

ค ำน ำ

ในยุคดจิทิลัที่การพฒันาเวบ็แอปพลเิคชนัต้องตอบสนองต่อความต้องการที่เปลี่ยนแปลงอย่างรวดเรว็
การออกแบบระบบที่มคีวามยดืหยุ่น มปีระสทิธภิาพ และสามารถดูแลรกัษาได้ในระยะยาวกลายเป็น
หวัใจส าคญัของการพฒันา Laravel — หนึ่งใน PHP Framework ทีไ่ดร้บัความนิยมสูงสุด — ไดแ้สดง
ศกัยภาพในการเป็นเครือ่งมอืทรงพลงัทีช่่วยใหน้กัพฒันาสามารถสรา้งระบบเวบ็ทีซ่บัซอ้นภายใต้แนวคดิ
MVC (Model-View-Controller) ไดอ้ยา่งเป็นระบบและมรีะเบยีบ

หนังสอื Laravel MVC Web Programming: Advance เล่มนี้ถูกเขยีนขึน้เพื่อเป็นคู่มอืเชงิลกึ
ส าหรบันักพฒันา Laravel ทีม่พีืน้ฐานอยู่แลว้ และต้องการยกระดบัความรูไ้ปสู่การพฒันาแอปพลเิคชนั
ในระดับองค์กร โดยเนื้อหาจะเน้นการออกแบบระบบให้มีความเป็นสากล ยึดแนวทาง Clean
Architecture และ Software Engineering ทีด่ ีพรอ้มยกตวัอยา่งการใชง้านจรงิในแต่ละบท

ในบทที ่9 ผูอ่้านจะไดเ้รยีนรูเ้รื่อง Service Layer และ Repository Pattern ซึง่เป็นหวัใจส าคญั
ของการแยกความรบัผดิชอบภายในระบบ (Separation of Concerns) โดยการสรา้ง Service Class ที่
จดัการ Business Logic อย่างชดัเจน ท าให ้Controller ไม่ต้องแบกรบัภาระเกินจ าเป็น และสามารถ
ทดสอบแยกชัน้ไดส้ะดวก การใช ้Repository ยงัช่วยใหส้ามารถเปลีย่นแหล่งขอ้มลูไดง้่าย และส่งเสรมิ
การท างานแบบ Dependency Injection ดว้ย Service Container ที ่Laravel มใีหอ้ยา่งครบครนั

บทที ่10 จะพาผูอ่้านเขา้สู่โลกของ Laravel API ทีส่ามารถสรา้ง RESTful API ไดอ้ย่างรวดเรว็
และมมีาตรฐาน ผูอ่้านจะไดเ้รยีนรูก้ารก าหนด API Routes การสรา้ง Controller เฉพาะส าหรบั API การ
ใช ้ API Resource ในการแปลงขอ้มลูใหอ้ยู่ในรปูแบบ JSON ทีม่คีวามยดืหยุ่น และเหมาะกบัระบบ
Frontend ทีห่ลากหลาย นอกจากนี้ ยงักล่าวถงึการจดัการ Authentication ส าหรบั API ทัง้แบบ Token
และ Sanctum รวมถงึเทคนิคในการท า Pagination, Filtering และ Sorting ซึง่เป็นความสามารถส าคญั
ในระบบ API ทีม่ขีอ้มลูจ านวนมาก

เมื่อระบบเริม่มกีารท างานทีซ่บัซอ้นมากขึน้ การประมวลผลแบบ Asynchronous จงึเป็นเรื่อง
จ าเป็น บทที ่11 จะกล่าวถงึ Event, Listener, Queue และ Jobs ซึง่เป็นระบบจดัการงานเบือ้งหลงัของ
Laravel ทีช่่วยใหร้ะบบสามารถรองรบังานหนกัไดด้ขีึน้ ผูอ่้านจะไดเ้รยีนรูก้ารก าหนด Event เพื่อกระตุ้น
กระบวนการภายในแอปพลเิคชนัอย่างมรีะบบ การตัง้ค่า Queue Driver ทัง้แบบ Database และ Redis
ไปจนถงึการใชง้าน Scheduler ทีช่่วยใหส้ามารถรนังานตามเวลาทีก่ าหนดไดอ้ย่างมปีระสทิธภิาพ

บทสุดทา้ยในหนังสอืเล่มนี้ คอืบทที ่12 ซึง่ว่าดว้ย Cache Management และ Performance
Optimization เนื้อหาในบทนี้จะช่วยให้ผูอ่้านเขา้ใจถงึการจดัการประสทิธภิาพของแอปพลเิคชนัอย่าง
จรงิจงั ตัง้แต่การตัง้ค่า Cache Driver การจดัเก็บขอ้มูลชัว่คราวในระบบที่เหมาะสม การ Optimize
Query ดว้ยเทคนิค Eager Loading เพื่อลดจ านวนการเรยีกฐานขอ้มลู ไปจนถงึการใชเ้ครื่องมอือย่าง
Laravel Debugbar และ Laravel Telescope ทีช่่วยในการตรวจสอบพฤตกิรรมของระบบในระหว่างการ
พฒันาและทดสอบ

หนังสอืเล่มนี้ไม่เพยีงน าเสนอเทคนิคเชงิลกึเท่านัน้ แต่ยงัมุ่งเน้นการประยุกต์ใช้ในสถานการณ์
จรงิ พรอ้มตวัอย่างโคด้ทีเ่ขา้ใจง่ายและสามารถน าไปใช้งานไดท้นัท ีเหมาะส าหรบันักพฒันาที่ต้องการ
ยกระดบัตนเองไปสู่การเป็น Full-stack Laravel Developer หรอืทมีงานที่ก าลงัออกแบบระบบ Web
Application ทีซ่บัซอ้น

ผูเ้ขยีนเชื่อมัน่ว่า เมื่อผูอ่้านศกึษาเนื้อหาในหนังสอืเล่มนี้อย่างถ่องแท ้จะสามารถออกแบบและ
พฒันาระบบทีย่ดืหยุ่น ปรบัขยายได้ง่าย และรองรบัการเปลี่ยนแปลงของเทคโนโลยใีนอนาคตได้อย่าง
มัน่ใจ

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่9 การเขยีน Service Layer และ Repository Pattern (Service Layer and Repository
Pattern) ... 1

 การเขยีน Service Layer และ Repository Pattern
 การเขยีน Service Layer และ Repository Pattern — รายละเอยีดเชงิลกึ
 แนวคดิ Separation of Concerns (SoC)
 สรา้ง Service Class เพื่อจดัการ Business Logic
 การใช ้Repository Pattern กบั Eloquent ใน Laravel
การใช ้Dependency Injection กบั Service Container ใน Laravel

บทที ่10 การสรา้ง API ดว้ย Laravel (Laravel API) ... 127

 การสรา้ง API ดว้ย Laravel
 การสรา้ง API ดว้ย Laravel (รายละเอยีดเชงิลกึ)
 การตัง้ค่า API Routes ใน Laravel
 การสรา้ง API Controller และ Resource Controller ใน Laravel
 การใช ้API Resource ใน Laravel ส าหรบั JSON Response
 การใชง้าน API Authentication ใน Laravel
 การท า Pagination, Filtering, Sorting API ใน Laravel

บทที ่11 Event, Listener, Queue และ Jobs (Event, Listener, Queue and Jobs) 219

 Event, Listener, Queue และ Jobs
 Event, Listener, Queue และ Jobs (เชงิลกึ)
 การใชง้าน Event และ Listener ใน Laravel
 การตัง้ค่า Queue Driver ส าหรบั database และ redis
 การใชง้าน Scheduler ส าหรบังานทีต่อ้งรนัตามเวลาทีก่ าหนด

บทที ่12 การจดัการ Cache และ Performance Optimization (Cache Management and
Performance Optimization) .. 275

 การจดัการ Cache และ Performance Optimization
 รายละเอยีดเชงิลกึของการจดัการ Cache และ Performance Optimization ใน Laravel

 การใชง้าน Cache ใน Laravel
 การตัง้ค่า Cache Driver ใน Laravel
 เทคนิคการ Optimize Query และ Eager Loading ใน Laravel
 การใช ้Laravel Debugbar และ Laravel Telescope

บรรณานุกรม ... 332

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 1

บทท่ี 9
การเขียน Service Layer และ Repository Pattern

 (Service Layer and Repository Pattern)

เน้ือหา

 การเขยีน Service Layer และ Repository Pattern
 การเขยีน Service Layer และ Repository Pattern — รายละเอยีดเชงิลกึ
 แนวคดิ Separation of Concerns (SoC)
 สรา้ง Service Class เพื่อจดัการ Business Logic
 การใช ้Repository Pattern กบั Eloquent ใน Laravel
 การใช ้Dependency Injection กบั Service Container ใน Laravel

บทน า
บทท่ี 9: การเขียน Service Layer และ Repository Pattern
ในการพฒันาเว็บแอปพลเิคชนัที่มคีวามซบัซ้อน การจดัระเบยีบโค้ดให้มคีวามชดัเจนและแยกหน้าที่
อย่างเหมาะสมเป็นสิง่จ าเป็น แนวคดิ Separation of Concerns จงึเป็นพื้นฐานทีช่่วยใหน้ักพฒันา
สามารถแบ่งแยกความรบัผดิชอบของแต่ละส่วนในระบบอย่างชดัเจน เช่น การแยกส่วนทีจ่ดัการตรรกะ
ธุรกจิออกจากส่วนทีต่ดิต่อกบัฐานขอ้มลูหรอืส่วนแสดงผล เพื่อเพิม่ความงา่ยต่อการบ ารงุรกัษาและขยาย
ระบบในอนาคต

หนึ่งในวธิกีารทีน่ิยมใชใ้น Laravel คอืการสรา้ง Service Class ซึง่ท าหน้าทีเ่ป็นตวักลางในการ
จดัการตรรกะทางธุรกจิ (Business Logic) แยกออกจาก Controller ช่วยใหโ้คด้ใน Controller มคีวาม
เรยีบรอ้ยและโฟกสัที่การรบัค าขอและส่งผลลพัธ์เท่านัน้ การใช้ Service Layer ยงัช่วยให้สามารถ
ทดสอบโคด้แบบแยกส่วนไดง้า่ยขึน้และลดความซบัซอ้นของแต่ละส่วนในระบบ

ในส่วนของการจดัการขอ้มูล Laravel รองรบัการใช้ Repository Pattern ร่วมกบั Eloquent
ORM เพื่อแยกความรบัผดิชอบในการเขา้ถงึขอ้มลูออกจาก Business Logic Repository ท าหน้าทีเ่ป็น
ตวัแทนกลางในการตดิต่อกบัฐานขอ้มลู ท าใหก้ารเปลีย่นแปลงวธิกีารเขา้ถงึขอ้มลูหรอืฐานขอ้มลูทีใ่ช ้ไม่
กระทบกบัส่วนอื่นของระบบ และช่วยเพิม่ความยดืหยุน่ในการจดัการขอ้มลู

การน า Dependency Injection มาใชร้่วมกบั Service Container ใน Laravel ช่วยใหก้าร
จดัการและเรยีกใช้งาน Service Class หรอื Repository เป็นไปอย่างมปีระสทิธภิาพและยดืหยุ่น
Service Container จะท าหน้าทีจ่ดัการการสรา้งอนิสแตนซแ์ละแก้ไข dependencies ใหก้บัคลาสต่างๆ

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 2

โดยอตัโนมตัิ ช่วยลดความยุ่งยากในการเขยีนโค้ดและส่งเสรมิหลกัการเขยีนโปรแกรมเชงิวตัถุอย่าง
เตม็ที ่

บทนี้จงึเน้นการสอนใหน้ักพฒันามคีวามเขา้ใจลกึซึง้ในแนวคดิ Separation of Concerns และ
สามารถออกแบบระบบดว้ย Service Layer และ Repository Pattern รวมถงึการใช้ Dependency
Injection ร่วมกบั Service Container เพื่อใหร้ะบบมโีครงสรา้งทีเ่ป็นระเบยีบ ยดืหยุ่น และง่ายต่อการ
บ ารงุรกัษาในระยะยาว

การเขียน Service Layer และ Repository Pattern

 แนวคดิ Separation of Concerns
 สรา้ง Service Class เพื่อจดัการ Business Logic
 การใช ้Repository Pattern กบั Eloquent
 การใช ้Dependency Injection กบั Service Container

1. แนวคิด Separation of Concerns

 Separation of Concerns (SoC) คอืหลกัการออกแบบซอฟตแ์วรท์ีแ่บ่งแยกความรบัผดิชอบ
ต่าง ๆ ใหอ้ยูใ่นส่วนทีแ่ยกจากกนัอย่างชดัเจน

 ช่วยใหโ้คด้งา่ยต่อการดแูลรกัษา ทดสอบ และพฒันาเพิม่ในอนาคต
 ใน Laravel, เราแบ่งโคด้ออกเป็น

o Controller: รบั request และส่ง response
o Service Layer: จดัการ Business Logic
o Repository: จดัการการเขา้ถงึขอ้มลู (Data Layer)

2. สร้าง Service Class เพ่ือจดัการ Business Logic

 Service Layer คอืชัน้ทีท่ าหน้าทีป่ระมวลผลขอ้มลู ท างานทีซ่บัซอ้น และเรยีกใช ้Repository
เพื่อดงึ/บนัทกึขอ้มลู

 ตวัอยา่งเช่น การค านวณราคา การตรวจสอบเงือ่นไขพเิศษ หรอืการประสานงานหลาย
Repository

3. การใช้ Repository Pattern กบั Eloquent

 Repository Pattern คอืการสรา้งชัน้กลางทีแ่ยกความรบัผดิชอบการจดัการขอ้มลูออกจาก
Controller และ Service

 Repository ท าหน้าทีต่ดิต่อกบัฐานขอ้มลูหรอืแหล่งขอ้มลูอื่น ๆ
 ช่วยใหโ้คด้มคีวามยดืหยุน่ เช่น ถา้เปลีย่นฐานขอ้มลูในอนาคต กแ็ก ้Repository ไดง้า่ย

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 3

4. การใช้ Dependency Injection กบั Service Container
 Laravel มรีะบบ Service Container ทีช่่วยจดัการการสรา้งและส่งผ่าน dependency ใหก้บั

class ต่าง ๆ โดยอตัโนมตั ิ
 เราสามารถใช ้Dependency Injection ใน Controller หรอื Service เพื่อรบั instance ของ

Repository หรอื Service อื่น ๆ

ตวัอย่างโครงสร้างโปรเจกต ์
app/
 ├── Http/
 │ └── Controllers/
 │ └── UserController.php
 ├── Services/
 │ └── UserService.php
 └── Repositories/
 ├── UserRepositoryInterface.php
 └── UserRepository.php

ตวัอย่างโค้ด

1. สร้าง Interface Repository
app/Repositories/UserRepositoryInterface.php
<?php
namespace App\Repositories;

interface UserRepositoryInterface
{
 public function getAllUsers();

 public function getUserById($id);

 public function createUser(array $data);

 public function updateUser($id, array $data);

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 4

 public function deleteUser($id);
}

2. สร้าง Repository Implementation
app/Repositories/UserRepository.php
<?php
namespace App\Repositories;

use App\Models\User;

class UserRepository implements UserRepositoryInterface
{
 public function getAllUsers()
 {
 return User::all();
 }

 public function getUserById($id)
 {
 return User::find($id);
 }

 public function createUser(array $data)
 {
 return User::create($data);
 }

 public function updateUser($id, array $data)
 {
 $user = User::find($id);
 if ($user) {
 $user->update($data);
 return $user;
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 5

 return null;
 }

 public function deleteUser($id)
 {
 return User::destroy($id);
 }
}

3. สร้าง Service Layer
app/Services/UserService.php
<?php
namespace App\Services;

use App\Repositories\UserRepositoryInterface;

class UserService
{
 protected $userRepository;

 public function __construct(UserRepositoryInterface $userRepository)
 {
 $this->userRepository = $userRepository;
 }

 public function listUsers()
 {
 // Business Logic อื่น ๆ เช่น กรองขอ้มลู หรอืแปลงขอ้มลูก่อนส่ง
 return $this->userRepository->getAllUsers();
 }

 public function createUser(array $data)
 {
 // ตวัอยา่ง: ตรวจสอบขอ้มลู เพิม่เตมิ ก่อนสรา้ง user

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 6

 return $this->userRepository->createUser($data);
 }

 // สามารถเพิม่ method อื่น ๆ เช่น updateUser, deleteUser ไดต้ามตอ้งการ
}

4. ลงทะเบียน Binding ใน Service Provider
ที ่app/Providers/AppServiceProvider.php ใน method register()
public function register()
{
 $this->app->bind(
 \App\Repositories\UserRepositoryInterface::class,
 \App\Repositories\UserRepository::class
);
}

5. ใช้ Dependency Injection ใน Controller
app/Http/Controllers/UserController.php
<?php
namespace App\Http\Controllers;

use App\Services\UserService;
use Illuminate\Http\Request;

class UserController extends Controller
{
 protected $userService;

 public function __construct(UserService $userService)
 {
 $this->userService = $userService;
 }

 public function index()

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 7

 {
 $users = $this->userService->listUsers();
 return response()->json($users);
 }

 public function store(Request $request)
 {
 $data = $request->only(['name', 'email', 'password']);
 $user = $this->userService->createUser($data);
 return response()->json($user, 201);
 }
}

สรปุ

 Repository แยกการจดัการขอ้มลูออกจาก Controller/Service
 Service Layer จดัการ Business Logic ทีซ่บัซอ้นและประสานงานกบั Repository
 ใช ้Dependency Injection กบั Laravel Service Container ท าใหโ้คด้ยดืหยุน่และทดสอบงา่ย

ขึน้
 การออกแบบนี้ช่วยใหโ้คด้มคีวามสะอาด ดแูลง่าย และเปลีย่นแปลงในอนาคตไดส้ะดวก

การเขียน Service Layer และ Repository Pattern — รายละเอียดเชิงลึก

1. แนวคิด Separation of Concerns (SoC)

 Separation of Concerns คอืการแยกความรบัผดิชอบของแต่ละส่วนในระบบออกจากกนั
เพื่อใหแ้ต่ละส่วนท างานเฉพาะหน้าทีข่องตวัเอง

 จดุประสงคห์ลกัคอืช่วยใหโ้คด้ อ่านง่าย, ดแูลรกัษาง่าย, และ ขยายได้ง่าย
 ใน Laravel, โคด้มกัจะถูกแบ่งออกเป็น

o Controller: รบัค ารอ้งขอจากผูใ้ช ้(HTTP Requests) และส่งต่อไปยงั Service Layer
หรอืแสดงผลลพัธ ์

o Service Layer: จดัการกบั Business Logic (กฎธุรกจิ เช่น การค านวณ การตดัสนิใจ
ฯลฯ)

o Repository: จดัการขอ้มลู เช่น การตดิต่อฐานขอ้มลู, query ขอ้มลู, เกบ็ขอ้มลู
 การแยกชัน้นี้ช่วยลดความซบัซอ้นและท าใหท้ดสอบไดง้่ายขึน้ เพราะแต่ละชัน้มหีน้าทีช่ดัเจน

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 8

2. สร้าง Service Class เพ่ือจดัการ Business Logic
 Service Layer เป็นชัน้ทีร่บัผดิชอบเรือ่งการประมวลผลขอ้มลูทีเ่กีย่วขอ้งกบักฎธุรกจิ
 ตวัอยา่งเช่น ถา้เรามรีะบบขายสนิคา้

o Controller รบั request สัง่ซือ้สนิคา้
o Service จะค านวณราคาสนิคา้, ตรวจสอบสตอ็ก, ค านวณส่วนลด และประสานงานกบั

Repository เพื่อบนัทกึค าสัง่ซือ้
 ขอ้ดขีอง Service Layer:

o รวม Business Logic ไวใ้นทีเ่ดยีวกนั
o Controller ท าหน้าทีแ่ค่ส่งขอ้มลูและรบัผลลพัธ ์(แยกหน้าทีช่ดัเจน)
o ลดความซ ้าซอ้นของโคด้ (reusability)
o งา่ยต่อการเขยีน Unit Test เพราะสามารถทดสอบ Business Logic แยกจาก

Controller ได ้

3. การใช้ Repository Pattern กบั Eloquent

 Repository Pattern เป็นการสรา้งชัน้กลางเพื่อ แยกการเข้าถึงข้อมลู ออกจาก Controller
หรอื Service

 ช่วยให:้
o เปลีย่นแปลงแหล่งขอ้มลูไดง้า่ย (จากฐานขอ้มลูเป็น API หรอือื่น ๆ)
o ควบคุม query และ logic ทีเ่กีย่วกบัขอ้มลูไวท้ีเ่ดยีว
o เพิม่ความเป็นมาตรฐานของการเขา้ถงึขอ้มลูในโปรเจกต์

 ใน Laravel เราสามารถใช ้Repository รว่มกบั Eloquent ORM โดย Repository จะท าหน้าที่
เป็น wrapper ครอบ model อกีท ี

 ตวัอยา่งการใช ้Repository:
o UserRepository ม ีmethod เช่น findByEmail, getAllUsers, createUser
o Service หรอื Controller เรยีกใชผ้่าน interface ของ Repository ท าใหไ้มต่อ้งรู้

รายละเอยีดว่าใชอ้ะไรเกบ็ขอ้มลูจรงิ ๆ

4. การใช้ Dependency Injection กบั Service Container

 Laravel มรีะบบ Service Container ทีท่ าหน้าทีบ่รหิารจดัการการสรา้งและจดัส่ง
dependencies ใหก้บั class ต่าง ๆ อตัโนมตั ิ

 เราสามารถก าหนดว่า interface ไหนใหใ้ช ้implementation อะไร ผ่านการ binding ใน service
provider

 ขอ้ดขีอง Dependency Injection (DI):
o ลดการสรา้ง instance ดว้ยตนเองใน class อื่น ๆ

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 9

o เพิม่ความยดืหยุ่น เพราะสามารถเปลีย่น implementation ไดง้า่ย เช่น ใน testing อาจ
mock repository แทนของจรงิ

o งา่ยต่อการทดสอบ (testability) เพราะสามารถ inject dependencies แบบ mock หรอื
stub

 ใน Laravel เราท า DI ไดท้ัง้ใน Controller, Service, Middleware หรอื Event Listener ผ่าน
constructor injection หรอื method injection

ตวัอย่างขัน้ตอนการออกแบบและใช้งาน
1) สร้าง Interface Repository เพ่ือก าหนด contract ของ repository
interface UserRepositoryInterface {
 public function find($id);
 public function all();
 public function create(array $data);
}
2) สร้าง Class ท่ี implements interface นัน้จริง ๆ
class UserRepository implements UserRepositoryInterface {
 public function find($id) {
 return User::find($id);
 }
 // method อื่น ๆ ...
}
3) ลงทะเบียน binding ใน ServiceProvider
$this->app->bind(
 UserRepositoryInterface::class,
 UserRepository::class
);
4) สร้าง Service Layer ท่ีใช้ repository ผ่าน DI
class UserService {
 protected $userRepo;

 public function __construct(UserRepositoryInterface $userRepo) {
 $this->userRepo = $userRepo;
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 10

 public function registerUser(array $data) {
 // business logic ก่อนบนัทกึ
 return $this->userRepo->create($data);
 }
}
5) เรียกใช้ Service Layer ผา่น Controller (DI ผา่น constructor)
class UserController extends Controller {
 protected $userService;

 public function __construct(UserService $userService) {
 $this->userService = $userService;
 }

 public function store(Request $request) {
 $user = $this->userService->registerUser($request->all());
 return response()->json($user);
 }
}

ข้อดีของแนวทางน้ี (สรปุเชิงลึก)

ประเดน็ รายละเอียด

ความเป็นโมดลู (Modularity) โคด้แยกส่วนกนัชดัเจน ม ีinterface ช่วยลด coupling

ความยืดหยุ่น (Flexibility)
เปลีย่น implementation ไดง้า่ย เช่น เปลีย่น DB, ใช ้mock
ใน testing

ทดสอบง่าย (Testability)
สามารถเขยีน unit test ส าหรบั service และ repository
แยกจาก controller

การดแูลรกัษา (Maintainability)
แกไ้ขหรอืเพิม่ฟีเจอรโ์ดยไม่กระทบโคด้ส่วนอื่น เช่น เปลีย่น
business logic ใน service

การจดัการความซบัซ้อน (Complexity
Management)

ช่วยจดัการ logic ทีซ่บัซอ้นไดด้ ีแยกชัน้ขอ้มลูและ
business logic ออกจากกนั

ค าแนะน าเพ่ิมเติม

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 11

 ส าหรบัโปรเจกตข์นาดเลก็ อาจไม่จ าเป็นตอ้งใช ้Repository Pattern เสมอไป แต่ถา้โปรเจกต์
ใหญ่และซบัซอ้นจะช่วยไดม้าก

 สามารถใช ้Laravel Artisan สรา้ง Service Provider เองเพื่อรวมการลงทะเบยีน binding หรอื
การตัง้ค่าอื่น ๆ ทีเ่กีย่วขอ้งกบั service/repository

 ควรเขยีน interface ใหช้ดัเจนและครอบคลุม เพื่อใหง้า่ยต่อการเปลีย่นแปลงในอนาคต
 ใช ้Unit Test กบั Service และ Repository เพื่อป้องกนั bug และยนืยนั behavior

แนวคิด Separation of Concerns (SoC)

1. ความหมายของ Separation of Concerns

 Separation of Concerns หรอืแปลตรงตวัว่า “การแยกความรบัผดิชอบ” เป็นหลกัการ
ออกแบบซอฟตแ์วรท์ีมุ่ง่แยกส่วนต่าง ๆ ของโปรแกรมออกจากกนัโดยชดัเจน

 แต่ละส่วน (concern) จะดแูลหน้าทีเ่ฉพาะอย่างหนึ่ง ไม่รวมหลายหน้าทีผ่สมกนั
 เป้าหมายคอืท าใหโ้คด้ทีเ่ขยีนมคีวาม เป็นระเบียบ, เข้าใจง่าย, และ บ ารงุรกัษาง่าย

2. ท าไมต้องใช้ SoC?

 ในโปรเจกตท์ีซ่บัซอ้น การเขยีนโคด้โดยไมม่กีารแยกส่วนจะท าใหโ้คด้ยุ่งเหยงิ แกไ้ขทนีึงมี
ผลกระทบหลายส่วน

 การแยกความรบัผดิชอบท าใหเ้ราสามารถโฟกสัแกไ้ขหรอืพฒันาเฉพาะส่วนทีเ่กีย่วขอ้งโดยไม่
ตอ้งยุง่กบัส่วนอื่น ๆ

 ช่วยใหท้มีพฒันาแบ่งงานกนัท าไดง้า่ยขึน้ แต่ละคนดแูลแต่ละส่วนอยา่งชดัเจน
 ลดการซ ้าซอ้นของโคด้ เพราะแต่ละ concern อยูใ่นทีเ่ดยีว

3. SoC กบั Laravel
Laravel ออกแบบโครงสรา้งทีส่นบัสนุน SoC อยา่งชดัเจน เช่น

ส่วนงาน ความรบัผิดชอบหลกั ตวัอย่างใน Laravel

Routing จดัการการแมป็ URL ไปยงั Controller ไฟล ์routes/web.php

Controller
รบั HTTP Request, เรยีกใช ้Service หรอื
Model, ส่ง Response

คลาสใน app/Http/Controllers

Model จดัการขอ้มลู (ตดิต่อฐานขอ้มลู) Eloquent Model ใน app/Models

View แสดงผลขอ้มลูแก่ผูใ้ช ้ Blade Templates ใน resources/views

Service จดัการ Business Logic ซบัซอ้น คลาส Service ทีเ่ราเขยีนเองใน

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 12

ส่วนงาน ความรบัผิดชอบหลกั ตวัอย่างใน Laravel

Layer app/Services

Repository
จดัการเขา้ถงึขอ้มลู (data source
abstraction)

คลาส Repository ทีเ่ราเขยีนเองใน
app/Repositories

4. ตวัอย่างง่าย ๆ ของ SoC
สมมตวิ่าเรามรีะบบลงทะเบยีนผูใ้ช้

 Controller: รบัขอ้มลูจากฟอรม์ ลงทะเบยีน และส่งขอ้มลูไปให ้Service
 Service Layer: ตรวจสอบขอ้มลูซ ้าซอ้น เช่น อเีมลลซ์ ้า, เขา้รหสัรหสัผ่าน, ประสานงานกบั

Repository เพื่อบนัทกึ
 Repository: ตดิต่อกบัฐานขอ้มลูเพื่อบนัทกึขอ้มลูผู้ใช ้
 View: แสดงฟอรม์และแสดงขอ้ความยนืยนัผลลพัธ์

ถา้เราไมแ่ยกชัน้เหล่านี้ โคด้ใน Controller อาจยาวและยุง่ยาก ไมส่ะดวกต่อการดแูลและทดสอบ

5. ประโยชน์ส าคญัของ SoC

 เพ่ิมความชดัเจนของโค้ด: โคด้แต่ละส่วนมหีน้าทีเ่ฉพาะเจาะจง
 ง่ายต่อการบ ารงุรกัษา: แกไ้ขในส่วนใดส่วนหน่ึงไมก่ระทบส่วนอื่น
 เพ่ิมความสามารถในการทดสอบ: ทดสอบแต่ละส่วนแยกกนัได ้
 ช่วยการพฒันาแบบทีม: แต่ละคนดแูลส่วนงานของตวัเอง
 ง่ายต่อการขยาย: เพิม่ฟีเจอรใ์หมโ่ดยไมก่ระทบโคด้เก่า

6. ข้อสงัเกต

 แม ้SoC จะดมีาก แต่บางครัง้การแยกมากเกนิไปอาจท าใหโ้คด้ซบัซอ้นเกนิความจ าเป็น
 ควรประเมนิขนาดและความซบัซอ้นของโปรเจกตก่์อนเลอืกใช ้SoC ระดบัไหน
 ใน Laravel โครงสรา้ง MVC และ Service Layer/Repository Pattern ช่วยให ้SoC เป็นไป

อยา่งเหมาะสม

ต่อไปนี้เป็นตวัอยา่งโปรแกรม แบบเตม็ไฟล ์+ โครงสร้าง + ค าอธิบายโค้ด + ผลการรนั จ านวน 3
โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์ทีส่าธติแนวคดิ Separation of Concerns (SoC) ผ่าน
การใช ้Controller, Service Layer และ Repository Pattern ใน Laravel ครบั

ตวัอย่างพื้นฐาน 3 โปรแกรม

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 13

โครงสร้างโปรเจกต์ (ใช้ร่วมกนั)
app/
 ├── Http/
 │ └── Controllers/
 │ └── ProductController.php
 ├── Services/
 │ └── ProductService.php
 └── Repositories/
 ├── ProductRepositoryInterface.php
 └── ProductRepository.php
resources/
 └── views/
 ├── products.blade.php
routes/
 └── web.php

1. ProductRepositoryInterface.php
<?php
namespace App\Repositories;

interface ProductRepositoryInterface
{
 public function getAll();
 public function getById($id);
 public function create(array $data);
 public function update($id, array $data);
 public function delete($id);
}

2. ProductRepository.php
<?php
namespace App\Repositories;

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 14

use App\Models\Product;

class ProductRepository implements ProductRepositoryInterface
{
 public function getAll()
 {
 return Product::all();
 }

 public function getById($id)
 {
 return Product::find($id);
 }

 public function create(array $data)
 {
 return Product::create($data);
 }

 public function update($id, array $data)
 {
 $product = Product::find($id);
 if ($product) {
 $product->update($data);
 return $product;
 }
 return null;
 }

 public function delete($id)
 {
 return Product::destroy($id);
 }
}

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 15

3. ProductService.php
<?php
namespace App\Services;

use App\Repositories\ProductRepositoryInterface;

class ProductService
{
 protected $productRepository;

 public function __construct(ProductRepositoryInterface $productRepository)
 {
 $this->productRepository = $productRepository;
 }

 public function listProducts()
 {
 return $this->productRepository->getAll();
 }

 public function getProduct($id)
 {
 return $this->productRepository->getById($id);
 }

 public function createProduct(array $data)
 {
 // ตวัอยา่ง Business Logic: ตัง้ค่า default status
 if (!isset($data['status'])) {
 $data['status'] = 'active';
 }
 return $this->productRepository->create($data);
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 16

 public function updateProduct($id, array $data)
 {
 return $this->productRepository->update($id, $data);
 }

 public function deleteProduct($id)
 {
 return $this->productRepository->delete($id);
 }
}

4. ProductController.php
<?php
namespace App\Http\Controllers;

use App\Services\ProductService;
use Illuminate\Http\Request;

class ProductController extends Controller
{
 protected $productService;

 public function __construct(ProductService $productService)
 {
 $this->productService = $productService;
 }

 public function index()
 {
 $products = $this->productService->listProducts();
 return view('products', compact('products'));
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 17

 public function store(Request $request)
 {
 $data = $request->validate([
 'name' => 'required|string',
 'price' => 'required|numeric',
 'status' => 'nullable|string',
]);

 $product = $this->productService->createProduct($data);

 return redirect()->route('products.index')->with('success', 'Product created!');
 }

 public function destroy($id)
 {
 $this->productService->deleteProduct($id);
 return redirect()->route('products.index')->with('success', 'Product deleted!');
 }
}

5. Blade View: products.blade.php
<!DOCTYPE html>
<html>
<head><title>Products</title></head>
<body>
<h1>Products List</h1>

@if(session('success'))
 <p style="color:green">{{ session('success') }}</p>
@endif

<form action="{{ route('products.store') }}" method="POST">
 @csrf
 <input type="text" name="name" placeholder="Product name" required>

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 18

 <input type="number" step="0.01" name="price" placeholder="Price" required>
 <button type="submit">Add Product</button>
</form>

 @foreach ($products as $product)

 {{ $product->name }} - ${{ $product->price }}
 <form action="{{ route('products.destroy', $product->id) }}" method="POST"
style="display:inline;">
 @csrf
 @method('DELETE')
 <button type="submit" onclick="return confirm('Delete this product?')">Delete</button>
 </form>

 @endforeach

</body>
</html>

6. Route (web.php)
use App\Http\Controllers\ProductController;

Route::get('/products', [ProductController::class, 'index'])->name('products.index');
Route::post('/products', [ProductController::class, 'store'])->name('products.store');
Route::delete('/products/{id}', [ProductController::class, 'destroy'])->name('products.destroy');

7. Binding Repository Interface ใน AppServiceProvider
public function register()
{
 $this->app->bind(
 \App\Repositories\ProductRepositoryInterface::class,
 \App\Repositories\ProductRepository::class
);

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 19

}

ผลการรนัพ้ืนฐาน

 หน้า /products แสดงรายการสนิคา้
 เพิม่สนิคา้ใหมผ่่านฟอรม์ในหน้านี้
 ลบสนิคา้ผ่านปุ่ มลบ
 การท างานแยกชัน้ตาม SoC ชดัเจน: Controller → Service → Repository → Model

ตวัอย่างแนวประยกุต์ 3 โปรแกรม

1. โปรแกรมจดัการผู้ใช้พร้อม Role (User + Role)

 เพิม่ Role Repository และ Service
 แสดงผูใ้ชพ้รอ้ม Role ในหน้า Blade
 ใช ้Service Layer จดัการความสมัพนัธ ์User-Role

โครงสร้างเพ่ิม
app/
 ├── Models/
 │ ├── User.php
 │ └── Role.php
 ├── Repositories/
 │ ├── RoleRepositoryInterface.php
 │ └── RoleRepository.php
 ├── Services/
 │ └── RoleService.php
resources/
 └── views/
 └── users.blade.php
routes/web.php
ฟังกช์นัเด่น

 Service ใช ้transaction ในการสรา้ง user พรอ้ม role
 Repository ดงึขอ้มลูพรอ้มความสมัพนัธ ์(Eloquent eager loading)

2. โปรแกรม Search สินค้า

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 20

 Service layer รบั query จาก Controller
 Repository สรา้ง query builder พรอ้ม filter เงือ่นไข search
 Controller รบั input แลว้ส่งต่อให ้Service

ตวัอย่าง method Service
public function searchProducts(string $term)
{
 return $this->productRepository->search($term);
}
Repository ตวัอย่าง
public function search(string $term)
{
 return Product::where('name', 'LIKE', "%{$term}%")->get();
}

3. โปรแกรม Upload ไฟลแ์ละบนัทึกข้อมูลไฟลใ์นฐานข้อมลู

 Service Layer จดัการ validation และบนัทกึไฟล ์
 Repository บนัทกึขอ้มลูไฟลใ์นฐานขอ้มลู
 Controller รบั request ส่งต่อให ้Service

สรปุ
ตวัอยา่งทัง้หมดนี้แสดงแนวคดิ Separation of Concerns ใน Laravel โดยแยก

 Controller: รบัและส่ง HTTP request/response
 Service Layer: จดัการ Business Logic
 Repository: จดัการการเขา้ถงึขอ้มลู

สร้าง Service Class เพ่ือจดัการ Business Logic

1. บทบาทของ Service Class

 Service Class คอืชัน้ทีร่บัผดิชอบ จดัการ Business Logic ของระบบ
 แยก Business Logic ออกจาก Controller ท าให ้Controller ท าหน้าทีแ่ค่รบัและส่งขอ้มลู
 Business Logic คอื กฎ เงือ่นไข และกระบวนการทีก่ าหนดว่าระบบควรท างานอย่างไร เช่น

การค านวณ การตรวจสอบขอ้มลูก่อนบนัทกึ การตดัสนิใจเชงิธุรกจิ ฯลฯ
 การแยก Business Logic ไปที ่Service ท าใหโ้คด้ง่ายต่อการดแูลรกัษาและทดสอบ

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 21

2. ข้อดีของ Service Class

ข้อดี รายละเอียด

ลดความซ ้าซอ้นของโคด้ รวมโคด้ Business Logic ทีใ่ชซ้ ้าไวท้ีเ่ดยีว

งา่ยต่อการทดสอบ สามารถเขยีน Unit Test ส าหรบั Service ได ้

เพิม่ความชดัเจนของโคด้ Controller โคด้สัน้และเขา้ใจงา่ย

รองรบัการเปลีย่นแปลงในอนาคต เปลีย่น logic ที ่Service โดยไมก่ระทบ Controller

3. ตวัอย่างสร้าง Service Class แบบง่าย
สมมตวิ่าเรามรีะบบจดัการสนิคา้ (Product) เราจะสรา้ง Service เพื่อจดัการสรา้งสนิคา้พรอ้ม Business
Logic

3.1 สร้างไฟล ์Service
app/Services/ProductService.php
<?php
namespace App\Services;

use App\Repositories\ProductRepositoryInterface;

class ProductService
{
 protected $productRepository;

 // รบั dependency injection ของ repository ผ่าน constructor
 public function __construct(ProductRepositoryInterface $productRepository)
 {
 $this->productRepository = $productRepository;
 }

 // Business Logic: สรา้งสนิคา้ใหม ่พรอ้มตัง้ค่า default status
 public function createProduct(array $data)
 {
 // ตวัอยา่ง Business Logic: ถา้ไมไ่ดร้ะบุสถานะ ก าหนดเป็น active
 if (!isset($data['status'])) {

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 22

 $data['status'] = 'active';
 }

 // อาจเพิม่ Business Logic อื่น เช่น ตรวจสอบเงื่อนไข, ค านวณราคา ฯลฯ

 return $this->productRepository->create($data);
 }

 // ตวัอยา่ง method อื่น เช่น ดงึขอ้มลูสนิคา้ทัง้หมด
 public function listProducts()
 {
 return $this->productRepository->getAll();
 }
}

3.2 การเรียกใช้งาน Service ใน Controller
<?php
namespace App\Http\Controllers;

use App\Services\ProductService;
use Illuminate\Http\Request;

class ProductController extends Controller
{
 protected $productService;

 // รบั ProductService ผ่าน Dependency Injection
 public function __construct(ProductService $productService)
 {
 $this->productService = $productService;
 }

 // สรา้งสนิคา้ใหม ่โดยส่งขอ้มลูจาก Request ไปที ่Service
 public function store(Request $request)

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 23

 {
 $data = $request->validate([
 'name' => 'required|string',
 'price' => 'required|numeric',
]);

 $product = $this->productService->createProduct($data);

 return response()->json($product, 201);
 }

 // แสดงรายการสนิคา้
 public function index()
 {
 $products = $this->productService->listProducts();
 return response()->json($products);
 }
}

4. สรปุ

 Service Class คอืทีเ่กบ็ Business Logic แยกจาก Controller และ Repository
 Service ท างานรว่มกบั Repository เพื่อเขา้ถงึขอ้มลู (DB)
 Controller เรยีกใช ้Service เพื่อด าเนินการตามค าขอของผูใ้ช ้
 การออกแบบแบบน้ีช่วยใหโ้คด้สะอาด ดแูลรกัษาง่าย และงา่ยต่อการทดสอบ

ต่อไปนี้เป็นตวัอยา่งโปรแกรม แบบเตม็ไฟล ์+ โครงสร้าง + ค าอธิบายโค้ด + ผลการรนั จ านวน 3
โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์ทีแ่สดงการสรา้ง Service Class เพื่อจดัการ Business
Logic ใน Laravel

ตวัอย่างพื้นฐาน 3 โปรแกรม

โครงสร้างโปรเจกต์ (ใช้ร่วมกนั)
app/
 ├── Http/

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 24

 │ └── Controllers/
 │ ├── TaskController.php
 │ ├── OrderController.php
 │ └── UserController.php
 ├── Services/
 │ ├── TaskService.php
 │ ├── OrderService.php
 │ └── UserService.php
 └── Repositories/
 ├── TaskRepositoryInterface.php
 ├── TaskRepository.php
 ├── OrderRepositoryInterface.php
 ├── OrderRepository.php
 ├── UserRepositoryInterface.php
 └── UserRepository.php
resources/
 └── views/
 ├── tasks.blade.php
 ├── orders.blade.php
 └── users.blade.php
routes/
 └── web.php

1. ตวัอย่างโปรแกรม Task Management
1.1 TaskRepositoryInterface.php
<?php
namespace App\Repositories;

interface TaskRepositoryInterface
{
 public function getAll();
 public function create(array $data);
}

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 25

1.2 TaskRepository.php
<?php
namespace App\Repositories;

use App\Models\Task;

class TaskRepository implements TaskRepositoryInterface
{
 public function getAll()
 {
 return Task::all();
 }

 public function create(array $data)
 {
 return Task::create($data);
 }
}
1.3 TaskService.php
<?php
namespace App\Services;

use App\Repositories\TaskRepositoryInterface;

class TaskService
{
 protected $taskRepository;

 public function __construct(TaskRepositoryInterface $taskRepository)
 {
 $this->taskRepository = $taskRepository;
 }

 public function listTasks()

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 26

 {
 return $this->taskRepository->getAll();
 }

 public function addTask(array $data)
 {
 // Business Logic: ตัง้ค่า status เริม่ตน้
 if (!isset($data['status'])) {
 $data['status'] = 'pending';
 }
 return $this->taskRepository->create($data);
 }
}
1.4 TaskController.php
<?php
namespace App\Http\Controllers;

use App\Services\TaskService;
use Illuminate\Http\Request;

class TaskController extends Controller
{
 protected $taskService;

 public function __construct(TaskService $taskService)
 {
 $this->taskService = $taskService;
 }

 public function index()
 {
 $tasks = $this->taskService->listTasks();
 return view('tasks', compact('tasks'));
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 27

 public function store(Request $request)
 {
 $data = $request->validate([
 'title' => 'required|string',
]);

 $this->taskService->addTask($data);
 return redirect()->route('tasks.index')->with('success', 'Task added!');
 }
}
1.5 Blade View tasks.blade.php
<!DOCTYPE html>
<html>
<head><title>Tasks</title></head>
<body>
<h1>Task List</h1>

@if(session('success'))
 <p style="color:green">{{ session('success') }}</p>
@endif

<form method="POST" action="{{ route('tasks.store') }}">
 @csrf
 <input type="text" name="title" placeholder="New Task" required>
 <button type="submit">Add Task</button>
</form>

@foreach ($tasks as $task)
 {{ $task->title }} ({{ $task->status }})
@endforeach

</body>

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 28

</html>
1.6 Routes (web.php)
use App\Http\Controllers\TaskController;

Route::get('/tasks', [TaskController::class, 'index'])->name('tasks.index');
Route::post('/tasks', [TaskController::class, 'store'])->name('tasks.store');

2. ตวัอย่างโปรแกรม Order Management
(สรา้ง Service จดัการสถานะ order, ค านวณราคาทัง้หมด)
OrderService.php
<?php
namespace App\Services;

use App\Repositories\OrderRepositoryInterface;

class OrderService
{
 protected $orderRepository;

 public function __construct(OrderRepositoryInterface $orderRepository)
 {
 $this->orderRepository = $orderRepository;
 }

 public function createOrder(array $data)
 {
 // Business Logic: ค านวณราคาทัง้หมด
 $data['total_price'] = array_sum(array_column($data['items'], 'price'));

 return $this->orderRepository->create($data);
 }
}

3. ตวัอย่างโปรแกรม User Registration

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Advance หนา้ 29

(จดัการลงทะเบยีนผูใ้ช ้พรอ้มตรวจสอบและเขา้รหสัรหสัผ่าน)
UserService.php
<?php
namespace App\Services;

use App\Repositories\UserRepositoryInterface;
use Illuminate\Support\Facades\Hash;

class UserService
{
 protected $userRepository;

 public function __construct(UserRepositoryInterface $userRepository)
 {
 $this->userRepository = $userRepository;
 }

 public function registerUser(array $data)
 {
 // Business Logic: เขา้รหสัรหสัผ่าน
 $data['password'] = Hash::make($data['password']);

 return $this->userRepository->create($data);
 }
}

ตวัอย่างแนวประยกุต์ 3 โปรแกรม

1. ระบบจองห้องประชุม (Booking Room)

 Service ตรวจสอบวนัเวลาว่างก่อนบนัทกึ
 Repository จดัการตาราง booking ในฐานขอ้มลู
 Controller รบั request และส่งต่อ Service

2. ระบบแจ้งเตือนอีเมล (Email Notification)

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 9

