

4. โครงสร้างโปรเจกต ์Express พื้นฐาน (เชิงลึก)
ไฟลส์ าคญัและโฟลเดอร ์

 node_modules/ — โฟลเดอรท์ีเ่กบ็แพก็เกจทัง้หมดทีต่ดิตัง้ (ไมค่วรใส่ใน Git)
 package.json — เป็นหวัใจของโปรเจกตท์ีร่ะบุขอ้มลูและ dependencies
 package-lock.json — ลอ็คเวอรช์นัของ dependencies ยอ่ยทัง้หมด เพื่อความแม่นย าในการ

ตดิตัง้ซ ้า
 index.js — จดุเริม่ตน้ของโปรเจกต ์(ตัง้ชื่อเองได)้

ค าแนะน าการจดัโครงสร้างโปรเจกต์
 ส าหรบัโปรเจกตเ์ลก็ใชไ้ฟลเ์ดยีวกไ็ด ้แต่เมือ่โปรเจกตโ์ตควรแยกโฟลเดอร ์เช่น

o /routes ส าหรบั route handlers
o /controllers ส าหรบั logic
o /models ส าหรบั data models
o /middlewares ส าหรบั middleware

5. สร้าง Server ตวัแรกด้วย Express (เชิงลึก)
วิธีการท างานของโค้ด
const express = require('express');
const app = express();
const PORT = 3000;

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 7

 require('express') โหลดโมดลู express จาก node_modules
 express() สรา้ง instance ของแอปพลเิคชนั Express ซึง่เป็นฟังกช์นัหลกัส าหรบัจดัการ

request และ response
app.get('/', (req, res) => {
 res.send('Hello, Express!');
});

 app.get() ก าหนด HTTP method GET และเสน้ทาง /
 เมือ่ผูใ้ชเ้ขา้หน้าเวบ็ root (http://localhost:3000/) ฟังก์ชนั callback จะถูกเรยีก
 req คอื Request object ทีเ่กบ็ขอ้มลู request เช่น headers, params, body
 res คอื Response object ทีใ่ชส้่งขอ้มลูกลบั client
 res.send() ส่งขอ้ความ plain text กลบัไป

app.listen(PORT, () => {
 console.log(`Server is running at http://localhost:${PORT}`);
});

 app.listen() เปิดพอรต์ใหเ้ซริฟ์เวอรร์บัค าขอได้
 callback ทีส่่งเขา้ไปเรยีกเมื่อเซริฟ์เวอรเ์ริม่ท างาน

เพ่ิมเติม
 Express ใชร้ะบบ Event-driven และ Asynchronous
 เมือ่ม ีHTTP request เขา้มา Express จะจบั route ทีต่รงและเรยีก middleware/handler

ตามล าดบั
 res.send() จะส่ง response พรอ้ม header และปิด connection

Bonus: ส่ิงท่ีควรรู้ในขัน้แรก

 พอรต์ 3000 เป็นพอรต์มาตรฐานส าหรบัการพฒันา แต่สามารถเปลีย่นไดต้ามตอ้งการ
 การใช ้nodemon (ตดิตัง้ดว้ย npm install -g nodemon) จะช่วย restart server อตัโนมตัเิมือ่

โคด้เปลีย่น
 Express รองรบั HTTP method หลายแบบ เช่น app.post(), app.put(), app.delete()
 Express รองรบัการก าหนดหลาย route และ chain middleware ได ้

Express.js คืออะไร?
Express.js คอืเวบ็เฟรมเวริก์ (Web Framework) ส าหรบั Node.js ทีช่่วยใหน้กัพฒันาสรา้งเวบ็
เซริฟ์เวอรแ์ละ API ไดอ้ยา่งรวดเรว็และงา่ยดาย
มนัเป็นไลบรารทีีใ่หฟี้เจอรพ์ืน้ฐานในการจดัการ HTTP request/response, routing, middleware และ
การจดัการโครงสรา้งแอปทีย่ดืหยุ่น

http://localhost:3000/

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 8

จดุเด่นของ Express.js
 Minimal & Unopinionated

Express ออกแบบใหม้ขีนาดเลก็และไมบ่งัคบัวธิกีารพฒันา (unopinionated) ท าใหคุ้ณเลอืก
ออกแบบสถาปัตยกรรมของแอปเองได ้

 Middleware-based architecture
ทุกอยา่งใน Express คอื “Middleware” ซึง่เป็นฟังกช์นัทีป่ระมวลผล HTTP request/response
โดยเรยีงล าดบักนัไป (pipeline)

 Routing system
Express มรีะบบ routing ทีง่า่ยและยดืหยุ่น ช่วยใหก้ าหนดเสน้ทาง URL เพื่อจดัการค าขอต่าง
ๆ ไดส้ะดวก

 Extensive ecosystem
มแีพก็เกจเสรมิ (middleware) มากมายจากชุมชน เช่น body-parser, cookie-parser, multer,
passport

 ใช้ภาษา JavaScript ทัง้ฝัง่ Server และ Client
ท าใหท้มีพฒันาสามารถใชภ้าษาเดยีวกนั ลดความซบัซอ้นในการพฒันาและเรยีนรู้

ท าไมต้องใช้ Express.js?
1. ลดความซบัซ้อนของ Node.js HTTP Module

 Node.js มโีมดลู http ใหใ้ชง้านโดยตรง แต่ค่อนขา้งต ่าระดบั (low-level) ตอ้งเขยีนโคด้จดัการ
routing, parsing request, ส่ง response ดว้ยตวัเองทัง้หมด

 Express ช่วยห่อหุม้และเพิม่ API ทีใ่ชง้านงา่ยกว่า เช่น app.get(), app.post() เพื่อจดัการ
route ไดร้วดเรว็

2. ยืดหยุ่นและขยายได้ง่าย
 Express ใหเ้ราสามารถใส่ middleware เพื่อประมวลผล request/response ก่อนส่งถงึ handler

ได ้เช่น ตรวจสอบสทิธิ,์ logging, แปลงขอ้มลู
 คุณสามารถเลอืกเพิม่ฟีเจอรท์ีต่อ้งการเท่านัน้ ท าใหแ้อปไมห่นกัและง่ายต่อการดแูลรกัษา

3. รวดเรว็และประสิทธิภาพดี
 Express รนับน Node.js ซึง่ใช ้event-driven, non-blocking I/O ท าใหส้ามารถจดัการค าขอ

จ านวนมากพรอ้มกนัไดด้ ี
 เหมาะกบัการสรา้ง RESTful API, เวบ็แอปแบบ real-time, หรอื microservices

4. ชุมชนและเอกสารดี
 Express เป็นหน่ึงในเวบ็เฟรมเวริก์ยอดนิยมส าหรบั Node.js มเีอกสารดแีละชุมชนใหญ่
 มตีวัอยา่ง, บทความ, และ middleware เสรมิมากมายใหเ้ลอืกใช ้ช่วยลดเวลาพฒันา

5. สร้างสถาปัตยกรรมโมเดิรน์ได้ง่าย

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 9

 รองรบัการท างานแบบ MVC, microservices, และ Server-Side Rendering
 ใชง้านรว่มกบั template engine เช่น Pug, EJS ไดอ้ยา่งราบรืน่

สรปุสัน้ ๆ

ข้อดีของ Express.js ค าอธิบาย

ง่ายต่อการเร่ิมต้น API เขา้ใจง่าย ใชโ้คด้ไมเ่ยอะ

ยืดหยุ่นสงู เลอืกใช ้middleware และโครงสรา้งเองได ้

ประสิทธิภาพสงู ใช ้event-driven architecture ของ Node.js

ชุมชนขนาดใหญ่ ม ีmiddleware และเครือ่งมอืมากมาย

ใช้ JavaScript ทัง้ระบบ ท าใหพ้ฒันาและบ ารงุรกัษางา่ย

ประวติัการพฒันา Express.js
เร่ิมต้นและการก าเนิด (2010-2011)

 ปี 2010: Express.js ถูกพฒันาโดย TJ Holowaychuk นกัพฒันาชื่อดงัในวงการ Node.js
 จดุประสงคค์อืสรา้งเวบ็เฟรมเวริก์ทีม่ขีนาดเลก็, ยดืหยุ่น, และใชง้านงา่ยส าหรบั Node.js
 เปิดตวัครัง้แรกบน GitHub ในปี 2010 และไดร้บัความสนใจอย่างรวดเรว็ในวงการ Node.js
 Express.js เป็นส่วนหนึ่งของ "Connect" ซึง่เป็น middleware framework ส าหรบั Node.js

การเติบโตและการพฒันา (2012-2015)
 Express.js ไดก้ลายเป็นเวบ็เฟรมเวริก์ยอดนิยมอนัดบัตน้ ๆ ของ Node.js
 เริม่มกีารเพิม่ฟีเจอร ์routing, middleware management, และ error handling ทีส่มบรูณ์มาก

ขึน้
 มกีารน าไปใชใ้นโปรเจกตโ์อเพ่นซอรส์และแอปจรงิหลายตวั
 ชุมชนผูใ้ชง้านและผูพ้ฒันาเตบิโตขึน้อยา่งรวดเรว็

การเปล่ียนมือสู่ Node.js Foundation / OpenJS Foundation (2015-ปัจจบุนั)
 ปี 2015: Express.js ไดก้ลายเป็นส่วนหนึ่งของ Node.js Foundation เพื่อการดแูลรกัษาและ

พฒันาอยา่งต่อเนื่อง
 ปัจจบุนั Express.js อยูภ่ายใตก้ารดแูลของ OpenJS Foundation ซึง่ดแูลโปรเจกตโ์อเพ่นซอร์

สของ JavaScript หลายตวั
 มกีารปรบัปรงุเวอรช์นัอยา่งต่อเนื่อง เช่น Express 4.x ทีเ่ป็นเวอรช์นัหลกั และ Express 5.x ที่

ก าลงัอยูใ่นขัน้พฒันา (alpha/beta)
 เน้นการปรบัปรงุเรือ่ง Promise support, async/await, และ modularity

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 10

แนวโน้มในอนาคตของ Express.js
 รองรบั ES6+ และ async/await: ปรบัใหเ้ขา้กบัมาตรฐาน JavaScript ใหม ่ๆ ท าใหเ้ขยีนโคด้

งา่ยและชดัเจนขึน้
 โมดลูารม์ากขึ้น: Express จะยดืหยุ่นและแยกส่วนไดม้ากขึน้ เพื่อรองรบั microservices และ

serverless architectures
 การปรบัปรงุประสิทธิภาพและความปลอดภยั: เน้นการท างานทีร่วดเรว็และปลอดภยัตาม

มาตรฐานสมยัใหม่
 บรูณาการกบัเทคโนโลยีใหม่: เช่น GraphQL, WebSockets, และ Cloud-native services
 ชุมชนและ ecosystem เติบโตอย่างต่อเน่ือง: มเีครือ่งมอืและ middleware ใหม ่ๆ เกดิขึน้

เสมอ

องคก์รท่ีใช้งาน Express.js
Express.js เป็นเฟรมเวริก์ยอดนิยมทีถู่กใชโ้ดยองคก์รและบรษิทัชัน้น ามากมายทัว่โลก เช่น

องคก์ร / บริษทั การใช้งาน

IBM ใชใ้นการพฒันาแอปพลเิคชนัและ API หลายตวั

Uber ใชส้ าหรบับางส่วนของ backend API

Accenture พฒันาโซลชูนัและระบบส าหรบัลกูคา้ดว้ย Express

PayPal ใชส้ าหรบัระบบ backend บางส่วน

Netflix ใช ้Express ในการจดัการ API บางตวั

LinkedIn ใช ้Node.js และ Express ในระบบ backend บางส่วน

Walmart ใชส้ าหรบัระบบ backend และ API

Mozilla ใชส้ าหรบับรกิารบางตวัและ API

นอกจากนี้ ยงัมสีตารท์อพัและบรษิทัเทคโนโลยขีนาดกลางและเลก็อกีมากมายทีเ่ลอืกใช ้Express.js
เพราะความง่ายและประสทิธภิาพ

การติดตัง้ Node.js และ npm (Node Package Manager)

1. Node.js คืออะไร?

 Node.js คอื JavaScript runtime ทีใ่ชร้นั JavaScript บนฝัง่ Server
 พฒันาดว้ย V8 JavaScript engine ของ Google Chrome

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 11

 ช่วยใหคุ้ณสรา้งแอปพลเิคชนั server-side ทีม่ปีระสทิธภิาพสงู รองรบัการประมวลผลแบบ
asynchronous และ event-driven

2. npm คืออะไร?

 npm ยอ่มาจาก Node Package Manager
 เป็นเครือ่งมอืจดัการแพก็เกจ (package manager) ของ Node.js
 ใชต้ดิตัง้, อปัเดต, ลบ แพก็เกจหรอืไลบรารต่ีาง ๆ ทีใ่ชใ้นโปรเจกต์
 npm จะถูกตดิตัง้มาอตัโนมตัเิมือ่คุณตดิตัง้ Node.js

3. วิธีติดตัง้ Node.js และ npm
ขัน้ตอนการติดตัง้
A. ส าหรบั Windows และ macOS

1. ไปทีเ่วบ็ไซต์ https://nodejs.org/
2. ดาวน์โหลดตวัตดิตัง้ Node.js

o แนะน าดาวน์โหลด LTS (Long Term Support) เพราะเสถยีรและเหมาะกบัการใชง้าน
ในโปรดกัชนั

o มเีวอรช์นัส าหรบั Windows, macOS, Linux ใหเ้ลอืก
3. รนัไฟลต์ดิตัง้และท าตามขัน้ตอน

o เลอืก “Next” ไปเรือ่ย ๆ
o ติก๊เลอืกใหต้ดิตัง้ npm และตัง้ค่า PATH ใหเ้รยีบรอ้ย

4. ตดิตัง้เสรจ็แลว้เปิด Command Prompt (Windows) หรอื Terminal (macOS/Linux)
B. ส าหรบั Linux

 ใชค้ าสัง่ตดิตัง้ผ่าน package manager ของระบบ เช่น apt, yum หรอืใช ้Node Version
Manager (nvm) ซึง่แนะน าใหใ้ชม้ากกว่า

4. ตรวจสอบการติดตัง้
เปิด Terminal หรอื Command Prompt แลว้พมิพค์ าสัง่ตรวจสอบเวอรช์นั:
node -v
ถา้ตดิตัง้ส าเรจ็ จะเหน็เวอรช์นั Node.js เช่น v18.15.0
npm -v
จะแสดงเวอรช์นั npm เช่น 9.5.1

5. แนะน าการใช้งาน npm เบือ้งต้น

 สรา้งโปรเจกตใ์หมแ่ละสรา้งไฟล ์package.json

https://nodejs.org/

ศูนยห์นงัสือราคานกัเรียน

Express.js Web Programming: Beginner หนา้ 12

npm init
ระบบจะถามขอ้มลูโปรเจกต์ เช่นชื่อ, เวอรช์นั, entry file ฯลฯ
ถา้ตอ้งการใชค้่าเริม่ต้นทัง้หมดใหร้นั
npm init -y

 ตดิตัง้แพก็เกจ เช่น Express
npm install express
ค าสัง่นี้จะตดิตัง้ Express และบนัทกึเวอรช์นัลงใน package.json อตัโนมตั ิ

6. เคลด็ลบัและข้อควรระวงั

 ควรใช ้LTS Version ของ Node.js ในงาน production เพราะเสถยีรกว่าเวอรช์นั Current
 การตดิตัง้แบบ global (เช่น npm install -g nodemon) จะท าใหเ้รยีกใชง้านไดท้ัว่เครือ่ง
 แนะน าใช ้Node Version Manager (nvm) ส าหรบัจดัการเวอรช์นั Node.js หลายเวอรช์นัใน

เครือ่งเดยีวกนั (เหมาะกบันักพฒันาทีต่อ้งสลบัโปรเจกต์)
 อยา่ใส่โฟลเดอร ์node_modules ลงระบบ version control (Git) ใหเ้พิม่ใน .gitignore เสมอ

สร้างโปรเจกต ์Express.js แรก

1. สร้างโฟลเดอรโ์ปรเจกตใ์หม่
เปิด Terminal หรอื Command Prompt แลว้รนัค าสัง่:
mkdir my-express-app
cd my-express-app
ค าอธิบาย

 mkdir สรา้งโฟลเดอรใ์หมช่ื่อ my-express-app
 cd เขา้ไปยงัโฟลเดอรน์ัน้

2. สร้างไฟล ์package.json
เพื่อจดัการ metadata และ dependencies ของโปรเจกต ์ใหร้นัค าสัง่:
npm init -y
ค าอธิบาย

 ค าสัง่นี้จะสรา้งไฟล ์package.json ดว้ยค่าตัง้ตน้ (default)
 ไฟลน์ี้จะบอกชื่อโปรเจกต์, เวอรช์นั, entry point (เช่น index.js), และบนัทกึรายการแพก็เกจที่

ตดิตัง้ในอนาคต

3. ติดตัง้ Express

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 1

