

ค ำน ำ

ในโลกของการพฒันาเวบ็ไซตย์คุใหม ่ความเรว็ในการออกแบบและความสามารถในการสรา้งระบบ UI ที่
มปีระสทิธภิาพ ก าลงักลายเป็นปัจจยัส าคญัทีข่บัเคลื่อนการแข่งขนัทางดจิทิลั Tailwind CSS — หนึ่งใน
CSS Framework ทีเ่ตบิโตเรว็ทีสุ่ดในช่วงไม่กี่ปีทีผ่่านมา — ไดพ้สิูจน์ตวัเองว่าเป็นเครื่องมอืทรงพลงัที่
ตอบโจทยก์ารพฒันาเชงิโมดูลาร ์และสนับสนุนแนวคดิการออกแบบ UI แบบ Atomic อย่างแท้จรงิ
หนังสอื Tailwind CSS Framework: Advance เล่มนี้ จงึถูกเรยีบเรยีงขึน้เพื่อยกระดบัความเขา้ใจจาก
พืน้ฐานสู่การประยกุตใ์ชข้ ัน้สงู ครอบคลุมเทคนิค รปูแบบ และการรวมระบบในระดบัมอือาชพี

หนังสือเล่มนี้ประกอบด้วยเนื้อหาลึกซึ้ง 5 บทหลกั ที่เจาะลกึหวัข้อซบัซ้อนในการใช้งาน
Tailwind CSS ใหเ้กดิประสทิธผิลสูงสุด ไม่ว่าจะเป็นการออกแบบ component ที่น ากลบัมาใชซ้ ้าได ้
(Reusable Component Patterns) การจดัระบบ layout ทีซ่บัซอ้นแบบ responsive การควบคุมอนิเม
ชนัอย่างมชีวีติชวีา ไปจนถงึการสรา้งประสบการณ์แบบ Dark Mode และการรวมเขา้กบั Framework
ต่าง ๆ ได้อย่างราบรื่น ทัง้หมดนี้เรียบเรียงด้วยภาษาวิชาการ อ่านเข้าใจง่าย และสามารถน าไป
ประยกุตใ์ชไ้ดจ้รงิ

บทที ่11 ว่าดว้ยเรื่อง Reusable Component Patterns เป็นหวัใจส าคญัของการพฒันา UI
สมยัใหม่ทีเ่น้นการเขยีน CSS แบบไม่ซ ้าซอ้น (DRY - Don’t Repeat Yourself) โดยผูอ่้านจะไดเ้รยีนรู้
การใช ้@apply อย่างมปีระสทิธภิาพ เทคนิคการสรา้ง custom utility class การผสานโครงสรา้ง BEM
เขา้กบั Tailwind CSS รวมถงึการใช ้SCSS เพื่อจดัการ style อย่างเป็นระบบ สิง่เหล่านี้ช่วยใหก้าร
ออกแบบ UI มคีวามยดืหยุน่และดแูลรกัษาไดง้า่ยขึน้ในระยะยาว

บทที ่12 เจาะลกึ Layout System ขัน้สูง ส าหรบัการจดัวางเนื้อหาและองคป์ระกอบบนหน้า
เวบ็ โดยมกีารสาธติการใชง้าน nested layout ทัง้ในรปูแบบ Flex และ Grid รวมถงึการใชค้ลาสระดบัสูง
เช่น aspect-ratio, min-h-screen, max-w-screen-lg และการใช ้Container Query เพื่อสรา้ง layout ที่
ตอบสนองต่อบรบิทของแต่ละองคป์ระกอบ ซึง่เป็นแนวทางใหมข่อง Responsive Design ทีท่รงพลงั

บทที ่13 ว่าดว้ย Transition & Animation ทีช่่วยเพิม่มติใิหก้บัการน าเสนอ UI ในระดบัมอื
อาชพี ผ่านการควบคุม transition อย่างละเอยีด เช่น transition-all, ease-in-out, duration-300 รวมถงึ
การใชค้ลาส animation ทีม่ใีห ้เช่น animate-bounce, animate-spin, animate-ping ตลอดจนการสรา้ง
keyframe animation แบบ custom ผ่าน tailwind.config.js เพื่อรองรบัการเคลื่อนไหวทีต่รงตามความ
ตอ้งการอยา่งแทจ้รงิ

บทที ่14 กล่าวถงึ Dark Mode ซึง่กลายเป็นฟีเจอรม์าตรฐานของแอปพลเิคชนัสมยัใหม่ หนังสอื
จะอธบิายการตัง้ค่าระบบ dark mode ทัง้แบบ media และแบบ class-based รวมถงึตวัอย่างการสรา้ง
ปุ่ ม toggle แบบอนิเทอรแ์อคทฟี การสลบัระหว่างโหมดต่าง ๆ และการจดัการ state ของโหมดภายใน
component อยา่งเหมาะสม

สุดทา้ยในบทที ่15 ผูอ่้านจะไดเ้รยีนรูก้าร Integration กบั Framework ชัน้น าของยุค เช่น
React, Next.js, Laravel, Svelte และ Astro โดยเน้นวธิกีารตดิตัง้ Tailwind CSS ร่วมกบัระบบ

template engine หรอื component framework เหล่านัน้ พรอ้มเทคนิคการใช้ร่วมกบั component
library อยา่ง Headless UI เพื่อสรา้ง interface ทีย่ดืหยุน่และขยายไดง้า่ย

การอ่านหนังสอืเล่มนี้ไม่เพยีงช่วยใหผู้อ่้านมคีวามเขา้ใจลกึซึง้ใน Tailwind CSS แต่ยงัปลูกฝัง
แนวคดิเชงิสถาปัตยกรรมที่จ าเป็นต่อการสรา้งระบบ front-end ขนาดใหญ่ ไม่ว่าคุณจะเป็นนักพฒันา
front-end ทีต่้องดูแลแอปพลเิคชนัระดบัองคก์ร นักออกแบบ UI ทีต่้องการ framework ทีต่อบสนองกบั
แนวคดิ design system หรอื full-stack developer ทีต่้องเขยีนโคด้ CSS อย่างมรีะบบ หนังสอืเล่มนี้จะ
เป็นแหล่งความรูช้ ัน้ด ีทีช่่วยเสรมิสรา้งทกัษะและเพิม่พูนมุมมองใหม่ ๆ ในการใช ้Tailwind CSS อย่าง
แทจ้รงิ

หวงัเป็นอย่างยิง่ว่า Tailwind CSS Framework: Advance จะเป็นคู่มอืทีช่่วยเตมิเตม็องคค์วามรู้
ของผู้อ่านในการสรา้งประสบการณ์ผู้ใชอ้นัยอดเยีย่มบนเวบ็ยุคใหม่ ดว้ยพลงัของ Utility-first CSS ที่
ผสานแนวคดิ component-driven design อยา่งลงตวั

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่11 Reusable Component Patterns (Reusable Component Patterns) 1

 Reusable Component Patterns
 Reusable Component Patterns (รายละเอยีดเชงิลกึ)
 การใช ้@apply ในไฟล ์CSS
 การสรา้ง Custom Utility Class ใน Tailwind CSS
 การใชโ้ครงสรา้ง BEM (Block Element Modifier) รว่มกบั Tailwind CSS
การใช ้Preprocessor เช่น SCSS รว่มกบั Tailwind CSS

บทที ่12 Layout System ขัน้สงู (Advanced Layout System) .. 77
 Layout System ขัน้สงู (Advanced Layout System)
 Layout System ขัน้สงู — รายละเอยีดเชงิลกึ
 Layout หลายคอลมัน์แบบ Responsive ดว้ย Tailwind CSS
 Nested Flex และ Nested Grid ดว้ย Tailwind CSS
 การใช ้aspect-ratio, min-h-screen, และ max-w-screen-lg ใน Tailwind CSS
 CSS Container Query และ Breakpoint ภายใน Component กบั Tailwind CSS

บทที ่13 Transition & Animation (Transition & Animation) .. 148
 Transition & Animation
 Transition & Animation (รายละเอยีดเชงิลกึ)
 transition-all, duration-300, ease-in-out ใน Tailwind CSS
 animate-bounce, animate-spin, animate-ping (Tailwind CSS)
 การสรา้ง Keyframe Animation ใน tailwind.config.js

บทที ่14 Dark Mode (Dark Mode) .. 210
 Dark Mode
 Dark Mode ใน Tailwind CSS
 โหมด media และ class ใน config ของ Tailwind CSS ส าหรบั Dark Mode:
 การใช ้dark:bg-gray-900 และ dark:text-white
 การสรา้ง Toggle ปุ่ มสลบั Dark/Light Mode

 การจดัการ Dark Mode ใน Component
บทที ่15 Integration กบั Framework (Integration and Framework) 267

 Integration กบั Framework
 Integration ของ Tailwind CSS กบั Framework ยอดนิยม
 Create React App (CRA) และ Next.js
 Tailwind CSS + Laravel (Blade Template)
 Tailwind CSS + Svelte / Astro
 การรวม Tailwind CSS กบั Component Library (เช่น Headless UI)

บรรณานุกรม ... 341

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 1

บทท่ี 11
Reusable Component Patterns
(Reusable Component Patterns)

เน้ือหา

 Reusable Component Patterns
 Reusable Component Patterns (รายละเอยีดเชงิลกึ)
 การใช ้@apply ในไฟล ์CSS
 การสรา้ง Custom Utility Class ใน Tailwind CSS
 การใชโ้ครงสรา้ง BEM (Block Element Modifier) รว่มกบั Tailwind CSS
 การใช ้Preprocessor เช่น SCSS รว่มกบั Tailwind CSS

บทน า บทท่ี 11: Reusable Component Patterns
ในโลกของการพฒันาเวบ็ยุคปัจจุบนั ความสามารถในการสรา้งและน ากลบัมาใช้ซ ้า (Reusable) ของ
ส่วนประกอบ UI (User Interface Components) ถอืเป็นปัจจยัส าคญัทีส่่งผลต่อประสทิธภิาพของการ
เขยีนโคด้ ความยดืหยุ่นในการปรบัแต่ง และความสามารถในการบ ารุงรกัษาระบบในระยะยาว บทที ่11
นี้จะพาผูอ่้านเขา้สู่แนวคดิและรปูแบบการพฒันา Reusable Component ดว้ยแนวทางทีส่อดคลอ้งกบั
สถาปัตยกรรมของ Tailwind CSS โดยเน้นการเขยีน CSS อย่างมรีะบบและสามารถน ากลบัมาใชซ้ ้าได้
อยา่งแทจ้รงิ

หวัใจส าคญัของการสรา้ง component ทีน่ ากลบัมาใช้ซ ้าได ้คอืการลดการเขยีนโค้ดที่ซ ้าซ้อน
(Duplication) และเน้นการสรา้งโครงสรา้งโคด้ทีก่ระชบั ชดัเจน และดูแลรกัษาไดง้่าย ดว้ยเหตุนี้ เทคนิค
หนึ่งทีเ่ป็นทีน่ิยมในหมู่นักพฒันา Tailwind CSS คอืการใช้ @apply ซึง่เป็นค าสัง่ใน PostCSS ทีช่่วย
รวมกลุ่ม class utility หลายรายการใหอ้ยู่ในรปูแบบของ class เดยีวทีก่ าหนดเอง ช่วยใหโ้คด้ดูสะอาด
และสื่อความหมายไดช้ดัเจนขึน้

นอกจาก @apply แล้ว แนวทางอกีหนึ่งที่ส าคญัในการสรา้งความเป็นระบบคอืการก าหนด
Custom Utility Class ซึง่เปิดโอกาสใหน้ักพฒันาสรา้ง class ใหม่ทีส่อดคลอ้งกบับรบิทของโปรเจกต ์
โดยการผสมผสาน class พืน้ฐานจาก Tailwind CSS และปรบัแต่งใหเ้หมาะกบัรปูแบบของแบรนดห์รอื
UI ทีต่อ้งการสื่อสาร วธินีี้ท าใหท้มีสามารถแชรแ์ละใช ้component แบบเดยีวกนัไดอ้ย่างมปีระสทิธภิาพ
มากขึน้

อกีหนึ่งหวัขอ้ส าคญัในบทนี้คอืการประยุกต์ใช้แนวทาง BEM (Block Element Modifier)
ร่วมกบั Tailwind CSS แม ้Tailwind จะเน้น utility-first แต่การใชโ้ครงสรา้งของ BEM ร่วมดว้ยจะช่วย

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 2

ใหโ้ครงสรา้ง class มรีะบบแบบล าดบัชัน้ทีช่ดัเจน โดยเฉพาะในระบบขนาดใหญ่ทีม่หีลาย component
ซอ้นกนั การตัง้ชื่อ class ตามรปูแบบ BEM ช่วยลดความสบัสนและเพิม่ความสามารถในการจดัการ
component ไดอ้ยา่งมปีระสทิธภิาพ

นอกจากนัน้ บทนี้ยงักล่าวถงึแนวทางการเขยีน CSS แบบ Component-based โดยเน้น
หลกัการ DRY (Don't Repeat Yourself) ซึง่ส่งผลใหก้ารพฒันา UI มคีวามยัง่ยนื เมื่อ UI component
ใดๆ เปลี่ยนแปลง นักพัฒนาสามารถปรบัที่จุดเดียวและสะท้อนผลได้ในทุกที่ที่ใช้งาน ส่งผลให้ทีม
สามารถท างานรว่มกนัไดด้ขีึน้ และลดเวลาทีใ่ชใ้นการบ ารงุรกัษาโคด้ในอนาคต

เพื่อเสรมิประสทิธภิาพการจดัการ CSS บทนี้ยงัแนะน าการใช้ Preprocessor อย่าง SCSS
ร่วมกบั Tailwind CSS ซึง่เปิดทางใหส้ามารถใช้ mixins, variables, nesting และฟังก์ชนัต่างๆ ที ่
SCSS มใีห ้โดยไม่ละทิง้แนวทาง utility-first ของ Tailwind ทัง้นี้ การใช ้SCSS อย่างเหมาะสมจะช่วย
เพิม่ความยดืหยุน่ในการเขยีนโคด้และขยายความสามารถของระบบ component ใหท้รงพลงัมากยิง่ขึน้

บทที ่11 นี้จงึเหมาะอย่างยิง่ส าหรบันักพฒันาเวบ็ทีต่้องการยกระดบัแนวทางการจดัการ CSS
ให้มคีวามสามารถในการขยายตวั รองรบัการท างานเป็นทมี และปรบัเปลี่ยนได้ง่ายในระยะยาว โดย
อาศยัแนวคดิเชงิระบบ การออกแบบ component อย่างชาญฉลาด และการผสานพลงัของ Tailwind
CSS กบัเครื่องมอืทนัสมยัอย่าง SCSS เพื่อสรา้งระบบทีท่ ัง้ยดืหยุ่นและยัง่ยนืในโลกแห่งการพฒันาเวบ็
ยคุใหม ่

Reusable Component Patterns

� หวัข้อหลกั

1. การใช้ @apply ในไฟล ์CSS
2. สร้าง class แบบ Custom Utility
3. โครงสร้าง BEM + Tailwind
4. แนวทางเขียน component-based CSS แบบ DRY
5. การใช้ Preprocessor เช่น SCSS + Tailwind

1. � การใช้ @apply ในไฟล ์CSS
@apply เป็นฟีเจอรข์อง Tailwind ทีช่่วยใหเ้ราน า utility class หลายๆ ตวัมารวมเป็นหน่ึงเดยีว แลว้
น าไปใชซ้ ้าได ้
� ตวัอย่าง
/* styles.css */
.btn {
 @apply bg-blue-500 text-white px-4 py-2 rounded hover:bg-blue-600;

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 3

}
<button class="btn">Click Me</button>

 ✅ ข้อดี: ลดซ ้าซอ้นใน HTML
 ⚠ ข้อควรระวงั: อยา่ใชก้บั pseudo เช่น focus: โดยตรงใน CSS (ใชใ้น HTML เท่านัน้)

2. � สร้าง Custom Utility Class
สามารถสรา้ง utility class ใหมใ่น tailwind.config.js เพื่อใหโ้คด้อ่านงา่ยขึน้ และควบคุมไดจ้าก
ศูนยก์ลาง
� ตวัอย่าง
// tailwind.config.js
module.exports = {
 content: ['./index.html'],
 theme: {
 extend: {
 spacing: {
 'fluid': 'clamp(1rem, 2vw, 3rem)'
 },
 colors: {
 'brand-blue': '#2563eb',
 },
 },
 },
 plugins: [],
}
<div class="p-fluid text-brand-blue">Custom Utility</div>

3. � โครงสร้าง BEM + Tailwind
BEM (Block Element Modifier) เป็นโครงสรา้งการตัง้ชื่อ class ทีช่่วยใหจ้ดัการ CSS ไดง้า่ยขึน้ใน
ระบบ component-based
� ตวัอย่าง
<div class="card">
 <h2 class="card__title">Title</h2>
 <p class="card__content">Lorem ipsum dolor sit amet...</p>
</div>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 4

/* styles.css */
.card {
 @apply bg-white shadow-md p-4 rounded-lg;
}
.card__title {
 @apply text-xl font-bold text-gray-800;
}
.card__content {
 @apply text-sm text-gray-600;
}

 ✅ ประโยชน์: ใชร้ว่มกบั Tailwind เพื่อความชดัเจนของ component และจดัการซบัซอ้นไดด้ ี

4. ♻ เขียน Component-based CSS แบบ DRY (Don't Repeat Yourself)
� เทคนิค:

 สรา้ง partial component เช่น .btn, .input, .card
 ใช ้@apply รวม class เด่น ๆ เขา้ไว ้
 ใช ้@layer components เพื่อแยกโซนใน CSS ให ้Tailwind จดัเรยีงถูกตอ้ง

@tailwind base;
@tailwind components;
@tailwind utilities;

@layer components {
 .btn {
 @apply px-4 py-2 font-semibold rounded text-white bg-blue-500 hover:bg-blue-600;
 }
 .input {
 @apply border px-3 py-2 rounded w-full focus:outline-none focus:ring-2 focus:ring-blue-300;
 }
}
<button class="btn">Submit</button>
<input type="text" class="input" placeholder="Enter something">

5. ⚙ การใช้ Preprocessor เช่น SCSS + Tailwind

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 5

SCSS ช่วยใหเ้ราใชต้วัแปร, nesting, mixin, และ loop ได ้ท างานรว่มกบั Tailwind ไดโ้ดยใชโ้ครงสรา้ง
แบบ hybrid
� ตวัอย่างการรวม SCSS กบั Tailwind
// styles.scss
@tailwind base;
@tailwind components;
@tailwind utilities;

$primary: #4f46e5;

.btn {
 @apply px-4 py-2 rounded text-white font-medium;
 background-color: $primary;

 &:hover {
 background-color: darken($primary, 10%);
 }
}
ใชง้าน SCSS ตอ้งคอมไพลผ์่าน PostCSS หรอื SCSS compiler เช่น sass styles.scss styles.css

� สรปุเทคนิคส าคญั

เทคนิค จดุเด่น เหมาะกบั

@apply รวม utility class เพื่อใชง้านซ ้า ปรบัปรงุความสะอาดของ HTML

Custom Utility เพิม่ class เฉพาะองคก์ร ใชใ้นหลาย component

BEM + Tailwind สื่อความหมาย component ชดั ทมี dev ทีท่ างานรว่มกนั

@layer components สรา้ง reusable component ใชใ้นโปรเจกตข์นาดกลาง-ใหญ่

SCSS Integration ใช ้logic + style รว่มกนั ทมีทีใ่ช ้SCSS เป็นหลกั

Reusable Component Patterns (รายละเอียดเชิงลึก)

1. � การใช้ @apply ในไฟล ์CSS
� หลกัการ:

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 6

 Tailwind CSS ช่วยใหเ้ขยีน HTML ไดร้วดเรว็ แต่เมือ่ component ม ีclass ซ ้ากนัหลายครัง้
(เช่น bg-blue-500 text-white py-2 px-4 rounded) โคด้จะซ ้าซอ้นและดรูก

 @apply ช่วยรวบรวม class หลายตวัใหก้ลายเป็นหนึ่ง class เพื่อใชซ้ ้าใน component อื่น
� ตวัอย่างโค้ด:
/* styles.css */
.btn-primary {
 @apply bg-blue-600 text-white font-medium px-4 py-2 rounded hover:bg-blue-700;
}
.btn-secondary {
 @apply bg-gray-200 text-gray-800 font-medium px-4 py-2 rounded hover:bg-gray-300;
}
<button class="btn-primary">Submit</button>
<button class="btn-secondary">Cancel</button>
� ข้อดี:

 ลดความซ ้าซอ้น
 โคด้ HTML อ่านง่าย
 แก ้class ไดจ้ากศูนยก์ลาง

⚠ ข้อควรระวงั:
 ใช ้@apply ไดเ้ฉพาะในไฟล ์CSS ทีร่องรบั PostCSS (Tailwind จดัการให)้
 ไมส่ามารถใชก้บั class ทีม่ ีpseudo-element เช่น hover:bg-blue-600 นอก context @layer

2. � สร้าง Custom Utility Class
� หลกัการ:
สามารถก าหนด custom utility class ของเราเองผ่าน extend ใน tailwind.config.js เช่น padding,
margin, color, spacing, หรอื breakpoint ใหม ่ๆ
� ตวัอย่างโค้ด:
// tailwind.config.js
module.exports = {
 theme: {
 extend: {
 spacing: {
 'fluid': 'clamp(1rem, 5vw, 4rem)', // responsive padding
 },
 colors: {

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 7

 brand: {
 light: '#93c5fd',
 DEFAULT: '#3b82f6',
 dark: '#1e40af',
 },
 },
 },
 },
}
<div class="p-fluid bg-brand-dark text-white">Custom Utility</div>
� ประโยชน์:

 ใชช้ื่อ class ทีอ่่านงา่ย
 มกีารควบคุม consistent ของดไีซน์ทัง้ระบบ
 เพิม่ utility ใหมท่ีไ่ม่มใีน Tailwind ได ้

3. � โครงสร้าง BEM + Tailwind
� หลกัการ:

 BEM = Block__Element--Modifier
 เมือ่ใช ้Tailwind ควบคู่ BEM จะไดช้ื่อ class ทีส่ ื่อถงึโครงสรา้ง component ชดัเจน

� ตวัอย่าง:
<div class="card">
 <h2 class="card__title">Product Title</h2>
 <p class="card__description">Lorem ipsum dolor sit amet</p>
 <button class="card__btn">Buy</button>
</div>
/* styles.css */
.card {
 @apply p-6 bg-white rounded-lg shadow-md;
}
.card__title {
 @apply text-xl font-bold text-gray-800;
}
.card__description {
 @apply text-gray-600;

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 8

}
.card__btn {
 @apply mt-4 bg-blue-500 text-white py-2 px-4 rounded hover:bg-blue-600;
}
� ประโยชน์:

 เพิม่ modularity และ readability
 เหมาะกบัทมีพฒันาแบบแยกหน้าที ่Frontend/Design
 สามารถขยาย component แบบไมส่บัสน

4. ♻ เขียน CSS แบบ DRY (Don't Repeat Yourself)
� แนวคิด:

 อยา่เขยีน class ซ ้า ๆ หลายจดุใน HTML
 สรา้ง class reusable เช่น .btn, .input, .card, .avatar

� ตวัอย่าง:
@layer components {
 .btn {
 @apply inline-block px-4 py-2 text-sm font-medium text-white bg-blue-500 rounded hover:bg-
blue-600;
 }

 .input {
 @apply w-full px-3 py-2 border border-gray-300 rounded focus:outline-none focus:ring-2
focus:ring-blue-400;
 }
}
<input class="input" placeholder="Enter your email" />
<button class="btn">Submit</button>
� เทคนิค:

 จดักลุ่ม reusable class ไวใ้น @layer components เพื่อให ้Tailwind ควบคุม priority ได ้
 อยา่ใช ้@apply กบั @responsive, @variants หรอื @screen ซอ้นกนัโดยตรง

5. ⚙ การใช้ SCSS + Tailwind
� ท าไมต้อง SCSS:

 ใชต้วัแปร ($primary-color)

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 9

 Mixin และฟังกช์นัซ ้าได้
 Nesting ที ่Tailwind ไมร่องรบัโดยตรง

� ตวัอย่าง SCSS + Tailwind:
// styles.scss
@tailwind base;
@tailwind components;
@tailwind utilities;

$primary: #4f46e5;

.card {
 @apply p-6 rounded shadow-lg bg-white;

 &__title {
 @apply text-lg font-bold text-gray-900;
 }

 &__button {
 @apply mt-4 px-4 py-2 rounded text-white;
 background-color: $primary;

 &:hover {
 background-color: darken($primary, 10%);
 }
 }
}
ตอ้งคอมไพล ์SCSS เป็น CSS ดว้ย PostCSS หรอืใช ้sass CLI เช่น:
sass styles.scss styles.css
� ข้อดี:

 เขยีน CSS ทีย่ดืหยุน่และ maintain ไดด้ขีึน้
 รวมพลงั SCSS + Tailwind เพื่อใช ้logic เช่น loop, condition, nesting

� สรปุ Best Practices

เทคนิค ใช้เม่ือ ส่ิงท่ีควรระวงั

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 10

เทคนิค ใช้เม่ือ ส่ิงท่ีควรระวงั

@apply class utility ซ ้าบ่อย หลกีเลีย่ง pseudo ใน @apply

Custom Utility ตอ้งการใช ้class เฉพาะองคก์ร อยา่ขดักบั core ของ Tailwind

BEM เขยีน CSS แบบ component-based ตอ้งตัง้ชื่อใหช้ดัเจน

DRY via @layer ลดความซ ้าในโคด้ HTML อยา่เขยีน utility ซอ้น

SCSS + Tailwind ตอ้งการ logic และ nesting ใช ้build tools เพิม่เตมิ

ตวัอยา่ง โครงสร้างโปรเจกตจ์ริง, โปรแกรมแนวประยกุต์ หรอื โปรแกรมบูรณาการ ทีใ่ชแ้นวทาง
ในบทน้ี เช่น:

 ระบบปุ่ ม + ฟอรม์ reusable ทัง้ชุด
 Reusable Card component ท่ีปรบัขนาดและ theme ได้
 ระบบ SCSS component แบบ module-based

ต่อไปนี้คอืรายละเอยีดเจาะลกึเกีย่วกบั การใช้ @apply ในไฟล ์CSS พรอ้มค าอธบิายแบบเป็นระบบ
ตวัอยา่งโคด้ โครงสรา้งไฟล ์และผลการรนั:

การใช้ @apply ในไฟล ์CSS

� คืออะไร?
@apply คอืค าสัง่ของ Tailwind CSS ทีใ่ชร้วมหลาย utility class เขา้ดว้ยกนัภายใน custom class ที่
ก าหนดไวใ้น CSS เพื่อท าใหโ้คด้ HTML อ่านง่ายและไมซ่ ้าซอ้น

� เหมาะกบัสถานการณ์ใด?

 เมือ่ม ีclass ซ ้ากนัในหลาย component เช่น ปุ่ ม, การด์, อนิพุต ฯลฯ
 ตอ้งการเขยีน CSS แบบ component-based
 ตอ้งการควบคุมจากศูนยก์ลางแบบ DRY (Don't Repeat Yourself)

� โครงสร้างโปรเจกตพื์้นฐาน
tailwind-apply-example/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 11

├── postcss.config.js
└── package.json

� ไฟลท่ี์เก่ียวข้อง
1. tailwind.config.js
module.exports = {
 content: ["./index.html"],
 theme: {
 extend: {},
 },
 plugins: [],
};

2. postcss.config.js
module.exports = {
 plugins: {
 tailwindcss: {},
 autoprefixer: {},
 },
};

3. styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

/* Reusable components using @apply */
.btn {
 @apply px-4 py-2 rounded text-white font-semibold;
}

.btn-primary {
 @apply btn bg-blue-600 hover:bg-blue-700;
}

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 12

.btn-secondary {
 @apply btn bg-gray-300 text-gray-800 hover:bg-gray-400;
}

4. index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@apply Example</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="p-10 bg-gray-50 space-y-4">
 <button class="btn-primary">Primary Button</button>
 <button class="btn-secondary">Secondary Button</button>
</body>
</html>

 ผลการรนั
เมือ่เปิด index.html:

 ปุ่ ม “Primary Button” เป็นสฟ้ีาเขม้ (bg-blue-600) เมือ่ hover จะเปลีย่นเป็นฟ้าเขม้กว่า (bg-
blue-700)

 ปุ่ ม “Secondary Button” เป็นสเีทา (bg-gray-300) พรอ้ม text สเีทาเขม้ (text-gray-800) และ
เปลีย่นสเีมือ่ hover

� อธิบายแนวคิด
.btn {
 @apply px-4 py-2 rounded text-white font-semibold;
}

 .btn เป็นพืน้ฐานส าหรบัปุ่ มทุกรปูแบบ
 .btn-primary, .btn-secondary ใช ้.btn และเตมิสหีรอื effect เพิม่เขา้ไป
 ช่วยลดความซ ้าของ class utility และท าให ้style เปลีย่นงา่ยในภายหลงั

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 13

� ข้อดีของการใช้ @apply

ข้อดี รายละเอียด

ลดความซ ้าซอ้น ไมต่อ้งเขยีน class ยาว ๆ ซ ้าไปซ ้ามา

งา่ยต่อการปรบัแก้ เปลีย่น style ไดจ้ากไฟลเ์ดยีว

สื่อถงึความตัง้ใจของ component เช่น .btn-primary vs .btn-secondary ชดัเจนว่าใชก้บัปุ่ มใด

⚠ ข้อควรระวงั

 ใชไ้ดเ้ฉพาะในไฟล ์CSS ที ่Tailwind ประมวลผล (เช่น @tailwind, PostCSS)
 ใชก้บั pseudo-class เช่น hover: ได ้แต่ตอ้งอยูใ่น @layer components
 อยา่ใชก้บั responsive class (md:) ตรง ๆ ภายใน @apply

� สรปุ

 ใช ้@apply เพื่อเขยีน component CSS แบบ reusable
 เหมาะกบัการสรา้ง UI แบบ modular
 ช่วยใหโ้คด้สะอาดและขยายไดง้า่ย

ต่อไปนี้คอืตวัอยา่งโปรแกรม แบบเตม็ไฟล ์พรอ้ม โครงสร้าง + ค าอธิบายโค้ด + ผลการรนั จ านวน
3 ตวัอยา่ง ส าหรบัหวัขอ้:
การใช้ @apply ในไฟล ์CSS (Basic Examples)

� ตวัอย่างท่ี 1: ปุ่ มแบบ Reusable ด้วย @apply
� โครงสร้างไฟล ์
tailwind-apply-button/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
� styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 14

.btn {
 @apply bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded;
}
� index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 <link href="./styles/main.css" rel="stylesheet">
 <title>Tailwind Apply Button</title>
</head>
<body class="flex items-center justify-center min-h-screen bg-gray-100">
 <button class="btn">Click Me</button>
</body>
</html>
� ผลการรนั
ปุ่ ม “Click Me” สฟ้ีา (bg-blue-500), ม ีhover สเีขม้ขึน้ (bg-blue-700) ใช ้.btn class ที ่reuse ได ้

� ตวัอย่างท่ี 2: Card แบบ Custom Class ด้วย @apply
� โครงสร้างไฟล ์
tailwind-apply-card/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
� styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

.card {

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 15

 @apply bg-white rounded-lg shadow-md p-6 max-w-sm;
}
.card-title {
 @apply text-xl font-semibold text-gray-800 mb-2;
}
.card-desc {
 @apply text-gray-600;
}
� index.html
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="./styles/main.css">
</head>
<body class="flex items-center justify-center min-h-screen bg-gray-200">
 <div class="card">
 <div class="card-title">Card Title</div>
 <div class="card-desc">This is a reusable card component using @apply.</div>
 </div>
</body>
</html>
� ผลการรนั
Card สขีาว ขอบมน เงาเบา มหีวัขอ้และค าอธบิาย ใช ้class .card, .card-title, .card-desc ทีจ่ดักลุ่ม
style ดว้ย @apply

� ตวัอย่างท่ี 3: Form Layout Reusable ด้วย @apply
� โครงสร้างไฟล ์
tailwind-apply-form/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 16

� styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

.input-field {
 @apply border border-gray-300 rounded px-3 py-2 w-full focus:outline-none focus:ring-2
focus:ring-blue-500;
}
.label {
 @apply block text-gray-700 font-medium mb-1;
}
.form-group {
 @apply mb-4;
}
� index.html
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <link rel="stylesheet" href="./styles/main.css">
</head>
<body class="flex items-center justify-center min-h-screen bg-gray-100">
 <form class="bg-white p-6 rounded shadow-md w-96">
 <div class="form-group">
 <label class="label" for="email">Email</label>
 <input class="input-field" type="email" id="email" />
 </div>
 <div class="form-group">
 <label class="label" for="password">Password</label>
 <input class="input-field" type="password" id="password" />
 </div>
 <button class="btn">Login</button>
 </form>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 17

</body>
</html>
✅ เพิม่ .btn class แบบตวัอยา่งแรกไวใ้น main.css ดว้ยกจ็ะ reuse ปุ่ มไดท้นัท ี
� ผลการรนั
Form แบบสะอาดตา ม ีinput ทีจ่ดั style ไวด้ว้ย .input-field สามารถ reuse ไดห้ลายฟอรม์

ต่อไปนี้คอืตวัอยา่งโปรแกรม แนวประยกุต์ และ บรูณาการ ทีใ่ช ้@apply รว่มกบั Framework ยอด
นิยม เช่น Vue, React และ Laravel Blade

ตวัอย่างท่ี 1: Vue 3 + Tailwind + @apply (ปุ่ ม reusable)
โครงสร้างไฟล ์(เฉพาะไฟลส์ าคญั)
vue-tailwind-apply/
├── src/
│ ├── App.vue
│ ├── components/
│ │ └── BaseButton.vue
│ └── assets/
│ └── main.css
├── tailwind.config.js
├── postcss.config.js
└── package.json
assets/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

.btn {
 @apply bg-indigo-600 text-white font-semibold px-4 py-2 rounded hover:bg-indigo-700;
}
components/BaseButton.vue
<template>
 <button class="btn" @click="$emit('click')">
 <slot />

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 18

 </button>
</template>

<script>
export default {
 name: 'BaseButton',
};
</script>
App.vue
<template>
 <div class="p-6">
 <BaseButton @click="clicked">Click me</BaseButton>
 </div>
</template>

<script>
import BaseButton from './components/BaseButton.vue';

export default {
 components: { BaseButton },
 methods: {
 clicked() {
 alert('Button clicked!');
 }
 }
};
</script>

<style src="./assets/main.css"></style>

ตวัอย่างท่ี 2: React + Tailwind + @apply (Reusable Card Component)
โครงสร้างไฟล ์(ส าคญั)
react-tailwind-apply/
├── src/

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 19

│ ├── App.js
│ ├── components/
│ │ └── Card.js
│ └── styles/
│ └── main.css
├── tailwind.config.js
├── postcss.config.js
└── package.json
styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

.card {
 @apply p-6 rounded-lg shadow-lg bg-white max-w-sm mx-auto;
}

.card-title {
 @apply text-2xl font-bold mb-2 text-gray-800;
}

.card-body {
 @apply text-gray-600;
}
components/Card.js
import React from 'react';
import '../styles/main.css';

export default function Card({ title, children }) {
 return (
 <div className="card">
 <h2 className="card-title">{title}</h2>
 <div className="card-body">{children}</div>
 </div>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 20

);
}
App.js
import React from 'react';
import Card from './components/Card';

export default function App() {
 return (
 <div className="min-h-screen bg-gray-100 flex items-center justify-center p-6">
 <Card title="Tailwind @apply Card">
 This card component uses reusable styles via @apply in Tailwind CSS.
 </Card>
 </div>
);
}

ตวัอย่างท่ี 3: Laravel Blade + Tailwind + @apply (Form Component)
โครงสร้างไฟล ์
laravel-tailwind-apply/
├── resources/
│ ├── views/
│ │ ├── components/
│ │ │ └── button.blade.php
│ │ └── welcome.blade.php
│ └── css/
│ └── app.css
├── tailwind.config.js
└── package.json
resources/css/app.css
@tailwind base;
@tailwind components;
@tailwind utilities;

.btn {

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 21

 @apply bg-green-600 text-white font-semibold py-2 px-4 rounded hover:bg-green-700;
}
resources/views/components/button.blade.php
<button {{ $attributes->merge(['class' => 'btn']) }}>
 {{ $slot }}
</button>
resources/views/welcome.blade.php
<x-layout>
 <form class="max-w-md mx-auto mt-10 p-6 bg-white rounded shadow">
 <label for="email" class="block mb-2 font-medium">Email</label>
 <input type="email" id="email" name="email" class="border border-gray-300 rounded px-3
py-2 w-full mb-4 focus:outline-none focus:ring-2 focus:ring-green-400" />

 <x-button>Submit</x-button>
 </form>
</x-layout>

สรปุ

Framework ตวัอย่างการใช้ ประโยชน์หลกัจาก @apply

Vue 3 ปุ่ ม reusable ลดซ ้าซอ้น สรา้ง component ทีอ่่านง่าย

React Card component สรา้ง UI reusable งา่ยดว้ย CSS class กลาง

Laravel Blade ปุ่ ม Blade Component ใช ้@apply ควบคุม style ปุ่ มไดแ้บบ DRY

ต่อไปนี้คอืค าอธบิายและตวัอยา่งเชงิลกึเกีย่วกบั การสร้าง class แบบ custom utility ใน Tailwind
CSS รวมทัง้ตวัอยา่งโปรแกรมเตม็ไฟล ์+ โครงสรา้ง + ค าอธบิายโคด้ + ผลการรนั

การสรา้ง Custom Utility Class ใน Tailwind CSS

1. คืออะไร?

 Custom utility คอืการเพิม่ class ใหม ่ๆ ทีไ่มอ่ยูใ่น Tailwind เอง โดยใชว้ธิเีพิม่ในไฟล ์CSS
หรอืใน tailwind.config.js

 ช่วยใหเ้ราเพิม่ style เฉพาะทีต่อ้งการใชง้านบ่อย ๆ ลงใน Tailwind อยา่งมรีะบบ

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 22

2. วิธีสร้าง Custom Utility
ม ี2 วธิหีลกั:
(1) สร้างในไฟล ์CSS ด้วย @layer utilities + @apply (แนะน า)
@layer utilities {
 .text-shadow {
 text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
 }
}
(2) สร้างด้วย Tailwind Plugin ใน tailwind.config.js
module.exports = {
 // ...
 plugins: [
 function({ addUtilities }) {
 const newUtilities = {
 '.text-shadow': {
 textShadow: '2px 2px 4px rgba(0,0,0,0.3)',
 },
 }
 addUtilities(newUtilities, ['responsive', 'hover'])
 }
]
}

ตวัอย่างโปรแกรมเตม็ไฟล ์

ตวัอย่างท่ี 1: Custom Utility text-shadow ด้วย @layer utilities ใน CSS
โครงสร้างไฟล ์
custom-utility-text-shadow/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
ไฟล ์styles/main.css

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 23

@tailwind base;
@tailwind components;
@tailwind utilities;

/* สรา้ง custom utility */
@layer utilities {
 .text-shadow {
 text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
 }
}
ไฟล ์index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Custom Utility Example</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-100 flex items-center justify-center min-h-screen">
 <h1 class="text-4xl font-bold text-blue-600 text-shadow">
 Text with Shadow Effect
 </h1>
</body>
</html>
ผลการรนั

 ตวัอกัษรใหญ่สนี ้าเงนิมเีงาเบา ๆ (text-shadow) ซึง่ไดจ้าก class .text-shadow ทีส่รา้งขึน้เอง

ตวัอย่างท่ี 2: Custom Utility ส าหรบั Animation ด้วย Plugin ใน tailwind.config.js
โครงสร้างไฟล ์
custom-utility-animation/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 24

└── postcss.config.js
ไฟล ์tailwind.config.js
module.exports = {
 content: ["./index.html"],
 theme: {
 extend: {},
 },
 plugins: [
 function({ addUtilities }) {
 const newUtilities = {
 '.animate-spin-slow': {
 animation: 'spin 3s linear infinite',
 },
 }
 addUtilities(newUtilities, ['responsive', 'hover']);
 }
]
}
ไฟล ์styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;
ไฟล ์index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Custom Animation Utility</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-50 flex items-center justify-center min-h-screen">
 <div class="w-16 h-16 border-4 border-blue-600 border-t-transparent rounded-full animate-
spin-slow"></div>
</body>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 25

</html>
ผลการรนั

 วงกลมหมนุชา้ ๆ (3 วนิาทต่ีอรอบ) ใช ้class .animate-spin-slow ทีเ่ราสรา้งเอง

ตวัอย่างท่ี 3: Custom Utility ส าหรบัการจดัขอบเงา (box-shadow)
โครงสร้างไฟล ์
custom-utility-box-shadow/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
ไฟล ์styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .shadow-3xl {
 box-shadow: 0 20px 25px -5px rgba(0,0,0,0.1), 0 10px 10px -5px rgba(0,0,0,0.04);
 }
}
ไฟล ์index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Custom Box Shadow</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-100 flex items-center justify-center min-h-screen">
 <div class="bg-white p-8 rounded shadow-3xl max-w-md text-center">
 <h2 class="text-2xl font-bold mb-2">Custom Box Shadow</h2>
 <p>This box uses a custom shadow utility.</p>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 26

 </div>
</body>
</html>
ผลการรนั

 กล่องสขีาวมเีงาทีอ่อกแบบเองซึง่ไมอ่ยูใ่น Tailwind ปกต ิแต่สรา้งจาก .shadow-3xl

สรปุ

วิธีสร้าง Custom Utility การใช้งาน ข้อดี

@layer utilities ใน CSS งา่ย เรว็ ไมต่อ้งแก ้config เหมาะกบัโปรเจกตเ์ลก็/กลาง

Plugin ใน
tailwind.config.js

รองรบั responsive, pseudo-
class

เหมาะกบัโปรเจกตใ์หญ่, ปรบัแต่ง
ซบัซอ้น

ชุดท่ี 1: ตวัอย่างแบบเตม็ไฟล ์(พื้นฐาน) — 3 โปรแกรม

ตวัอย่าง 1: Text Shadow Utility
โครงสร้างไฟล ์
custom-utility-basic-1/
├── index.html
├── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .text-shadow {
 text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
 }
}
index.html

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 27

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Text Shadow Utility</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-100 flex items-center justify-center min-h-screen">
 <h1 class="text-5xl font-bold text-blue-600 text-shadow">Text with Shadow</h1>
</body>
</html>
ผลการรนั:
ขอ้ความ “Text with Shadow” สฟ้ีาขนาดใหญ่ มเีงาเบา ๆ จาก .text-shadow

ตวัอย่าง 2: Custom Rounded Corners
styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .rounded-xl-custom {
 border-radius: 1.5rem;
 }
}
index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Custom Rounded Corners</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-200 flex items-center justify-center min-h-screen">

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 28

 <div class="bg-indigo-600 text-white p-8 rounded-xl-custom shadow-lg max-w-sm text-center">
 Custom Rounded Corners
 </div>
</body>
</html>
ผลการรนั:
กล่องสมีว่งมขีอบมนใหญ่กว่าปกต ิ(1.5rem) ดว้ย .rounded-xl-custom

ตวัอย่าง 3: Custom Box Shadow
styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .shadow-3xl {
 box-shadow: 0 20px 25px -5px rgba(0,0,0,0.1),
 0 10px 10px -5px rgba(0,0,0,0.04);
 }
}
index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>Custom Shadow</title>
 <link href="./styles/main.css" rel="stylesheet" />
</head>
<body class="bg-gray-100 flex items-center justify-center min-h-screen">
 <div class="bg-white p-8 rounded shadow-3xl max-w-md text-center">
 Custom Box Shadow Utility
 </div>
</body>
</html>

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 29

ผลการรนั:
กล่องสขีาวมเีงาแบบซบัซอ้นมากกว่าปกต ิดว้ย .shadow-3xl

ชุดท่ี 2: ตวัอย่างแนวประยกุต ์(Vue, React, Laravel) — 3 โปรแกรม

ตวัอย่าง 1: Vue 3 - Custom Utility text-shadow
โครงสร้าง
vue-custom-utility/
├── src/
│ ├── App.vue
│ └── assets/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
assets/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .text-shadow {
 text-shadow: 2px 2px 6px rgba(0,0,0,0.4);
 }
}
src/App.vue
<template>
 <div class="p-6">
 <h1 class="text-4xl font-bold text-red-600 text-shadow">Vue Custom Utility</h1>
 </div>
</template>

<script>
export default {
 name: 'App',

ศูนยห์นงัสือราคานกัเรียน

Tailwind CSS Framework: Advance หนา้ 30

};
</script>

<style src="./assets/main.css"></style>

ตวัอย่าง 2: React - Custom Utility shadow-3xl
โครงสร้าง
react-custom-utility/
├── src/
│ ├── App.js
│ └── styles/
│ └── main.css
├── tailwind.config.js
└── postcss.config.js
styles/main.css
@tailwind base;
@tailwind components;
@tailwind utilities;

@layer utilities {
 .shadow-3xl {
 box-shadow: 0 25px 30px -10px rgba(0,0,0,0.15),
 0 15px 20px -10px rgba(0,0,0,0.05);
 }
}
src/App.js
import React from "react";
import "./styles/main.css";

export default function App() {
 return (
 <div className="bg-gray-100 min-h-screen flex items-center justify-center p-6">
 <div className="bg-white p-8 rounded shadow-3xl max-w-md text-center">
 React Custom Shadow Utility

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 11

