

ค ำน ำ

ในโลกของการพฒันาเวบ็แอปพลเิคชนัยุคใหม่ การสรา้งระบบทีไ่ม่เพยีงแต่ “ใชง้านได้” แต่ยงัต้อง “ปรบั
ขยายไดง้า่ย ดแูลรกัษาไดด้ ีและปลอดภยั” ไดก้ลายมาเป็นมาตรฐานใหม่ของอุตสาหกรรม นักพฒันายุค
ปัจจุบนัจงึต้องก้าวข้ามจากการเขยีนโค้ดเชิงเทคนิคแบบพื้นฐาน ไปสู่การออกแบบสถาปัตยกรรม
ซอฟตแ์วรท์ีม่คีวามยัง่ยนื มรีะเบยีบ และรองรบัการเตบิโตในระดบัองคก์รไดจ้รงิ หนังสอื Laravel MVC
Web Programming: Professional เล่มนี้ถูกสรา้งขึน้เพื่อตอบโจทยน์ัน้อยา่งแทจ้รงิ

ไม่เพยีงแค่พาผูอ่้านใหเ้ขา้ใจวธิใีช ้Laravel อย่างมอือาชพี แต่ยงัชีใ้หเ้หน็ถงึแนวคดิเบือ้งหลงัที่
ท าให้ Laravel สามารถรองรบัระบบซับซ้อนในระดับองค์กรได้อย่างมัน่คง ไม่ว่าจะเป็น Design
Patterns, Clean Architecture, การทดสอบระบบอย่างครอบคลุม, การเตรยีมระบบส าหรบั Production,
หรอืแมก้ระทัง่การพฒันา Microservices ทีเ่ชื่อมต่อกนัอยา่งมปีระสทิธภิาพ

ในบทที ่13 ผูอ่้านจะไดรู้จ้กักบั Design Patterns และ Clean Architecture ใน Laravel (หน้า 1)
ซึง่ถอืเป็นแกนหลกัของการออกแบบระบบทีด่ ีเราจะส ารวจ Pattern ทีน่ าไปใชไ้ดจ้รงิใน Laravel เช่น
Repository, Strategy, Factory, รวมถงึแนวคดิ Clean Architecture ทีแ่ยก Layer อย่างชดัเจน (เช่น
Controller → Service → Domain → Infrastructure) เพื่อใหร้ะบบมคีวามเป็นอสิระของแต่ละชัน้
และพรอ้มต่อการทดสอบหรอืปรบัเปลีย่นในอนาคต

บทที ่14 ว่าดว้ยเรื่อง การทดสอบดว้ย PHPUnit และ Laravel Testing (หน้า 105) ผูอ่้านจะได้
ลงมอืเขยีน Unit Test ส าหรบั Model, Controller และ Service ทีท่ างานเบือ้งหลงั พรอ้มทัง้เรยีนรู ้
Feature Test ส าหรบัตรวจสอบระบบในมมุมองของผูใ้ช ้การ Mock ขอ้มลูเพื่อแยกการทดสอบแต่ละชัน้
การใช ้Test Doubles รวมถงึการตัง้ค่า Continuous Integration (CI) เพื่อใหก้ารทดสอบเป็นอตัโนมตัิ
และต่อเนื่อง เหมาะส าหรบัการท างานเป็นทมีและในระบบทีม่กีาร deploy บ่อย

เมื่อระบบพร้อมใช้งานจรงิ การเตรยีมระบบ Production คอืสิง่ที่ขาดไม่ได้ บทที่ 15 การ
Deploy Laravel Application สู่ Production (หน้า 190) จะพาผูอ่้านตัง้แต่การตัง้ค่า Environment การใช ้
Laravel Forge หรอืการ Deploy แบบ Manual ไปจนถงึการตัง้ค่า Web Server และ Queue Worker
ส าหรบังานเบื้องหลงั พรอ้มเทคนิคการท า Monitoring และ Logging เพื่อให้ระบบท างานได้เสถยีร
ปลอดภยั และสามารถตดิตามปัญหาไดอ้ยา่งรวดเรว็

สุดทา้ย บทที ่16 การพฒันา Microservices และ Advanced API (หน้า 249) จะเปิดโลกการ
ออกแบบระบบแบบแยกส่วนดว้ยแนวคดิ Microservices โดยใช ้Laravel เป็นฐานในการสรา้งบรกิารแต่
ละตวั พรอ้มทัง้เรยีนรูก้ารออกแบบ RESTful และ GraphQL API การจดัการ Authentication แบบ
OAuth2 และ JWT การสื่อสารระหว่าง Services ทัง้แบบ HTTP, gRPC หรอืผ่าน Message Queue
และการน า Docker มาใชใ้นการพฒันาและ Deploy อย่างมรีะบบ พรอ้มตวัอย่างจรงิทีส่ามารถน าไปต่อ
ยอดในองคก์รไดท้นัท ี

หนังสอืเล่มนี้เหมาะส าหรบันักพฒันาที่ผ่านขัน้พื้นฐาน Laravel มาแล้ว และก าลงัมองหาวธิ ี
“ยกระดบั” การพฒันาไปสู่ระบบทีม่ ัน่คง ปรบัขยายง่าย และเป็นมอือาชพีอย่างแทจ้รงิ ดว้ยแนวทางการ
เขยีนโค้ดเชงิสถาปัตยกรรม การทดสอบเชงิระบบ และการจดัการรอบด้านส าหรบัระบบ Production
และ Microservices หากผู้อ่านคอืนักพฒันาทีต่้องการสรา้ง Laravel Application ที ่“พรอ้มใช้จรงิใน
องคก์ร” หนงัสอืเล่มนี้คอืค าตอบ

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่13 Design Patterns และ Clean Architecture ใน Laravel (Design Patterns and
Clean Architecture in Laravel) ... 1

 Design Patterns และ Clean Architecture ใน Laravel
 Design Patterns และ Clean Architecture ใน Laravel (รายละเอยีดเชงิลกึ)
 การประยกุตใ์ช ้Design Patterns ใน Laravel
 การออกแบบระบบแบบ Clean Architecture
แนวคดิและรายละเอยีดเชงิลกึของการแยก Layer แบบ Clean Architecture ใน Laravel

บทที ่14 การทดสอบดว้ย PHPUnit และ Laravel Testing (PHPUnit and Laravel Testing)
 .. 105

 การทดสอบดว้ย PHPUnit และ Laravel Testing
 การทดสอบดว้ย PHPUnit และ Laravel Testing (เชงิลกึ)
 การเขยีน Unit Test ส าหรบั Model, Controller, และ Service
 การเขยีน Feature Test และ HTTP Test ใน Laravel
 การ Mocking และการใช ้Test Doubles ใน Laravel (PHPUnit)
 การตัง้ค่า Continuous Integration (CI) ส าหรบั Laravel
 ตวัอยา่งบรูณาการ

บทที ่15 การ Deploy Laravel Application สู่ Production (Laravel Application and
Production Deployment)... 190

 การ Deploy Laravel Application สู่ Production
 การ Deploy Laravel Application สู่ Production เพิม่เตมิ
 การตัง้ค่า Environment และ Configuration ส าหรบั Production ใน Laravel
 การใช ้Laravel Forge / Envoyer หรอื Manual Deploy
 การตัง้ค่า Web Server ส าหรบั Laravel
 การจดัการ Queue Worker และ Scheduler ใน Production
 การ Monitor และ Logging
 ตวัอยา่งบรูณาการ

บทที ่16 การพฒันา Microservices และ Advanced API (Microservices Development and
Advanced API) ... 249

 การพฒันา Microservices และ Advanced API
 รายละเอยีดเชงิลกึของ การพฒันา Microservices และ Advanced API
 การออกแบบ API แบบ RESTful และ GraphQL
 การจดัการ Authentication ใน Microservices (OAuth2, JWT)
 การสื่อสารระหว่าง Microservices
 การใช ้Docker รว่มกบั Laravel ในการพฒันาและ Deploy
 ตวัอยา่งบรูณาการ

บรรณานุกรม ... 331

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 1

บทท่ี 13
Design Patterns และ Clean Architecture ใน Laravel
 (Design Patterns and Clean Architecture in Laravel)

เน้ือหา

 Design Patterns และ Clean Architecture ใน Laravel
 Design Patterns และ Clean Architecture ใน Laravel (รายละเอยีดเชงิลกึ)
 การประยกุตใ์ช ้Design Patterns ใน Laravel
 การออกแบบระบบแบบ Clean Architecture
 แนวคดิและรายละเอยีดเชงิลกึของการแยก Layer แบบ Clean Architecture ใน Laravel

บทน า
บทท่ี 13: Design Patterns และ Clean Architecture ใน Laravel
การพัฒนาเว็บแอปพลิเคชันที่มีคุณภาพและยืดหยุ่นในระยะยาวต้องอาศัยแนวทางการออกแบบ
ซอฟต์แวรท์ีด่ ีการประยุกต์ใช้ Design Patterns เช่น Singleton, Factory และ Strategy ช่วยแก้ไข
ปัญหาการออกแบบทีซ่ ้าซอ้นและเพิม่ความสามารถในการบ ารุงรกัษาโคด้ ตวัอย่างเช่น Singleton ช่วย
ควบคุมการสรา้งอนิสแตนซข์องคลาสใหม้เีพยีงตวัเดยีว Factory ช่วยสรา้งออบเจกต์โดยไม่ต้องผูกมดั
กบัคลาสเฉพาะ และ Strategy ช่วยใหก้ารเปลีย่นแปลงพฤตกิรรมของโปรแกรมเป็นไปอย่างยดืหยุน่

นอกจากนัน้ แนวคดิ Clean Architecture เป็นกรอบการออกแบบระบบที่เน้นการแยก
ส่วนประกอบต่างๆ ของแอปพลเิคชนัออกจากกนัอย่างชดัเจน เพื่อลดความซบัซ้อนและท าให้โค้ดมี
ความเป็นระเบยีบ อ่านง่าย และง่ายต่อการทดสอบ โดย Clean Architecture มุ่งเน้นการแยกความ
รบัผดิชอบของแต่ละชัน้งานอยา่งชดัเจน

การแยกระบบออกเป็น Domain Layer, Application Layer และ Infrastructure Layer เป็น
หวัใจหลกัของ Clean Architecture โดย Domain Layer จะเกบ็ตรรกะทางธุรกจิทีส่ าคญั Application
Layer จะประสานงานระหว่าง Domain กบัส่วนอื่นๆ ของระบบ ส่วน Infrastructure Layer จะดูแลการ
เชื่อมต่อกบัระบบภายนอก เช่น ฐานขอ้มลู หรอืบรกิารอื่นๆ การจดัโครงสรา้งเช่นนี้ช่วยใหร้ะบบมคีวาม
ยดืหยุน่และสามารถปรบัเปลีย่นส่วนใดส่วนหนึ่งโดยไมส่่งผลกระทบกบัส่วนอื่น

บทนี้จงึเน้นใหน้ักพฒันาท าความเขา้ใจและน า Design Patterns มาประยุกต์ใชร้่วมกบัแนวทาง
Clean Architecture ในการออกแบบระบบ Laravel เพื่อใหไ้ดโ้ครงสรา้งโปรแกรมทีม่คีุณภาพสูง มคีวาม
ยดืหยุน่และงา่ยต่อการบ ารงุรกัษาในระยะยาว

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 2

Design Patterns และ Clean Architecture ใน Laravel
 การประยกุตใ์ช ้Design Patterns เช่น Singleton, Factory, Strategy
 การออกแบบระบบแบบ Clean Architecture
 การแยก Domain Layer, Application Layer และ Infrastructure Layer

1. การประยุกตใ์ช้ Design Patterns ใน Laravel
Laravel เป็น PHP Framework ทีอ่อกแบบมาใหใ้ชแ้นวคดิ OOP และ Design Patterns ไดง้า่ย
ตวัอยา่ง Design Patterns ทีน่ิยมใน Laravel ไดแ้ก่
- Singleton Pattern
ใชเ้พื่อใหค้ลาสม ีinstance เดยีวตลอดแอป เช่น Laravel Service Container เองกท็ างานแบบ
Singleton กบั Services หลายตวั
class Logger
{
 private static $instance;

 private function __construct() {}

 public static function getInstance()
 {
 if (!self::$instance) {
 self::$instance = new Logger();
 }
 return self::$instance;
 }

 public function log($message)
 {
 echo $message;
 }
}
ใน Laravel เรามกัใช ้Service Container แทนการสรา้ง Singleton เอง

- Factory Pattern

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 3

ใชส้รา้ง Object หลายประเภทโดยไมต่อ้งระบุคลาสทีช่ดัเจน ช่วยแยกการสรา้ง Object ออกจากการใช้
งาน
ตวัอยา่งการสรา้ง Factory ส าหรบัการสรา้ง Notification ต่าง ๆ
interface NotificationInterface {
 public function send($message);
}

class EmailNotification implements NotificationInterface {
 public function send($message) {
 // ส่งอเีมล
 }
}

class SmsNotification implements NotificationInterface {
 public function send($message) {
 // ส่ง SMS
 }
}

class NotificationFactory {
 public static function create($type): NotificationInterface {
 if ($type === 'email') {
 return new EmailNotification();
 }
 elseif ($type === 'sms') {
 return new SmsNotification();
 }
 throw new Exception("Notification type not supported.");
 }
}
การเรยีกใช ้
$notification = NotificationFactory::create('email');
$notification->send("Hello world");

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 4

- Strategy Pattern
ช่วยสลบัพฤตกิรรมของออ็บเจกตโ์ดยไมต่อ้งแกไ้ขโคด้หลกั ใช ้interface และ class หลายตวั
interface PaymentStrategy {
 public function pay($amount);
}

class CreditCardPayment implements PaymentStrategy {
 public function pay($amount) {
 // Logic ช าระเงนิผ่านบตัรเครดติ
 }
}

class PaypalPayment implements PaymentStrategy {
 public function pay($amount) {
 // Logic ช าระเงนิผ่าน Paypal
 }
}

class PaymentContext {
 private $strategy;

 public function __construct(PaymentStrategy $strategy) {
 $this->strategy = $strategy;
 }

 public function executePay($amount) {
 $this->strategy->pay($amount);
 }
}
การใช ้
$payment = new PaymentContext(new PaypalPayment());
$payment->executePay(1000);

2. การออกแบบระบบแบบ Clean Architecture

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 5

Clean Architecture แนะน าใหแ้ยกโคด้ออกเป็นชัน้ (Layer) เพื่อใหร้ะบบยดืหยุ่น ดูแลงา่ย และทดสอบ
งา่ย
โครงสร้างหลกั 4 ชัน้

 Entities (Domain Layer): กฎและขอ้มลูธุรกจิ (Business Logic) แบบนามธรรม ไมข่ึน้กบั
Framework หรอื Infrastructure ใด ๆ

 Use Cases (Application Layer): ก าหนดการท างานเฉพาะของระบบ (Business Use
Cases) โดยใช ้Entities

 Interface Adapters (Interface Layer): ตวัแปลงขอ้มลูและรบั/ส่งขอ้มลูระหว่างระบบกบัโลก
ภายนอก เช่น Controller, Presenter, Gateway

 Frameworks & Drivers (Infrastructure Layer): โคด้ทีเ่ชื่อมต่อกบัฐานขอ้มลู, UI, network,
Laravel Framework, Package ต่าง ๆ

3. การแยก Domain Layer, Application Layer และ Infrastructure Layer ใน Laravel
ใน Laravel ปกตเิราใชโ้ครงสรา้งแบบ MVC แต่ Clean Architecture แนะน าการแยกโฟลเดอรแ์ละ
หน้าทีช่ดัเจน เช่น
app/
 ├── Domain/ # Entities, Models, Business Logic
 │ └── User.php
 ├── Application/ # Use Cases, Service Classes
 │ └── UserService.php
 ├── Infrastructure/ # Database Repositories, External Services
 │ └── Repositories/
 │ └── UserRepository.php
 ├── Http/ # Controller, Request, Response
 │ └── Controllers/
 │ └── UserController.php
ตวัอย่างการแยกชัน้
Domain/User.php (Entity)
<?php
namespace App\Domain;

class User
{

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 6

 public $id;
 public $name;
 public $email;

 public function __construct($id, $name, $email)
 {
 $this->id = $id;
 $this->name = $name;
 $this->email = $email;
 }

 // Business logic เช่น validation
 public function canRegister()
 {
 return filter_var($this->email, FILTER_VALIDATE_EMAIL) !== false;
 }
}
Application/UserService.php (Use Case / Service Layer)
<?php
namespace App\Application;

use App\Domain\User;
use App\Infrastructure\Repositories\UserRepository;

class UserService
{
 private $userRepository;

 public function __construct(UserRepository $repo)
 {
 $this->userRepository = $repo;
 }

 public function registerUser($data)

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 7

 {
 $user = new User(null, $data['name'], $data['email']);

 if (!$user->canRegister()) {
 throw new \Exception("Invalid email");
 }

 return $this->userRepository->save($user);
 }
}
Infrastructure/Repositories/UserRepository.php
<?php
namespace App\Infrastructure\Repositories;

use App\Domain\User;
use App\Models\User as EloquentUser;

class UserRepository
{
 public function save(User $user)
 {
 $model = new EloquentUser();
 $model->name = $user->name;
 $model->email = $user->email;
 $model->save();

 $user->id = $model->id;

 return $user;
 }
}
Http/Controllers/UserController.php
<?php
namespace App\Http\Controllers;

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 8

use App\Application\UserService;
use Illuminate\Http\Request;

class UserController extends Controller
{
 private $userService;

 public function __construct(UserService $service)
 {
 $this->userService = $service;
 }

 public function register(Request $request)
 {
 try {
 $user = $this->userService->registerUser($request->only(['name', 'email']));
 return response()->json(['success' => true, 'user' => $user]);
 } catch (\Exception $e) {
 return response()->json(['success' => false, 'error' => $e->getMessage()], 400);
 }
 }
}

สรปุ

ส่วน หน้าท่ีหลกั ตวัอย่างใน Laravel

Domain Layer
กฎและขอ้มลูธุรกจิ
(Entities)

App\Domain\User.php

Application
Layer

ใชง้านธุรกจิจรงิ (Use
Cases, Services)

App\Application\UserService.php

Infrastructure
Layer

เชื่อมต่อฐานขอ้มลู, API,
External

App\Infrastructure\Repositories\UserRepository.php

Interface Layer UI, Controller, Routes App\Http\Controllers\UserController.php

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 9

บทท่ี 13: Design Patterns และ Clean Architecture ใน Laravel
(รายละเอียดเชิงลึก)

1. ท าไมต้องใช้ Design Patterns และ Clean Architecture?

 Maintainability (ง่ายต่อการดแูลรกัษา)
โคด้มโีครงสรา้งชดัเจน แยกความรบัผดิชอบ (Separation of Concerns) ท าใหแ้กไ้ขและพฒันา
ต่อไดง้า่ย

 Scalability (ขยายระบบได้ง่าย)
เมือ่ระบบซบัซอ้นขึน้ การแยกเลเยอรแ์ละใช ้pattern จะช่วยใหเ้พิม่ฟีเจอรใ์หม ่ๆ โดยไมก่ระทบ
ส่วนอื่นมาก

 Testability (ง่ายต่อการทดสอบ)
แยก business logic ออกจาก framework ช่วยใหเ้ขยีน unit test ไดส้ะดวก

 Reusability (น าโค้ดกลบัมาใช้ใหม่)
โคด้ทีอ่อกแบบดจีะน ากลบัมาใชใ้นหลายจุดไดโ้ดยไมต่อ้งเขยีนซ ้า

2. Design Patterns ท่ีนิยมใน Laravel
2.1 Singleton Pattern

 วตัถุประสงค:์ สรา้ง instance เดยีวของคลาสตลอดอายโุปรแกรม
 ใน Laravel: Service Container ท างานแบบ singleton กบั service หลายตวั เช่น Logger,

Cache, Config
ประโยชน์: ลดการสรา้ง object ซ ้าซอ้น ประหยดั resource

2.2 Factory Pattern

 วตัถุประสงค:์ แยกส่วนการสรา้ง object ออกจากการใชง้าน (Decoupling Object Creation)
 ตวัอยา่ง: การสรา้ง notification หลายชนิด โดย factory จะสรา้งออ็บเจก็ตช์นิดทีต่อ้งการตาม

เงือ่นไข
ประโยชน์: ลด coupling, เพิม่ความยดืหยุ่นในการเพิม่ประเภทใหม ่ๆ

2.3 Strategy Pattern

 วตัถุประสงค:์ เลอืก algorithm หรอืพฤตกิรรมระหว่าง runtime โดยไมต่อ้งแกโ้คด้หลกั
 ใน Laravel: ใชเ้ปลีย่นวธิที างาน เช่น วธิชี าระเงนิหลายแบบ, วธิกีารแจง้เตอืนต่าง ๆ

ประโยชน์: เพิม่ความยดืหยุน่, ลดการใช ้if/else ซอ้นกนั

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 10

3. Clean Architecture คืออะไร?
3.1 แนวคิดหลกั

 แยกความรบัผิดชอบของแต่ละส่วน ใหอ้ยูใ่นชัน้ทีเ่หมาะสม
 Dependency Rule: โคด้จากชัน้ใน (Domain, Business Logic) หา้มขึน้กบัชัน้นอก

(Framework, DB)
 Isolation: ชัน้ในไมค่วรขึน้กบัเทคโนโลยภีายนอกเพื่อใหเ้ปลีย่นแปลงไดง้า่ย

3.2 ชัน้ต่าง ๆ ใน Clean Architecture

ชัน้ เน้ือหา/หน้าท่ี ข้อดี/ตวัอย่าง

Entities (Domain Layer) กฎธุรกจิ, Entities ทีเ่ป็นนามธรรม
คลาส Model ธุรกจิ,
Validation Logic

Use Cases (Application
Layer)

ก าหนดการท างาน, Business Logic
เฉพาะ use case

Service Classes, Interactors

Interface Adapters (Interface
Layer)

ตวัแปลงขอ้มลู, Controller,
Presenter, Gateway

Controller, API Resource,
Repository Interface

Frameworks & Drivers
(Infrastructure Layer)

Implementation จรงิ เช่น DB,
Framework, External APIs

Eloquent Model, Laravel
DB, Third-party SDK

3.3 ความสมัพนัธข์องชัน้

 ชัน้ในสามารถเรยีกใชช้ัน้ทีอ่ยูภ่ายในเท่านัน้
 ชัน้นอกขึน้กบัชัน้ในได ้แต่ไมก่ลบักนั
 ตวัอยา่งเช่น Domain Layer ไมค่วรขึน้กบั Laravel Framework แต่ Laravel Framework

สามารถเรยีกใช ้Domain Layer ได ้

4. การน า Clean Architecture มาใช้กบั Laravel
4.1 โครงสร้างโฟลเดอรแ์นะน า
app/
 ├── Domain/ # Entities และ Business Rules
 ├── Application/ # Use Cases, Services
 ├── Infrastructure/ # Repositories, DB Models, API Clients
 ├── Http/ # Controllers, Requests, Responses

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 11

4.2 ตวัอย่างไลฟ์ไซเคิลของค าขอ (Request Lifecycle)
1. Controller (Interface Layer) รบัค าขอจาก HTTP
2. เรยีกใช ้Service (Application Layer) เพื่อด าเนินการธุรกจิ
3. Service ใช ้Entities (Domain Layer) และ Repository Interface
4. Repository Interface ถูก implement ใน Infrastructure Layer โดยเชื่อมต่อกบั DB หรอื

External APIs
5. ผลลพัธส์่งกลบัผ่าน Controller ไปยงั Client

4.3 การใช้ Dependency Injection

 ใช ้DI เพื่อ inject Repository Interface เขา้ไปใน Service
 Registry Interface กบั Implementation ผ่าน Service Provider
 ท าใหเ้ปลีย่น implementation ไดง้า่ยโดยไมต่อ้งแกไ้ข Service หรอื Controller

5. ตวัอย่างเชิงลึก: User Registration ด้วย Clean Architecture
Domain Layer
namespace App\Domain;

class User
{
 private string $name;
 private string $email;

 public function __construct(string $name, string $email)
 {
 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {
 throw new \InvalidArgumentException("Invalid email");
 }
 $this->name = $name;
 $this->email = $email;
 }

 // Getter methods...
}
Application Layer

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 12

namespace App\Application;

use App\Domain\User;
use App\Domain\Repositories\UserRepositoryInterface;

class RegisterUserService
{
 private UserRepositoryInterface $userRepository;

 public function __construct(UserRepositoryInterface $repo)
 {
 $this->userRepository = $repo;
 }

 public function register(array $data): User
 {
 $user = new User($data['name'], $data['email']);
 return $this->userRepository->save($user);
 }
}
Infrastructure Layer
namespace App\Infrastructure\Repositories;

use App\Domain\User;
use App\Domain\Repositories\UserRepositoryInterface;
use App\Models\User as EloquentUser;

class UserRepository implements UserRepositoryInterface
{
 public function save(User $user): User
 {
 $model = new EloquentUser();
 $model->name = $user->getName();
 $model->email = $user->getEmail();

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 13

 $model->save();

 return $user;
 }
}
Http Layer (Controller)
namespace App\Http\Controllers;

use App\Application\RegisterUserService;
use Illuminate\Http\Request;

class UserController extends Controller
{
 private RegisterUserService $registerService;

 public function __construct(RegisterUserService $service)
 {
 $this->registerService = $service;
 }

 public function register(Request $request)
 {
 $user = $this->registerService->register($request->only('name', 'email'));
 return response()->json($user);
 }
}

6. ข้อดีของ Clean Architecture ใน Laravel

 ลดการพึง่พงิ Laravel Framework ตรง ๆ ใน Business Logic
 เปลีย่นแปลงโครงสรา้งภายนอกโดยไมก่ระทบระบบธุรกจิ
 เพิม่ความชดัเจนในโครงสรา้งโปรเจกตส์ าหรบัทมีขนาดใหญ่
 รองรบั Unit Testing งา่ยเพราะแยก Domain Logic

7. สรปุ

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 14

เร่ือง สาระส าคญั

Design Patterns Singleton, Factory, Strategy ช่วยแกปั้ญหาแบบซ ้า ๆ และเพิม่ความยดืหยุ่น

Clean Architecture แยกเลเยอรเ์พื่อความชดัเจนและยดืหยุน่ของระบบ

Layers Domain, Application, Interface, Infrastructure

Laravel ใช ้Service Container และ DI เพื่อจดัการ dependencies ระหว่างเลเยอร ์

ผลลพัธ ์ โคด้มคีวาม maintainable, scalable, testable

การประยกุตใ์ช้ Design Patterns ใน Laravel

1. Singleton Pattern
แนวคิดหลกั

 ม ีinstance เดยีวของคลาสในระบบ
 ป้องกนัการสรา้ง instance ใหมซ่ ้าซอ้น
 ใน Laravel service container จะท า singleton service ไดง้า่ยดว้ย singleton() method

ตวัอย่างใน Laravel
ตวัอย่างสร้าง Logger แบบ Singleton
<?php
namespace App\Services;

class Logger
{
 private static $instance = null;

 // ป้องกนัการสรา้ง instance ใหมจ่ากภายนอก
 private function __construct() {}

 // รบั instance เดยีวกนัเสมอ
 public static function getInstance()
 {
 if (self::$instance === null) {
 self::$instance = new Logger();
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 15

 return self::$instance;
 }

 public function log($message)
 {
 // บนัทกึขอ้ความลงไฟลห์รอืแสดงผล
 echo "Log: " . $message . PHP_EOL;
 }
}
ใช้งาน
$logger = Logger::getInstance();
$logger->log('User logged in');
Laravel Service Container แบบ Singleton
ใน AppServiceProvider สามารถลงทะเบยีน service แบบ singleton
public function register()
{
 $this->app->singleton('logger', function ($app) {
 return new \App\Services\Logger();
 });
}
และเรยีกใชใ้น Controller หรอืทีอ่ื่น ๆ ผ่าน DI หรอื app('logger')

2. Factory Pattern
แนวคิดหลกั

 สรา้ง object โดยไมต่อ้งรูร้ายละเอยีดของ class ทีจ่ะ instantiate
 ใช ้factory class หรอื method สรา้ง object ตามเงือ่นไข

ตวัอย่างใน Laravel
สร้าง Notification Factory
<?php
namespace App\Factories;

interface NotificationInterface
{
 public function send(string $message);

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 16

}

class EmailNotification implements NotificationInterface
{
 public function send(string $message)
 {
 // ส่งอเีมล
 echo "Send Email: $message" . PHP_EOL;
 }
}

class SmsNotification implements NotificationInterface
{
 public function send(string $message)
 {
 // ส่ง SMS
 echo "Send SMS: $message" . PHP_EOL;
 }
}

class NotificationFactory
{
 public static function create(string $type): NotificationInterface
 {
 switch ($type) {
 case 'email':
 return new EmailNotification();
 case 'sms':
 return new SmsNotification();
 default:
 throw new \Exception("Notification type [$type] not supported");
 }
 }
}

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 17

ใช้งาน
$notification = NotificationFactory::create('email');
$notification->send("Hello from Factory!");

3. Strategy Pattern
แนวคิดหลกั

 ก าหนดพฤตกิรรมหรอื algorithm ทีเ่ปลีย่นได ้โดย encapsulate ใน class แยกต่างหาก
 ตวั context จะใช ้strategy ทีถู่กก าหนดใน runtime

ตวัอย่างใน Laravel
สร้าง Strategy Interface และ Implementations
<?php
namespace App\Strategies;

interface PaymentStrategy
{
 public function pay(float $amount);
}

class CreditCardPayment implements PaymentStrategy
{
 public function pay(float $amount)
 {
 echo "Paid $amount using Credit Card." . PHP_EOL;
 }
}

class PaypalPayment implements PaymentStrategy
{
 public function pay(float $amount)
 {
 echo "Paid $amount using Paypal." . PHP_EOL;
 }
}
Context Class

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 18

<?php
namespace App\Context;

use App\Strategies\PaymentStrategy;

class PaymentContext
{
 private PaymentStrategy $strategy;

 public function __construct(PaymentStrategy $strategy)
 {
 $this->strategy = $strategy;
 }

 public function pay(float $amount)
 {
 $this->strategy->pay($amount);
 }
}
ใช้งาน
use App\Context\PaymentContext;
use App\Strategies\PaypalPayment;
use App\Strategies\CreditCardPayment;

$payment = new PaymentContext(new PaypalPayment());
$payment->pay(1500);

$payment = new PaymentContext(new CreditCardPayment());
$payment->pay(3000);

สรปุ

Pattern จดุเด่น ตวัอย่างใน Laravel

Singleton ม ีinstance เดยีวในระบบ Logger, Cache service, Config service

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 19

Pattern จดุเด่น ตวัอย่างใน Laravel

Factory สรา้ง object แบบ dynamic ตามชนิด Notification Factory, Payment Factory

Strategy เลอืกพฤตกิรรม/algorithm แบบ runtime Payment methods, Shipping methods

ต่อไปนี้คอื ตวัอย่างโปรแกรมแบบเตม็ไฟล ์พรอ้มโครงสรา้ง โคด้ และค าอธบิาย รวมทัง้ผลการรนั
ส าหรบั Design Patterns 3 แบบ (Singleton, Factory, Strategy) แบ่งเป็น

 3 โปรแกรมพืน้ฐาน (Basic Examples)
 3 โปรแกรมแนวประยกุต ์(Applied Examples)

ตวัอย่างโปรแกรมพื้นฐาน (Basic Examples)

ตวัอย่าง 1: Singleton Logger Service
โครงสร้างไฟล ์
app/
 └── Services/
 └── Logger.php
routes/
 └── web.php
Logger.php
<?php
namespace App\Services;

class Logger
{
 private static $instance = null;

 private function __construct() {}

 public static function getInstance()
 {
 if (self::$instance === null) {
 self::$instance = new Logger();
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 20

 return self::$instance;
 }

 public function log($message)
 {
 // ส าหรบัทดสอบแค่ echo ขอ้ความ
 echo "Log entry: " . $message;
 }
}
web.php (Route)
use Illuminate\Support\Facades\Route;
use App\Services\Logger;

Route::get('/singleton-logger', function () {
 $logger = Logger::getInstance();
 $logger->log("User accessed singleton logger.");
});
ค าอธิบายโค้ด

 คลาส Logger เป็น Singleton ทีส่รา้ง instance เดยีวกนัเสมอ
 route /singleton-logger เรยีกใช ้Logger instance เดยีวกนัและแสดงขอ้ความ

ผลการรนั
เรยีก URL: /singleton-logger
ผลลพัธ:์ Log entry: User accessed singleton logger.

ตวัอย่าง 2: Factory Pattern — Notification Factory
โครงสร้างไฟล ์
app/
 └── Factories/
 └── NotificationFactory.php
routes/
 └── web.php
NotificationFactory.php
<?php
namespace App\Factories;

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 21

interface NotificationInterface
{
 public function send(string $message);
}

class EmailNotification implements NotificationInterface
{
 public function send(string $message)
 {
 echo "Send Email: $message";
 }
}

class SmsNotification implements NotificationInterface
{
 public function send(string $message)
 {
 echo "Send SMS: $message";
 }
}

class NotificationFactory
{
 public static function create(string $type): NotificationInterface
 {
 if ($type === 'email') {
 return new EmailNotification();
 } elseif ($type === 'sms') {
 return new SmsNotification();
 } else {
 throw new \Exception("Invalid notification type");
 }
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 22

}
web.php (Route)
use Illuminate\Support\Facades\Route;
use App\Factories\NotificationFactory;

Route::get('/factory-notification/{type}', function ($type) {
 try {
 $notification = NotificationFactory::create($type);
 $notification->send("This is a factory notification");
 } catch (\Exception $e) {
 return $e->getMessage();
 }
});
ค าอธิบายโค้ด

 NotificationFactory สรา้งออ็บเจก็ต ์Notification ตามชนิดทีร่ะบุ
 route /factory-notification/{type} รบั parameter เพื่อเลอืกชนิดการแจง้เตอืน

ผลการรนั
 เรยีก /factory-notification/email

ผลลพัธ:์ Send Email: This is a factory notification
 เรยีก /factory-notification/sms

ผลลพัธ:์ Send SMS: This is a factory notification

ตวัอย่าง 3: Strategy Pattern — Payment Methods
โครงสร้างไฟล ์
app/
 └── Strategies/
 ├── PaymentStrategy.php
 ├── PaypalPayment.php
 └── CreditCardPayment.php
routes/
 └── web.php
PaymentStrategy.php
<?php
namespace App\Strategies;

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 23

interface PaymentStrategy
{
 public function pay(float $amount);
}
PaypalPayment.php
<?php
namespace App\Strategies;

class PaypalPayment implements PaymentStrategy
{
 public function pay(float $amount)
 {
 echo "Paid $amount using Paypal.";
 }
}
CreditCardPayment.php
<?php
namespace App\Strategies;

class CreditCardPayment implements PaymentStrategy
{
 public function pay(float $amount)
 {
 echo "Paid $amount using Credit Card.";
 }
}
web.php (Route)
use Illuminate\Support\Facades\Route;
use App\Strategies\PaypalPayment;
use App\Strategies\CreditCardPayment;

Route::get('/strategy-payment/{method}/{amount}', function ($method, $amount) {
 if ($method === 'paypal') {

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 24

 $payment = new PaypalPayment();
 } elseif ($method === 'creditcard') {
 $payment = new CreditCardPayment();
 } else {
 return "Payment method not supported";
 }
 $payment->pay((float)$amount);
});
ค าอธิบายโค้ด

 Interface PaymentStrategy ก าหนด method pay()
 สองคลาส implements strategy: PaypalPayment, CreditCardPayment
 route /strategy-payment/{method}/{amount} เลอืก strategy และจา่ยเงนิตามจ านวน

ผลการรนั
 /strategy-payment/paypal/1000

ผลลพัธ:์ Paid 1000 using Paypal.
 /strategy-payment/creditcard/500

ผลลพัธ:์ Paid 500 using Credit Card.

ตวัอย่างโปรแกรมแนวประยกุต ์(Applied Examples)

ตวัอย่าง 4: Singleton + Laravel Service Container — Configuration Service
โครงสร้างไฟล ์
app/
 └── Services/
 └── ConfigService.php
app/Providers/
 └── AppServiceProvider.php
routes/
 └── web.php
ConfigService.php
<?php
namespace App\Services;

class ConfigService

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 25

{
 private $config;

 public function __construct()
 {
 // โหลด config จากไฟลห์รอื DB
 $this->config = [
 'app_name' => 'My Laravel App',
 'version' => '1.0.0',
];
 }

 public function get($key)
 {
 return $this->config[$key] ?? null;
 }
}
AppServiceProvider.php (register singleton)
public function register()
{
 $this->app->singleton(ConfigService::class, function ($app) {
 return new ConfigService();
 });
}
web.php (Route)
use App\Services\ConfigService;
use Illuminate\Support\Facades\Route;

Route::get('/app-config', function (ConfigService $configService) {
 return [
 'app_name' => $configService->get('app_name'),
 'version' => $configService->get('version'),
];
});

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 26

ค าอธิบาย
 ConfigService เป็น singleton ผ่าน service container
 สามารถ inject ใชใ้น Controller หรอื Route Closure ได ้
 ลดการสรา้ง instance ซ ้า ๆ

ผลการรนั
เรยีก /app-config ได ้JSON:
{
 "app_name": "My Laravel App",
 "version": "1.0.0"
}

ตวัอย่าง 5: Factory Pattern — Payment Gateway Factory (with Laravel Bindings)
โครงสร้างไฟล ์
app/
 └── Factories/
 └── PaymentGatewayFactory.php
 └── Services/
 ├── PaymentGatewayInterface.php
 ├── PaypalGateway.php
 └── StripeGateway.php
app/Providers/
 └── AppServiceProvider.php
routes/
 └── web.php
PaymentGatewayInterface.php
<?php
namespace App\Services;

interface PaymentGatewayInterface
{
 public function charge(float $amount);
}
PaypalGateway.php

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 27

<?php
namespace App\Services;

class PaypalGateway implements PaymentGatewayInterface
{
 public function charge(float $amount)
 {
 return "Charging $amount via Paypal";
 }
}
StripeGateway.php
<?php
namespace App\Services;

class StripeGateway implements PaymentGatewayInterface
{
 public function charge(float $amount)
 {
 return "Charging $amount via Stripe";
 }
}
PaymentGatewayFactory.php
<?php
namespace App\Factories;

use App\Services\PaypalGateway;
use App\Services\StripeGateway;
use App\Services\PaymentGatewayInterface;

class PaymentGatewayFactory
{
 public static function create(string $type): PaymentGatewayInterface
 {
 switch ($type) {

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 28

 case 'paypal':
 return new PaypalGateway();
 case 'stripe':
 return new StripeGateway();
 default:
 throw new \Exception("Payment gateway [$type] not supported");
 }
 }
}
AppServiceProvider.php (optional bindings)
public function register()
{
 // สามารถ bind interface กบั implementation ไดถ้า้ตอ้งการ
}
web.php (Route)
use Illuminate\Support\Facades\Route;
use App\Factories\PaymentGatewayFactory;

Route::get('/pay/{gateway}/{amount}', function ($gateway, $amount) {
 try {
 $paymentGateway = PaymentGatewayFactory::create($gateway);
 return $paymentGateway->charge((float)$amount);
 } catch (\Exception $e) {
 return $e->getMessage();
 }
});
ผลการรนั

 /pay/paypal/2500 → Charging 2500 via Paypal
 /pay/stripe/1500 → Charging 1500 via Stripe

ตวัอย่าง 6: Strategy Pattern — Dynamic Discount Strategy
โครงสร้างไฟล ์
app/
 └── Strategies/

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Professional หนา้ 29

 ├── DiscountStrategy.php
 ├── NoDiscount.php
 ├── PercentageDiscount.php
 └── FixedAmountDiscount.php
routes/
 └── web.php
DiscountStrategy.php
<?php
namespace App\Strategies;

interface DiscountStrategy
{
 public function apply(float $amount): float;
}
NoDiscount.php
<?php
namespace App\Strategies;
class NoDiscount implements DiscountStrategy
{
public function apply(float $amount): float
{
return $amount;
}
}

PercentageDiscount.php

```php 
<?php 
namespace App\Strategies; 
 
class PercentageDiscount implements DiscountStrategy 
{ 
    protected $percent; 


	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 13

