

A

lulanvasmananivuadwiiatugaln masaszuuildiiooue Admwle” uddsdas sy
218 las quain lda uazaeads” ldanaosdumnasgulndvasgaamnim dnwamwige
ﬂaqﬂ"uﬁaoﬁ”aaﬁniﬂmmmn%u‘[ﬁ@L%amﬂﬁmmuﬁugm lugnseenuuusandasnysa
sanduIndanudiiu Sandoy wazvassumadvulaluszauasdnslaass nitsda Laravel MVC
Web Programming: Professional Laiuftgﬂa%ﬂaﬁmﬁ anaulandinagnourass

TaiiRoauawgeuliidnlaisld Laravel adnidaandn ATl And s Aadasnasi
¥ 19 Laravel swn3nsasiusrunsudonluszavasinslaognoiuas lid1ezidu Design
Patterns, Clean Architecture, mm@aam:uuasﬁamamqw, NIATLNIZUU AT Production,
WiougNITYaMIWaAWY Microservices Midiaudannatnadlszannn

sl,m_m‘ﬁl 13 ;‘3: d’m%zvlﬁjﬁ'ﬂﬁ'u Design Patterns lLas Clean Architecture 13 Laravel (‘Wfﬁ 1)
St duununanuasnsaanuuuszuLfa 11azd1379 Pattern funlU1816a50lu Laravel 1w
Repository, Strategy, Factory, 7009UUIAA Clean Architecture ‘ﬁLLEm Layer DENITALA (LT
Controller — Service — Domain — Infrastructure) Lﬁiaiﬁizuuﬁm’]mﬂuﬁmwadLL@iarﬁgu
uazwsandennasaunsalsuwasunluaniaa

unfl 14 e300 nImeaausay PHPUNt uas Laravel Testing (Wiin 105) Qﬁhmzvlﬁ
aadlafion Unit Test &3 Model, Controller Was Service R¥ndNwiiainas w%’amfoﬁ'ﬂuj
Feature Test fwiaTasauszuuluyuuaszasfld M3 Mock ﬁagaLﬁaummsmaauu@imﬁu
m5l% Test Doubles 52uA9n156967 Continuous Integration (Cl) tial¥msnasauiingaluga
wazdaliios iz msumanoduiinuesluszuuidnig deploy tog

Waszuuwianldi1wase n131a58uT LY Production dadefiunaldle undi 15 niy
Deploy Laravel Application § Production (W 190) ﬁ]:‘W’ngT SNUAIUANTAIAN Environment N5l
Laravel Forge wIan13 Deploy LLUyY Manual vlﬂﬂuﬁdﬂ’li@lgdﬁ’l Web Server L8z Queue Worker
frsuwdaings wiaumafiianisvin Monitoring &% Logging tialdszuuvinawldiadios
Uaaant wazaunsnfdaaudym laagninais

gavng unil 16 NIIWEMI Microservices Las Advanced APl (wiin 249) aziflalannis
DANUUUIZUULUULENEIUAIBUWIAA Microservices lagld Laravel liugiulunisashsuinisud
azA w%amizu%'wjmsaaﬂuuu RESTful Waz GraphQL APl N1339@nN13 Authentication WUU
OAuth2 Az JWT NNsdasnTs=ning Services HILLL HTTP, gRPC %38kt Message Queue
wazn1311 Docker N 1FlUA1IWAUILEL Deploy a898sTUL wiaudragnaasenawsninllde

200 11aIANT LaNIN

RIIFDLAN RN EFATURN WA WIN RN UTUN U Laravel HTURD LaziaINeIniab
“‘anIzay” mMawan lgrruunduas ditvmsde uazdudeondwatuiais douuwinmans
WonlaalBign1daunssy N1INagouIFIseul Lazn139aN1ITOUAIUEIMIUITUY Production

. . U A o = dl U v . . d' « v Y Aa
s Microservices WINHOTUADUNNAIUINADINIINITY Laravel Application n wianlaaselu

€ ., . eA o AAa
23ANT AIRBLRUUADAINDT

v s =
AUINLATUTNIIWIA

6 o A o A
ﬂ%ﬂ%%ﬁﬁaiﬁﬂ'\%ﬂliﬂ%

GREITN

Uﬂﬁ 13 Design Patterns a2 Clean Architecture lu Laravel (Design Patterns and
Clean Architecture in Laravel)oooo it e e 1
®Design Patterns LLaz Clean Architecture lu Laravel
®Design Patterns Laz Clean Architecture w4 Laravel (5’1&151$L5£1@L°’f1\1§ﬂ)
Oﬂﬁiﬂizs;qlﬂ@ﬂf Design Patterns 14 Laravel

O N1FaaNLUUILUULLLY Clean Architecture

eLAALAZINEALBBALTIANTBINSUEN Layer WL Clean Architecture 14 Laravel

UNN 14 NMINagauale PHPUNt Waz Laravel Testing (PHPUnit and Laravel Testing)

e N1INARAUAIY PHPUNIt WAz Laravel Testing
e N1INaRAUAIY PHPUNIt Was Laravel Testing (L%\‘lﬁﬂ)
e 3.0y Unit Test &1L Model, Controller, L8z Service
318 Feature Test Waz HTTP Test L Laravel
®n13 Mocking WaENIME Test Doubles 14 Laravel (PHPUNit)
@396 Continuous Integration (Cl) &1%3U Laravel
® 6N TNINNT
‘lJ“n‘ﬁl 15 N7 Deploy Laravel Application ’gj Production (Laravel Application and

Production DeployMENt)..........ooi it a e 190
®n13 Deploy Laravel Application § Production
® N3 Deploy Laravel Application gj Production Lﬁlwlﬁu
Oﬂﬁ@lg\‘]m Environment LLaz Configuration #1130 Production 1w Laravel
® M3l Laravel Forge / Envoyer %38 Manual Deploy
® 115936 Web Server #1351 Laravel
©M1330N13 Queue Worker W&z Scheduler 134 Production
®N17 Monitor LLRE Logging

Oﬁaaﬂ'ngsmﬂms

Uﬂﬁ 16 NN Microservices ez Advanced API (Microservices Development and
F o A= T Tt =Yo I SRR 249

® NINAWT Microservices Waz Advanced API
®8azLBuALBIANYBY MIWAUT Microservices Waz Advanced API
on1vaantuy API kUL RESTful ey GraphQL

®M1330N13 Authentication 1% Microservices (OAuth2, JWT)
®N13RaE133zW N9 Microservices

® M3l Docker 70N Laravel Msn1sW@wuas Deploy

Oe‘ﬁasmysmﬁmﬁ

Uiiﬂk’]‘lﬁfﬂi&] ... 331

o v A v A
ﬁuwm%ammumiw

uNin 13
Design Patterns tLa& Clean Architecture 1w Laravel

(Design Patterns and Clean Architecture in Laravel)

® Design Patterns LLaz Clean Architecture 1w Laravel

® Design Patterns Lz Clean Architecture 1w Laravel (iﬂﬂazLaﬂﬂL%\‘lﬁﬂ)
L ﬂ’]iﬂi:gﬂ@ﬂ“ﬁ’ Design Patterns lu Laravel

® nIvanluuIzUULUY Clean Architecture

® LAALAZINEALLAATIANYRINITUEN Layer LLUU Clean Architecture lu Laravel

UNHI
SUVI"?; 13: Design Patterns Laz Clean Architecture 1w Laravel
miw”wmL’?ULLaﬂwﬁmfuﬁ'ﬁqmmwu,a:ﬁ@‘ﬁzjulm:mmaﬁaamﬁ'ﬂLmeamiaamL‘uu
manauIsNa miﬂizqn@ﬂ“ﬁ Design Patterns %% Singleton, Factory Waz Strategy TR8un b
ﬁrymmsaaﬂLLuuﬁsgwsﬁauLLa:Lﬂ'ummmmmlumiﬂﬁ;a%’ﬂmiﬁ@ ¢8819L13% Singleton Ty
augunMIaiIausuautrasamalRliNsIdLGT Factory asaivaauiandlaslidasynida
AUAMALANIE WAL Strategy °ﬁ'aUlﬁmﬂﬂﬁﬂmmquamimaﬂﬂmnwLfluvl,ﬂazmﬁ@%gju

WONINT UWIAA Clean Architecture HluN39UNN50ONLUUTZUURLEHATILEN
faudiznaudnd g 2asualwiiatuaananiuagitalan ieaanugusannayinlilaad
anutduszifoy 61ud1e wazitsdaniInasau lae Clean Architecture &qidl,ﬁuﬂ’ﬁl,l,ﬂﬂﬂ’ﬂ&l
SUANTIUUDIUAR T HINUBENITALIN

nsuenIzuuaantdu Domain Layer, Application Layer .82 Infrastructure Layer 1w
#11a1anwed Clean Architecture l@8) Domain Layer 'ﬂ:Lﬁumiﬂzmagiﬁaﬁﬁfm@ Application
Layer 921328 1%IN1%32HW319 Domain ﬁ'umuéiw] V8932V &% Infrastructure Layer 9:QUaN13
[BoNGanUITLLNEHAN LT Uty W3aU5N13aug mysalassasauiitisliszundaag
ﬁ@mjmmzmmmﬂ%’uLﬂﬁﬂuﬁhu‘l@mu%ﬁﬂ@y"l&idwam:mﬁ'umuﬁu

uniisauinlminwamnvinanudrlaasin Design Patterns mﬂszqﬂﬂ"ﬁ‘s’mﬁ'ml,mma
Clean Architecture lm3aanuuuT=U Laravel Lﬁa‘lm")'l,@"’[moa%wﬂﬂmmuﬁ'ﬁqmqua fany

ﬁ@msjuu,a:(hﬂ@iamiﬁﬂga%’ﬂmlmw:ma

Laravel MVC Web Programming: Professional wih 1

4 v A v A
ﬁuwm%aiﬂmumiau

Design Patterns LLae Clean Architecture Tw Laravel
o ﬂ’]iﬂizgﬂ@ﬂ‘ﬁ’ Design Patterns 1% Singleton, Factory, Strategy

e NIFANLUUILUULUL Clean Architecture

e N13LeyN Domain Layer, Application Layer Wae Infrastructure Layer

1. nﬁiﬂizzgﬂﬁﬂ% Design Patterns 1w Laravel

Laravel 131 PHP Framework flaanuuuanl#ldumwifian OOP uas Design Patterns ‘lerdng
¢18¢19 Design Patterns Afialu Laravel leur

- Singleton Pattern

1#ialwasnad instance Liganaanuall 1w Laravel Service Container La9fi¥nMuiLL
Singleton AU Services NAHG7

class Logger

{

private static $instance;
private function __construct() {}

public static function getinstance()

{
if (Iself::$instance) {
self::$instance = new Logger();

}

return self::$instance;

public function log($message)

{

echo $message;

}

lu Laravel 1318014 Service Container WNAN3&314 Singleton L84

- Factory Pattern

Laravel MVC Web Programming: Professional

wih 2

4 o v A
g{uwmﬁammumiau

17319 Object mmﬂs:mw%ﬂiﬂﬁaos:qﬂawaﬁﬁmw TIUULENNITRINY Object 8anINNNTLT
N

¢n8819NN1I83N Factory §1%IUN38379 Notification 614 ¢

interface NotificationlInterface {

public function send($message);

class EmailNotification implements NotificationInterface {
public function send($message) {

/l #3DLNA

class SmsNotification implements NotificationInterface {
public function send($message) {

Il &3 SMS

class NotificationFactory {
public static function create($type): Notificationinterface {
if ($type === 'email') {
return new EmailNotification();
}
elseif ($type === 'sms') {
return new SmsNotification();

}

throw new Exception("Notification type not supported.");

}

maTonld
$notification = NotificationFactory::create('email’);

$notification->send("Hello world");

Laravel MVC Web Programming: Professional wih 3

4 o v A
g{uwmﬁammumiau

- Strategy Pattern
TrugauwgAnsIuvadsautanalas lddaun lulaanan 1 interface Wz class #an8@?
interface PaymentStrategy {

public function pay($amount);

class CreditCardPayment implements PaymentStrategy {
public function pay($amount) {

/I Logic T3l W BUATLATA®

class PaypalPayment implements PaymentStrategy {
public function pay($amount) {

/I Logic T3l %N% Paypal

class PaymentContext {

private $strategy;

public function __ construct(PaymentStrategy $strategy) {

$this->strategy = $strategy;

public function executePay($amount) {

$this->strategy->pay($amount);

}
el

$payment = new PaymentContext(new PaypalPayment());

$payment->executePay(1000);

2. NMYaanuuuUIcUULLUY Clean Architecture

Laravel MVC Web Programming: Professional wih 4

AuviilidosianinSeu

Clean Architecture wussinluonldnaanidugi (Layer) Lﬁalﬁs:uuﬁamju quadty uaznasay
Natd]
Tasoas19nan 4 3%
e Entities (Domain Layer): ﬂQLLazﬂ’agag‘iﬁﬁ] (Business Logic) LUUUINTITY "l&i"fuﬁ'u
Framework %38 Infrastructure 1@ 9
e Use Cases (Application Layer): iN®ian13¥191%an 1184320 (Business Use
Cases) lagld Entities
« Interface Adapters (Interface Layer): dudastayauaziu/ddayasznitsszuunulan
ANYWAN LB Controller, Presenter, Gateway
e Frameworks & Drivers (Infrastructure Layer): Iﬁ@ﬁﬁau@iaﬁugmﬁaga, Ul, network,

Laravel Framework, Package §14 €

3. n1sugn Domain Layer, Application Layer ttag Infrastructure Layer 1w Laravel
lu Laravel Unéiisnltlaseasnauuy MVC ud Clean Architecture uizsinnsuanlnaiaasuas

RUNNTALIW LT

app/
Domain/ # Entities, Models, Business Logic
L User.php
— Application/ # Use Cases, Service Classes
L UserService.php
Infrastructure/ # Database Repositories, External Services
L Repositories/
L UserRepository.php
— Hittp/ # Controller, Request, Response
L Controllers/
L UserController.php
F20819MTUENTH

Domain/User.php (Entity)
<?php

namespace App\Domain;

class User

{

Laravel MVC Web Programming: Professional wih 5

4 o v A
g{uwmﬁammumiﬂu

public $id;
public $name;

public $email;

public function __ construct($id, $name, $email)
{

$this->id = $id;

$this->name = $name;

$this->email = $email;

// Business logic 3% validation

public function canRegister()

{

return filter_var($this->email, FILTER_VALIDATE_EMAIL) !== false;

}

Application/UserService.php (Use Case / Service Layer)
<?php

namespace App\Application;

use App\Domain\User;

use App\Infrastructure\Repositories\UserRepository;

class UserService

{

private $userRepository;
public function __construct(UserRepository $repo)

{

$this->userRepository = $repo;

public function registerUser($data)

Laravel MVC Web Programming: Professional

wh 6

4 o v A
g{uwmﬁammumiau

$user = new User(null, $data['name’], $data['email']);

if ('$user->canRegister()) {

throw new \Exception("Invalid email");

return $this->userRepository->save($user);

}

Infrastructure/Repositories/UserRepository.php
<?php

namespace App\Infrastructure\Repositories;

use App\Domain\User;

use App\Models\User as EloquentUser;

class UserRepository
{

public function save(User $user)

{

$model = new EloquentUser();
$model->name = $user->name;
$model->email = $user->email;

$model->save();

Suser->id = $model->id;

return $user;

}
Http/Controllers/UserController.php

<?php
namespace App\Http\Controllers;

Laravel MVC Web Programming: Professional wih 7

use App\Application\UserService;

use llluminate\Http\Request;

class UserController extends Controller

{

private $userService;

4 o v A
g{uwuq’?{ammumiau

public function __ construct(UserService $service)

{

$this->userService = $service;

public function register(Request $request)

{
try {

$user = $this->userService->registerUser($request->only(['name’, 'email']));

return response()->json(['success' => true, 'user' => $user]);

} catch (\Exception $e) {

return response()->json(['success' => false, 'error' => $e->getMessage()], 400);

}
}
}
G
9
d2% nINNNAN @228191% Laravel
NYuaTTaNATING
Domain Layer v App\Domain\User.php
(Entities)
Application 59115372939 (Use
! App\Application\UserService.php
Layer Cases, Services)
Infrastructure | Towdagutana, API,
* App\Infrastructure\Repositories\UserRepository.php
Layer External

Interface Layer

Ul, Controller, Routes

App\Http\Controllers\UserController.php

Laravel MVC Web Programming: Professional wih 8

AuviilidosianinSeu

unf 13: Design Patterns LLaz Clean Architecture Tw Laravel

(3N8aLdLALBIAN)

1. mluaasly Design Patterns Ltaz Clean Architecture?
« Maintainability (9186G2N13AUAINLA)

v o o o A . °) o
laadlasiaineTalan LunANNITLAATEY (Separation of Concerns) N lWLA LT AW
dialadne

o Scalability (2s1evzuuladng)

dl Qs U g 6 L3 1 v AI] 1
Waszuugugeaudn msueniaasuazld pattern azaaliidudiaaslnd 9 laglinsznu
fIBAUUIN

o Testability (dng@an1snagay)
LWeN business logic 8anan framework relAden unit test laazain
« Reusability (#1lAaanaua 1z lnai)

Taanaanuuudazinnauu b rluwran Uqﬂvl,@ﬂ@ el d LT N

2. Design Patterns fiaiailu Laravel
2.1 Singleton Pattern
> 6 v . a
° ’J(ﬂqﬂizﬁ{lﬂ: ®314 instance L@mmaaﬂma@aammzﬂﬂumm
o lu Laravel: Service Container ¥in9M4uuUL singleton AU service BANUAT LT Logger,
Cache, Config

Uselowl: aan1Ia39 object Trfau Useheia resource

2.2 Factory Pattern
o f@qﬂ‘i‘;mﬁ: LENFIBNIIFINN object 28NNNNNILTING (Decoupling Object Creation)
e G889 NI notification wanewiia lag factory azas19daulinaaiandasnsana
A
Wawly

¢ . a ' A '
Uszlami: aa coupling, 1naNangulunaRaszianln o

2.3 Strategy Pattern
o 6 = . A a ' . " v v o
o ’J(ﬂq‘ﬂ‘iz&dﬂ: LeanN algorithm AIAWEANIINISAING runtime I@ﬂumaum"’[mmn
¥ A ad o [} ad o a ad 2 A]
o 1% Laravel: lﬁLﬂaﬂu?ﬁﬂﬂdﬁu FDY IDDIISHWARU UL, IDTNITLLIILADUATT €

6 a ' v, % o
]J‘SZTEI%%: LW&Jﬂ’J']SJﬁ(ﬂ‘ﬂEIq%, E‘](ﬂﬂ’]ﬂ“ﬁ iflelse waLNL

Laravel MVC Web Programming: Professional wh 9

AuviilidosianinSeu

3. Clean Architecture Aaazly?
3.1 LWIAARAN
e UINANMNIUAATDUVDIUANTEIN Iﬁaglufuﬁmmzaw
e Dependency Rule: Iﬁ’@]ﬁ]’lﬂ‘ﬁgﬂu (Domain, Business Logic) ﬁ’mﬁuﬁ'ufuuaﬂ
(Framework, DB)

& . £z o 4 ') { o
e Isolation: Tulwhiasiwnuinalulagdniauwaniva il fswwilaslade

3.2 7%619 9 1 Clean Architecture

B LhaNBRIN P126/A8819
_ y A8N® Model §304,
Entities (Domain Layer) NJ03N3, Entities ndumwinsysu !
! Validation Logic
Use Cases (Application MRWANTIINNI%, Business Logic
Service Classes, Interactors

Layer) LWL use case
Interface Adapters (Interface ||a2 uwasdays, Controller, Controller, APl Resource,
Layer) Presenter, Gateway Repository Interface
Frameworks & Drivers Implementation 234 L% DB, Eloquent Model, Laravel
(Infrastructure Layer) Framework, External APIs DB, Third-party SDK

3.3 ANNTNNWSVDIT
& A o A . .
. mulummmmmlmumQmﬂlummu
oq: J s uq: £ 1 1 a a
o TUWWANTWALTWILLE e bINaLN
o ' ' . ') '
o @I8YNLDW Domain Layer 14iA13Uuny Laravel Framework W@ Laravel Framework

fW13LSun s Domain Layer b6t

4. N13%" Clean Architecture N’lsl%'ﬁ'u Laravel

4.1 Tassasolvlatmasuiziin

app/
Domain/ # Entities ez Business Rules
— Application/ # Use Cases, Services
Infrastructure/ # Repositories, DB Models, API Clients
— Hittp/ # Controllers, Requests, Responses

Laravel MVC Web Programming: Professional wh 10

4 v A v A
g{uwm%aiﬂmumiw

4.2 aragdslan luiAanasarza (Request Lifecycle)
1. Controller (Interface Layer) JueTaan HTTP
2. \3unlT Service (Application Layer) Lﬁa@‘i’nﬁumiﬁqiﬁﬁ]
3. Service |4 Entities (Domain Layer) .82 Repository Interface
4. Repository Interface 7N implement 1% Infrastructure Layer I@UL%awdaﬁ'ﬂ DB 138
External APIs

5. WRAWSRINAUKIW Controller 11¢i9 Client

4.3 N3y Dependency Injection
o 14 DI inject Repository Interface wnluUlu Service
¢ Registry Interface L Implementation £ Service Provider

o lAUAsu implementation ladnelaslddaiun by Service 138 Controller

5. @10819123980: User Registration A28 Clean Architecture
Domain Layer

namespace App\Domain;

class User

{

private string $name;

private string $email;

public function __ construct(string $name, string $email)

{
if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

throw new \InvalidArgumentException("Invalid email");

}
$this->name = $name;

$this->email = $email;

/I Getter methods...

}
Application Layer

Laravel MVC Web Programming: Professional wh 11

4 o v A
g{uwuq’?{ammumiau

namespace App\Application;

use App\Domain\User;

use App\Domain\Repositories\UserRepositorylnterface;

class RegisterUserService

{

private UserRepositoryInterface $userRepository;

public function __construct(UserRepositorylnterface $repo)

{

$this->userRepository = $repo;

public function register(array $data): User
{
$user = new User($data['name'], $data['email']);

return $this->userRepository->save($user);

}

Infrastructure Layer

namespace App\Infrastructure\Repositories;

use App\Domain\User;
use App\Domain\Repositories\UserRepositorylnterface;

use App\Models\User as EloquentUser;

class UserRepository implements UserRepositoryInterface

{

public function save(User $user): User
{
$model = new EloquentUser();
$model->name = $user->getName();

$model->email = $user->getEmail();

Laravel MVC Web Programming: Professional wih 12

4 o v A
g{uwmﬁammumiau

$model->save();
return $user;

}
Http Layer (Controller)

namespace App\Http\Controllers;

use App\Application\RegisterUserService;

use llluminate\Http\Request;

class UserController extends Controller

{

private RegisterUserService $registerService;

public function __ construct(RegisterUserService $service)

{

$this->registerService = $service;

public function register(Request $request)
{
$user = $this->registerService->register($request->only('name’, 'email'));

return response()->json($user);

6. 70AVa9 Clean Architecture 1w Laravel
A ~ . .
e AANIININI Laravel Framework @33 ¢ lu Business Logic
d' v] a
o Wisuulailevssiumouenlaslinsznuszuuginia
o AuaNuTalanlulasasllsandsmiuiivamalng

e 3893U Unit Testing N8N IzLLEN Domain Logic

7. zﬁg]

Laravel MVC Web Programming: Professional wh 13

4 o v A
g{uwuq’?{ammumiau

Q

1589 d1szdan

[

Design Patterns ||Singleton, Factory, Strategy Taauilaywiuuug LLa:Lﬁwm’mﬁ@mju

Clean Architecture||lLgnLa LwaslNanNUTALIBLAE AR Eqi%"ll 233U

Layers Domain, Application, Interface, Infrastructure
Laravel | Service Container W&z DI tN@30N3 dependencies serinalaleas
NRANT 1A@iA113 maintainable, scalable, testable

n'l‘sﬂ‘szﬁgn(iﬂ% Design Patterns 1w Laravel

1. Singleton Pattern
UWIAARAN
o il instance L@82URIAMNRIUITLY
o dasrunIan instance Twsidndou
o lu Laravel service container az¥in singleton service e singleton() method
@1281914 Laravel
A0E9FI9 Logger LUy Singleton
<?php

namespace App\Services;

class Logger

{

private static $instance = null;

/1 Ta9nNT1T8I9 instance WuaNNALwaN

private function __construct() {}

/I 31U instance LAgINWLENE
public static function getinstance()
{

if (self::$instance === null) {

self::$instance = new Logger();

Laravel MVC Web Programming: Professional wih 14

4 o v A
g{uwuq’?{ammumiau

return self::$instance;

public function log($message)

{
/1 JwinTannuas EnIoULRAINE
echo "Log: " . $message . PHP_EOL;

}
Tofon

$logger = Logger::getinstance();
$logger->log(‘'User logged in');
Laravel Service Container LLUl Singleton
Tu AppServiceProvider susnaInzidaw service WuU singleton
public function register()
{

$this->app->singleton('logger’, function ($app) {

return new \App\Services\Logger();

b

}

waztSanlalu Controller n3aNau 9 W% DI %38 app(‘logger’)

2. Factory Pattern
UWAAARAN
o 319 object lavliidasiuaziBuaves class iz instantiate
o 14 factory class n38 method 8319 object anutTanla
#2019 Laravel
#3519 Notification Factory
<?php

namespace App\Factories;

interface NotificationInterface

{

public function send(string $message);

Laravel MVC Web Programming: Professional wh 15

o v A v A
AUINUITDIINIUNLTYU

class EmailNotification implements NotificationInterface

{

public function send(string $message)
{
/] &3DLUA
echo "Send Email: $message" . PHP_EOL;

class SmsNotification implements NotificationInterface
{
public function send(string $message)
{
I/ 83 SMS
echo "Send SMS: $message" . PHP_EOL,;

class NotificationFactory

{

public static function create(string $type): NotificationInterface
{
switch ($type) {
case 'email":
return new EmailNotification();
case 'sms".
return new SmsNotification();

default:

throw new \Exception("Notification type [$type] not supported");

Laravel MVC Web Programming: Professional

wh 16

4 o v A
g{uwuq’?{ammumiau

1Fow
$notification = NotificationFactory::create('email’);

$notification->send("Hello from Factory!");

3. Strategy Pattern
UWAAAKAN
o a A . dl dl v 1
o MnUANgANIINTIE algorithm NiURswle lay encapsulate 14 class wand1IvIN
e @2 context 3|4 strategy ﬁgﬂﬁ'mu(ﬂlu runtime
f208191w Laravel
#5719 Strategy Interface uag Implementations
<?php

namespace App\Strategies;

interface PaymentStrategy

{

public function pay(float $amount);

class CreditCardPayment implements PaymentStrategy

{

public function pay(float $amount)

{
echo "Paid $amount using Credit Card." . PHP_EOL,;

class PaypalPayment implements PaymentStrategy

{

public function pay(float $amount)

{
echo "Paid $amount using Paypal." . PHP_EOL;

}

Context Class

Laravel MVC Web Programming: Professional wh 17

4 o v A
g{uwmﬁammumiau

<?php

namespace App\Context;

use App\Strategies\PaymentStrategy;

class PaymentContext

{
private PaymentStrategy $strategy;

public function __ construct(PaymentStrategy $strategy)

{
$this->strategy = $strategy;

public function pay(float $amount)

{
$this->strategy->pay($amount);

}
Tofon

use App\Context\PaymentContext;
use App\Strategies\PaypalPayment;
use App\Strategies\CreditCardPayment;

$payment = new PaymentContext(new PaypalPayment());

$payment->pay(1500);

$payment = new PaymentContext(new CreditCardPayment());

$payment->pay(3000);

G

9

Pattern 'gﬂwi% f208191w Laravel
Singleton § instance 1@ luszuy Logger, Cache service, Config service

Laravel MVC Web Programming: Professional wh 18

4 o v A
g{uwuq’?{ammumiau

Pattern

Qm@iu

@889l Laravel

Factory |&319 object LUU dynamic auTHa

Notification Factory, Payment Factory

Strategy Lﬁaﬂ‘wqaﬂﬁu/algorithm LWUY runtime

Payment methods, Shipping methods

' XA o 1 =3 4 o o [° a & o
@Elvl,ﬂuﬂa @I')aﬂqﬂ‘[ﬂillﬂi&lllﬂﬂlﬂﬂv[wa W‘iﬂ&liﬂidﬁﬁ’m Iﬂ@ LLASAIDUNY JINVNINRINIITU

fINTL Design Patterns 3 LU (Singleton, Factory, Strategy) ugadun

o 3 lUsunsuiugu (Basic Examples)

e 3 IﬂiLmsmLmﬂizqﬂ@T (Applied Examples)

aaad1slidsunsaiing 1w (Basic Examples)

@A28819 1: Singleton Logger Service

Tassaolna

routes/

[

Logger.php
<?php

web.php

namespace App\Services;

class Logger

{

private static $instance

private function __construct() {}

public static function getinstance()

{

= null;

if (self::$instance === null) {

self::$instance = new Logger();

Laravel MVC Web Programming: Professional

wih 19

4 o v A
g{uwuq’?{ammumiau

return self::$instance;

public function log($message)
{
Il FIATUNARDULA echo TR

echo "Log entry: " . $message;

}
web.php (Route)

use llluminate\Support\Facades\Route;

use App\Services\Logger;

Route::get('/singleton-logger’, function () {
$logger = Logger::getinstance();
$logger->log("User accessed singleton logger.");
b;
Aadurulan
« @a& Logger L Singleton Mi&§19 instance Lignniwaye
o route /singleton-logger t38n1T Logger instance LA8INUWLALLEAITEAINY
NANI3%
138N URL: /singleton-logger

NARNT: Log entry: User accessed singleton logger.

A28819 2: Factory Pattern — Notification Factory

Tassadolna

L NotificationFactory.php

routes/

L web.php
NotificationFactory.php
<?php

namespace App\Factories;

Laravel MVC Web Programming: Professional wih 20

interface NotificationInterface

{

public function send(string $message);

class EmailNotification implements NotificationInterface

{

public function send(string $message)

{

echo "Send Email: $message";

class SmsNotification implements NotificationInterface

{

public function send(string $message)

{
echo "Send SMS: $message";

class NotificationFactory

{

public static function create(string $type): NotificationInterface
{
if ($type === 'email") {
return new EmailNotification();
} elseif ($type === 'sms') {
return new SmsNotification();
} else {

throw new \Exception("Invalid notification type");

4 o v A
g{uwmﬁammumiﬂu

wh 21

Laravel MVC Web Programming: Professional

4 v A v A
ﬁuwm%aiﬂmumiau

}
web.php (Route)
use llluminate\Support\Facades\Route;

use App\Factories\NotificationFactory;

Route::get('/factory-notification/{type}', function ($type) {
try {
$notification = NotificationFactory::create($type);
$notification->send("This is a factory notification");
} catch (\Exception $e) {

return $e->getMessage();

Bk
Aadurulan

¢ NotificationFactory 831998UL3n46 Notification @l’]&l“ﬁﬁ@‘ﬁlixq

e route /factory-notification/{type} JU parameter LﬁaLﬁaﬂﬁﬁ@m’liLLﬁT\uaau
NANI3%

o 138N [factory-notification/email

NAAWS: Send Email: This is a factory notification
e 138N [factory-notification/sms

NAaWTD: Send SMS: This is a factory notification

@A28819 3: Strategy Pattern — Payment Methods

Tassadolna

PaymentStrategy.php

PaypalPayment.php
L CreditCardPayment.php

routes/

L web.php
PaymentStrategy.php
<?php

namespace App\Strategies;

Laravel MVC Web Programming: Professional wh 22

4 o v A
g{uwmﬁammumiau

interface PaymentStrategy

{

public function pay(float $amount);

}
PaypalPayment.php

<?php

namespace App\Strategies;

class PaypalPayment implements PaymentStrategy

{

public function pay(float $amount)

{

echo "Paid $amount using Paypal.";

}
CreditCardPayment.php

<?php

namespace App\Strategies;

class CreditCardPayment implements PaymentStrategy

{

public function pay(float $amount)

{

echo "Paid $amount using Credit Card.";

}
web.php (Route)

use llluminate\Support\Facades\Route;
use App\Strategies\PaypalPayment;
use App\Strategies\CreditCardPayment;

Route::get('/strategy-payment/{method}/{amount}’, function ($method, $amount) {

if ($method === 'paypal') {

Laravel MVC Web Programming: Professional

wih 23

4 v A v A
ﬁuwm%aiﬂmumiau

$payment = new PaypalPayment();
} elseif ($method === 'creditcard') {
$payment = new CreditCardPayment();
} else {
return "Payment method not supported";
}
$payment->pay((float)pamount);
b;
Aadurulan
e Interface PaymentStrategy mM#%a method pay()
e RaJIARIR implements strategy: PaypalPayment, CreditCardPayment
e route /strategy-payment/{method}/{amount} WRan strategy WAZINELIBONNTININ
NANI3%
e /strategy-payment/paypal/1000
NAAWS: Paid 1000 using Paypal.
e /strategy-payment/creditcard/500
NRAWT: Paid 500 using Credit Card.

ﬁ'mai'w‘[ﬂmnmuwaﬂsan@f (Applied Examples)

A28819 4: Singleton + Laravel Service Container — Configuration Service

Tassadolna

L ConfigService.php
app/Providers/
L AppServiceProvider.php

routes/

[

ConfigService.php

web.php

<?php

namespace App\Services;

class ConfigService

Laravel MVC Web Programming: Professional wih 24

private $config;

public function __construct()
{
/1 1aaa config 3 lWan3a DB
$this->config = [
‘app_name' => 'My Laravel App',

'version' => '1.0.0',

public function get($key)
{

return $this->config[$key] ?? null;

}

AppServiceProvider.php (register singleton)
public function register()
{
$this->app->singleton(ConfigService::class, function ($app) {
return new ConfigService();
)k
}
web.php (Route)

use App\Services\ConfigService;

use llluminate\Support\Facades\Route;

Route::get('/app-config', function (ConfigService $configService) {
return [
'app_name' => $configService->get(‘app_name'),

'version' => $configService->get('version'),

N;

4 o v A
g{uwmﬁammumiau

Laravel MVC Web Programming: Professional

wih 25

4 o v A
g{uwuq’?{ammumiau

A1a5u1Y
e ConfigService v singleton W% service container
e RN inject 1l Controller 132 Route Closure bat
« §AMIE9 instance G 9
NANI3%
38N /app-config & JSON:
{
"app_name": "My Laravel App",

"version": "1.0.0"

A28819 5: Factory Pattern — Payment Gateway Factory (with Laravel Bindings)

Tassaolna

L PaymentGatewayFactory.php
L Services/

PaymentGatewaylnterface.php

PaypalGateway.php
L StripeGateway.php
app/Providers/
L AppServiceProvider.php
routes/
L web.php
PaymentGatewaylinterface.php
<?php

namespace App\Services;

interface PaymentGatewaylnterface

{

public function charge(float $amount);

}
PaypalGateway.php

Laravel MVC Web Programming: Professional wh 26

4 o v A
g{uwmﬁammumiau

<?php

namespace App\Services;

class PaypalGateway implements PaymentGatewaylnterface

{

public function charge(float $amount)

{

return "Charging $amount via Paypal";

}
StripeGateway.php

<?php

namespace App\Services;

class StripeGateway implements PaymentGatewaylnterface

{

public function charge(float $amount)

{

return "Charging $amount via Stripe";

}
PaymentGatewayFactory.php

<?php

namespace App\Factories;

use App\Services\PaypalGateway;
use App\Services\StripeGateway;

use App\Services\PaymentGatewaylnterface;

class PaymentGatewayFactory

{

public static function create(string $type): PaymentGatewaylnterface

{
switch ($type) {

Laravel MVC Web Programming: Professional wh 27

4 v A v A
ﬁuwm%aiﬂmumiau

case 'paypal'

return new PaypalGateway();
case 'stripe":

return new StripeGateway();
default:

throw new \Exception("Payment gateway [$type] not supported");

}
AppServiceProvider.php (optional bindings)

public function register()
{
/I §13170 bind interface NU implementation lathdasns
}
web.php (Route)
use llluminate\Support\Facades\Route;

use App\Factories\PaymentGatewayFactory;

Route::get('/pay/{gateway}/{amount}', function ($gateway, $amount) {
try {
$paymentGateway = PaymentGatewayFactory::create($gateway);
return $paymentGateway->charge((float)$amount);
} catch (\Exception $e) {

return $e->getMessage();

N

NANI3%
e /pay/paypal/2500 — Charging 2500 via Paypal
e /pay/stripe/1500 — Charging 1500 via Stripe

MA28819 6: Strategy Pattern — Dynamic Discount Strategy
Tassaselnla

Laravel MVC Web Programming: Professional wh 28

4 o v A
g{uwmﬁammumiﬂu

DiscountStrategy.php

NoDiscount.php

PercentageDiscount.php
(I FixedAmountDiscount.php

routes/

[

DiscountStrategy.php

web.php

<?php

namespace App\Strategies;

interface DiscountStrategy
{
public function apply(float $amount): float;
}
NoDiscount.php
<?php
namespace App\Strategies;
class NoDiscount implements DiscountStrategy

{

public function apply(float $amount): float

{

return $amount;

}
}

PercentageDiscount.php

“php
<?php

namespace App\Strategies;

class PercentageDiscount implements DiscountStrategy

{

protected $percent;

Laravel MVC Web Programming: Professional wh 29

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 13

