

ค าน า

การพฒันาเว็บแอปพลเิคชนัในปัจจุบนัไม่เพยีงแต่ต้องการความสามารถในการสร้างฟังก์ชนัพื้นฐาน
เท่านัน้ แต่ยงัต้องค านึงถึงประสทิธภิาพ ความปลอดภยั ความยดืหยุ่น และโครงสร้างที่สามารถปรบั
ขยายได ้หนังสอื Laravel MVC Web Programming: Intermediate เล่มนี้ถูกสรา้งขึน้เพื่อเป็นคู่มอืใน
การพฒันาทกัษะจากระดบัพื้นฐานสู่ระดบักลาง ช่วยให้ผู้อ่านเขา้ใจองค์ประกอบส าคญัของการพฒันา
เวบ็แอปพลเิคชนัดว้ย Laravel อยา่งเป็นระบบ และสามารถประยกุตใ์ชใ้นโครงการจรงิไดอ้ยา่งมัน่ใจ

ใน บทท่ี 5: การจดัการฐานข้อมูลด้วย Eloquent ORM (Eloquent ORM Database
Management) หน้า 1 ผูอ่้านจะไดเ้รยีนรูว้ธิกีารเชื่อมต่อฐานขอ้มลูกบั Laravel อย่างมอือาชพี ผ่านการ
สรา้ง Model การใชง้าน Migration เพื่อสรา้งตาราง และการจดัการขอ้มลูดว้ย Eloquent CRUD
(Create, Read, Update, Delete) นอกจากนี้ยงัแนะน าการใช ้Query Builder เบือ้งต้นเพื่อเพิม่ความ
ยดืหยุน่ในการท างานกบัขอ้มลู รวมถงึการสรา้งความสมัพนัธร์ะหว่าง Model (Eloquent Relationships)
เช่น One-to-One, One-to-Many และ Many-to-Many เพื่อใหก้ารออกแบบฐานขอ้มูลเป็นไปอย่างมี
ประสทิธภิาพ

บทท่ี 6: Authentication และ Authorization (Authentication and Authorization) หน้า
107 จะพาผูอ่้านเขา้สู่หวัขอ้ทีส่ าคญัส าหรบัการรกัษาความปลอดภยัและการจดัการสทิธิก์ารเขา้ถงึ โดย
อธบิายการตดิตัง้และใชง้าน Laravel Breeze หรอื Jetstream ส าหรบัการสรา้งระบบ Authentication
เบือ้งต้น การลงทะเบยีนและลอ็กอนิผูใ้ช ้ตลอดจนการจดัการ Role และ Permission เพื่อควบคุมการ
เขา้ถงึฟังกช์นัหรอืขอ้มลูต่าง ๆ ซึง่ถอืเป็นส่วนส าคญัของเวบ็แอปพลเิคชนัทีม่ผีูใ้ชห้ลายกลุ่ม

ใน บทท่ี 7: การจดัการ Session และ Flash Messages (Session and Flash Messages
Management) หน้า 166 ผูอ่้านจะไดท้ าความเขา้ใจวธิจีดัการ Session ใน Laravel เพื่อเกบ็ขอ้มูล
ส าคญัชัว่คราว การเรยีกใช้ Flash Messages เพื่อสื่อสารผลลพัธก์ารท างานกบัผูใ้ช ้และการท างานกบั
Cookies ซึง่เป็นเครือ่งมอืส าคญัในการสรา้งประสบการณ์ผูใ้ชท้ีด่แีละการเกบ็ขอ้มลูเพื่อประโยชน์ในการ
โตต้อบระหว่างผูใ้ชก้บัระบบ

บทท่ี 8: การจดัการไฟลแ์ละอปัโหลดไฟล ์(File and File Upload Management) หน้า 212
จะสอนวธิจีดัการไฟล์อย่างปลอดภยัและมปีระสทิธภิาพ เริม่ตัง้แต่การสร้างฟอร์มอปัโหลดไฟล์ การ
บนัทกึไฟลล์ง Storage การใชง้าน Laravel Filesystem ทัง้ในรปูแบบ Local และ S3 รวมถงึการ
ตรวจสอบชนิดไฟล์และขนาดไฟล์ เพื่อให้มัน่ใจว่าการจดัการไฟล์ในระบบเป็นไปตามมาตรฐานความ
ปลอดภยั

หนงัสอืเล่มนี้เน้นการอธบิายอยา่งละเอยีดเป็นขัน้ตอน พรอ้มตวัอย่างโคด้ทีส่ามารถน าไปใชง้าน
ไดจ้รงิในสถานการณ์ต่าง ๆ นอกจากนี้ยงัใหค้วามส าคญักบัแนวคดิเบือ้งหลงัแต่ละฟังก์ชนั เพื่อใหผู้อ่้าน
เขา้ใจทัง้กระบวนการและเหตุผลในการเลอืกใชเ้ทคนิคต่าง ๆ

ผูเ้ขยีนเชื่อว่าดว้ยเนื้อหาทีค่รอบคลุมและการอธบิายทีเ่ป็นระบบ หนังสอืเล่มนี้จะช่วยใหผู้อ่้านที่
มพีืน้ฐาน Laravel อยู่แลว้สามารถต่อยอดทกัษะและยกระดบัความสามารถในการพฒันาเวบ็แอปพลเิค
ชนัไดอ้ยา่งมัน่คง อกีทัง้ยงัเป็นกา้วส าคญัก่อนการเรยีนรูห้วัขอ้ขัน้สงูในระดบั Advance ต่อไป

สุดทา้ยนี้ ผู้เขยีนขอขอบคุณผู้อ่านทุกท่านที่ให้ความสนใจในหนังสอืชุด Laravel MVC Web
Programming และหวงัว่าหนงัสอืเล่มนี้จะเป็นเพื่อนคู่คดิทีช่่วยใหคุ้ณสรา้งสรรคผ์ลงานเวบ็แอปพลเิคชนั
ทีม่คีุณภาพ ตอบโจทยก์ารใชง้านจรงิ และกา้วสู่ความเป็นมอือาชพีในสายงานพฒันาเวบ็อยา่งแทจ้รงิ

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือราคานักเรียน

สารบญั

หน้า
บทที ่5 การจดัการฐานขอ้มลูดว้ย Eloquent ORM (Eloquent ORM Database
Management) ... 1

 การจดัการฐานขอ้มลูดว้ย Eloquent ORM
 การจดัการฐานขอ้มลูดว้ย Eloquent ORM (เชงิลกึ)
 การตัง้ค่าเชื่อมต่อฐานขอ้มลูใน Laravel
 การสรา้ง Model และการใช ้Migration สรา้งตาราง (Laravel)
 การใชง้าน Eloquent CRUD (Create, Read, Update, Delete) ใน Laravel
 การใช ้Query Builder เบือ้งตน้ใน Laravel
การสรา้งความสมัพนัธร์ะหว่าง Model ใน Laravel (Eloquent Relationships)

บทที ่6 Authentication และ Authorization (Authentication and Authorization) 107
 Authentication และ Authorization
 Authentication และ Authorization (รายละเอยีดเชงิลกึ)
 การตดิตัง้และใชง้าน Laravel Breeze หรอื Jetstream ส าหรบัระบบ Authentication

พืน้ฐาน
 การลงทะเบยีนและลอ็กอนิผูใ้ชใ้น Laravel (ดว้ย Breeze)
 การจดัการ Role และ Permission

บทที ่7 การจดัการ Session และ Flash Messages (Session and Flash Messages
Management) ... 166

 การจดัการ Session และ Flash Messages
 การจดัการ Session และ Flash Messages — รายละเอยีดเชงิลกึ
 การใชง้าน Session ใน Laravel
 การเกบ็และเรยีกใช ้Flash Messages ใน Laravel
 การท างานกบั Cookies ใน Laravel

บทที ่8 การจดัการไฟลแ์ละอปัโหลดไฟล ์ (File and File Upload Management) 212
 การจดัการไฟลแ์ละอปัโหลดไฟล ์
 การจดัการไฟลแ์ละอปัโหลดไฟลใ์น Laravel (รายละเอยีดเชงิลกึ)

 การสรา้งฟอรม์อปัโหลดไฟลใ์น Laravel
 การบนัทกึไฟลล์ง Storage ใน Laravel
 การใชง้าน Laravel Filesystem (Local, S3)
 การตรวจสอบชนิดไฟลแ์ละขนาดไฟลใ์น Laravel

บรรณานุกรม ... 274

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 1

บทท่ี 5
การจดัการฐานข้อมูลด้วย Eloquent ORM
 (Eloquent ORM Database Management)

เน้ือหา

 การจดัการฐานขอ้มลูดว้ย Eloquent ORM
 การจดัการฐานขอ้มลูดว้ย Eloquent ORM (เชงิลกึ)
 การตัง้ค่าเชื่อมต่อฐานขอ้มลูใน Laravel
 การสรา้ง Model และการใช ้Migration สรา้งตาราง (Laravel)
 การใชง้าน Eloquent CRUD (Create, Read, Update, Delete) ใน Laravel
 การใช ้Query Builder เบือ้งตน้ใน Laravel
 การสรา้งความสมัพนัธร์ะหว่าง Model ใน Laravel (Eloquent Relationships)

บทน า
บทท่ี 5: การจดัการฐานข้อมลูด้วย Eloquent ORM
การจดัการฐานขอ้มลูเป็นหวัใจส าคญัของการพฒันาเวบ็แอปพลเิคชนั เนื่องจากขอ้มลูเป็นองคป์ระกอบ
หลกัที่ระบบต้องจดัเก็บ ประมวลผล และแสดงผลให้กบัผู้ใช้ Laravel มเีครื่องมอืที่ช่วยให้การจดัการ
ฐานขอ้มลูท าไดอ้ย่างสะดวกและเป็นระบบผ่าน Eloquent ORM (Object-Relational Mapping) ซึง่
ออกแบบมาใหก้ารท างานกบัฐานขอ้มลูมคีวามเป็นเชงิวตัถุ (Object-Oriented) และอ่านง่ายกว่า SQL
แบบดัง้เดมิ

การเริม่ต้นใชง้านฐานขอ้มลูใน Laravel ต้องท าการ ตัง้ค่าเช่ือมต่อฐานข้อมูล ผ่านไฟล ์ .env
โดยก าหนดรายละเอียดส าคัญ เช่น ชื่อฐานข้อมูล ชื่อผู้ใช้ รหัสผ่าน และประเภทของฐานข้อมูล
(MySQL, PostgreSQL, SQLite หรอื SQL Server) การตัง้ค่าทีถู่กต้องท าใหร้ะบบสามารถเชื่อมต่อและ
ด าเนินการกบัฐานข้อมูลได้อย่างราบรื่น อีกทัง้ยงัสามารถปรบัเปลี่ยนค่าได้ง่ายเมื่อย้ายระบบระหว่าง
สภาพแวดลอ้มการพฒันาและการใชง้านจรงิ

หลงัจากตัง้ค่าการเชื่อมต่อแลว้ ขัน้ตอนต่อมาคอืการ สร้าง Model และการใช้ Migration เพื่อ
สรา้งตารางในฐานขอ้มลู Model ท าหน้าทีแ่ทนตารางในฐานขอ้มลู และช่วยให้การตดิต่อกบัขอ้มูลเป็น
เชงิวตัถุ ส่วน Migration เป็นเครื่องมอืทีช่่วยจดัการโครงสรา้งตาราง เช่น การสรา้งตารางใหม่ การเพิม่
คอลมัน์ หรอืการแกไ้ขคอลมัน์เดมิ ซึง่ท าใหก้ารพฒันาระบบรว่มกนัเป็นทมีท าไดง้า่ยและเป็นมาตรฐาน

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 2

Eloquent ORM ช่วยให้การท างานกบัขอ้มูลในรปูแบบ CRUD (Create, Read, Update,
Delete) มคีวามสะดวกและอ่านง่าย เช่น การเพิม่ขอ้มลูใหม่ดว้ย create() หรอื save() การอ่านขอ้มลู
ดว้ย all() หรอื find() การอปัเดตขอ้มลูดว้ย update() และการลบขอ้มลูดว้ย delete() ซึง่การเรยีกใชเ้มธ
อดเหล่านี้จะถูกแปลงเป็นค าสัง่ SQL โดยอตัโนมตั ิท าใหน้ักพฒันาสามารถโฟกสักบัตรรกะการท างาน
ของแอปพลเิคชนัมากกว่าการเขยีนค าสัง่ SQL โดยตรง

นอกจากการใช ้Eloquent แลว้ Laravel ยงัม ี Query Builder ซึง่เป็นอกีวธิหีนึ่งในการดงึหรอื
ประมวลผลขอ้มลูแบบยดืหยุน่และควบคุมการเขยีน Query ไดล้ะเอยีดขึน้ Query Builder รองรบัทัง้การ
เลอืกขอ้มูล การกรอง การเรยีงล าดบั และการเชื่อมตาราง ท าให้นักพฒันาสามารถใช้วธิีนี้ได้เมื่อการ
ประมวลผลขอ้มลูซบัซอ้นเกนิกว่าจะใช ้Eloquent เพยีงอยา่งเดยีว

อกีคุณสมบตัสิ าคญัของ Eloquent คอืการ สร้างความสมัพนัธ์ระหว่าง Model ซึง่ช่วยใหก้าร
ท างานกบัขอ้มลูทีเ่ชื่อมโยงกนัหลายตารางมคีวามสะดวก ตวัอย่างเช่น ความสมัพนัธแ์บบ One-to-One
ส าหรบัขอ้มูลที่จบัคู่กนัหนึ่งต่อหนึ่ง One-to-Many ส าหรบัขอ้มูลที่เชื่อมโยงแบบหนึ่งต่อหลาย และ
Many-to-Many ส าหรบัขอ้มลูทีม่คีวามสมัพนัธซ์บัซอ้นหลายต่อหลาย การก าหนดความสมัพนัธน์ี้ช่วย
ใหก้ารดงึขอ้มลูทีเ่กีย่วขอ้งท าไดง้า่ยขึน้เพยีงการเรยีกเมธอดทีก่ าหนดไวใ้น Model

บทนี้จงึถือเป็นพื้นฐานส าคญัส าหรบัการพฒันาเว็บแอปพลเิคชนัที่ต้องท างานกับฐานข้อมูล
เนื้อหาตัง้แต่การตัง้ค่าเชื่อมต่อฐานขอ้มูล การสรา้ง Model และ Migration การใช ้Eloquent ส าหรบั
CRUD การใช ้Query Builder เบื้องต้น ตลอดจนการสรา้งความสมัพนัธร์ะหว่าง Model จะช่วยให้
นักพฒันาสามารถจดัการขอ้มูลไดอ้ย่างเป็นระบบ ยดืหยุ่น และรองรบัการขยายตวัของระบบในอนาคต
ไดอ้ยา่งมปีระสทิธภิาพ

การจดัการฐานข้อมลูด้วย Eloquent ORM

 การตัง้ค่าเชื่อมต่อฐานขอ้มลู
 การสรา้ง Model และการใช ้Migration สรา้งตาราง
 การใชง้าน Eloquent CRUD (Create, Read, Update, Delete)
 การใช ้Query Builder เบือ้งตน้
 การสรา้งความสมัพนัธร์ะหว่าง Model (One-to-One, One-to-Many, Many-to-Many)

1. การตัง้ค่าเช่ือมต่อฐานข้อมลู

 เปิดไฟล ์.env ในโฟลเดอรโ์ปรเจกต ์Laravel
 ก าหนดค่าการเชื่อมต่อฐานขอ้มลู เช่น

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=your_database_name

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 3

DB_USERNAME=your_username
DB_PASSWORD=your_password

 Laravel จะใชข้อ้มลูนี้ในการเชื่อมต่อฐานขอ้มลูผ่าน config/database.php
 สามารถเลอืกฐานขอ้มลูไดห้ลายชนิด เช่น MySQL, PostgreSQL, SQLite, SQL Server

2. การสร้าง Model และการใช้ Migration สร้างตาราง

 สรา้ง Migration และ Model พรอ้มกนัโดยใชค้ าสัง่ Artisan CLI:
php artisan make:model Post -m

 ตวัอยา่งไฟล ์Migration (database/migrations/xxxx_xx_xx_create_posts_table.php)
public function up()
{
 Schema::create('posts', function (Blueprint $table) {
 $table->id();
 $table->string('title');
 $table->text('content');
 $table->timestamps();
 });
}

 รนั Migration เพื่อสรา้งตารางในฐานขอ้มลู
php artisan migrate

 Model (app/Models/Post.php) จะถูกสรา้งขึน้โดยอตัโนมตั:ิ
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Post extends Model
{
 protected $fillable = ['title', 'content'];
}

 protected $fillable ก าหนดฟิลดท์ีส่ามารถ Mass Assign ได ้

3. การใช้งาน Eloquent CRUD (Create, Read, Update, Delete)
สร้างข้อมลู (Create)
$post = Post::create([

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 4

 'title' => 'My First Post',
 'content' => 'This is the content of my first post.',
]);
อ่านข้อมลู (Read)
$posts = Post::all(); // ดงึขอ้มลูทัง้หมด
$post = Post::find(1); // ดงึขอ้มลู ID = 1
แก้ไขข้อมลู (Update)
$post = Post::find(1);
$post->title = 'Updated Title';
$post->save();
ลบข้อมูล (Delete)
$post = Post::find(1);
$post->delete();

4. การใช้ Query Builder เบือ้งต้น

 Query Builder ช่วยสรา้ง SQL Query ไดง้า่ย เช่น
use Illuminate\Support\Facades\DB;

$users = DB::table('users')->where('status', 'active')->get();

 ตวัอยา่ง Query Builder
$posts = DB::table('posts')
 ->where('title', 'like', '%Laravel%')
 ->orderBy('created_at', 'desc')
 ->limit(5)
 ->get();

 Query Builder สามารถใชง้านไดพ้รอ้ม Eloquent หรอืแยกต่างหาก

5. การสร้างความสมัพนัธ์ระหว่าง Model

One-to-One (เช่น User มี Profile หน่ึงอนั)
Model User
public function profile()
{
 return $this->hasOne(Profile::class);

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 5

}
Model Profile
public function user()
{
 return $this->belongsTo(User::class);
}

One-to-Many (เช่น Post มีหลาย Comment)
Model Post
public function comments()
{
 return $this->hasMany(Comment::class);
}
Model Comment
public function post()
{
 return $this->belongsTo(Post::class);
}

Many-to-Many (เช่น User มีหลาย Role และ Role มีหลาย User)
Model User
public function roles()
{
 return $this->belongsToMany(Role::class);
}
Model Role
public function users()
{
 return $this->belongsToMany(User::class);
}

 ตอ้งมตีาราง pivot (เช่น role_user) ทีเ่กบ็ความสมัพนัธ ์

การจดัการฐานข้อมลูด้วย Eloquent ORM (เชิงลึก)

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 6

1. การตัง้ค่าเช่ือมต่อฐานข้อมลู
 Laravel ใชไ้ฟล ์.env เป็นตวัก าหนดคอนฟิกส าหรบัการเชื่อมต่อฐานขอ้มลู
 โดยค่าเริม่ตน้ DB_CONNECTION จะเป็น mysql แต่สามารถเปลีย่นเป็น pgsql, sqlite หรอื

sqlsrv ไดต้ามฐานขอ้มลูทีใ่ชง้าน
 เหตผุลท่ีใช้ .env คอืเพื่อความปลอดภยั ไมเ่กบ็ขอ้มลูส าคญัในโคด้ และสามารถเปลีย่นแปลง

ไดง้า่ยในแต่ละ environment (dev, staging, production)
 ตวัอยา่ง .env:
 DB_CONNECTION=mysql
 DB_HOST=127.0.0.1
 DB_PORT=3306
 DB_DATABASE=laravel_db
 DB_USERNAME=root
 DB_PASSWORD=secret
 สามารถรนัค าสัง่ php artisan config:cache เพื่อ cache config และเพิม่ประสทิธภิาพใน

production

2. การสร้าง Model และ Migration

 Model คอืคลาสทีแ่ทนตารางในฐานขอ้มลู และท าหน้าทีต่ดิต่อกบัขอ้มลูในตารางนัน้
 ใชค้ าสัง่ php artisan make:model ModelName -m เพื่อสรา้ง Model และ Migration พรอ้มกนั
 Migration คอืไฟล ์PHP ทีใ่ชจ้ดัการสรา้ง/แกไ้ขโครงสรา้งตารางในฐานขอ้มลูอย่างเป็นระบบ
 การใช ้Migration ช่วยใหก้ารสรา้งตารางเป็น version control และงา่ยต่อการ deploy
 Migration มสีอง method ส าคญั:

o up() — ใชส้ าหรบัสรา้งหรอืแกไ้ขตาราง
o down() — ใชส้ าหรบัยอ้นกลบัการเปลีย่นแปลง (rollback)

 ตวัอยา่งโครงสรา้ง Migration:
 public function up()
 {
 Schema::create('users', function (Blueprint $table) {
 $table->id();
 $table->string('name');
 $table->string('email')->unique();
 $table->timestamps();
 });
 }

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 7

 การรนั migration: php artisan migrate จะตรวจสอบ migration ทัง้หมดทีย่งัไม่รนัและ
ด าเนินการสรา้งตาราง

3. การใช้งาน Eloquent CRUD

 Eloquent ORM ท าใหก้ารตดิต่อฐานขอ้มลูเป็นแบบ Object-Oriented สะดวกมากขึน้
Create (สร้างข้อมลู)

 สามารถใช ้Model::create() โดยตอ้งระบุฟิลดท์ีอ่นุญาตให ้Mass Assignment ($fillable หรอื
$guarded)

 หรอืสรา้ง instance แลว้ save() เช่น
 $user = new User();
 $user->name = 'John';
 $user->email = 'john@example.com';
 $user->save();

Read (อ่านข้อมลู)
 ใช ้Model::all(), Model::find(id), หรอื Model::where() เพื่อดงึขอ้มลูตามเงือ่นไข

Update (แก้ไขข้อมลู)
 หา record ทีต่อ้งการ แลว้เปลีย่นแปลงค่า จากนัน้เรยีก save()

Delete (ลบข้อมลู)
 หา record แลว้เรยีก delete() เพื่อถอดขอ้มลูออก
 หมายเหต:ุ มเีมธอดอื่น ๆ เช่น update(), destroy() ทีช่่วยใหเ้ขยีนโคด้สัน้และชดัเจนขึน้

4. การใช้ Query Builder เบือ้งต้น

 Query Builder คอื API ทีช่่วยเขยีน SQL query แบบ fluent syntax และรองรบัฐานขอ้มลู
หลายชนิด

 ใชเ้มือ่ไมต่อ้งการ Model หรอื Eloquent (เช่น query ทีซ่บัซอ้น หรอืประสทิธภิาพสูง)
 ตวัอยา่ง:
 $users = DB::table('users')->where('active', 1)->orderBy('created_at', 'desc')->get();
 Query Builder สามารถท างานรว่มกบั Eloquent ได ้เช่นใชใ้น scope หรอื subquery
 รองรบั join, groupBy, having, paginate เป็นตน้

5. การสร้างความสมัพนัธ์ระหว่าง Model
การจดัการความสมัพนัธข์องขอ้มลูในฐานขอ้มลูผ่าน Eloquent เป็นจุดเด่นทีส่ าคญั ช่วยใหเ้ขยีนโคด้
จดัการขอ้มลูทีเ่กี่ยวขอ้งกนังา่ยและชดัเจน
One-to-One

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 8

 เช่น User ม ีProfile หนึ่งเรคอรด์
// User.php
public function profile()
{
 return $this->hasOne(Profile::class);
}

// Profile.php
public function user()
{
 return $this->belongsTo(User::class);
}

 การเขา้ถงึ: $user->profile หรอื $profile->user
 โดยตาราง Profile ตอ้งม ีuser_id เป็น foreign key

One-to-Many

 เช่น Post มหีลาย Comment
// Post.php
public function comments()
{
 return $this->hasMany(Comment::class);
}

// Comment.php
public function post()
{
 return $this->belongsTo(Post::class);
}

 การเขา้ถงึ: $post->comments จะได ้Collection ของ Comment ทัง้หมด

Many-to-Many

 เช่น User มหีลาย Role และ Role มหีลาย User
// User.php
public function roles()

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 9

{
 return $this->belongsToMany(Role::class);
}

// Role.php
public function users()
{
 return $this->belongsToMany(User::class);
}

 ตอ้งมตีาราง Pivot เช่น role_user ทีเ่กบ็ user_id และ role_id
 สามารถใช ้attach(), detach(), sync() เพื่อจดัการความสมัพนัธ ์

สรปุ

หวัข้อ รายละเอียดเชิงลึก

การตัง้ค่า DB ก าหนดใน .env ค่าต่าง ๆ เช่น host, username, password, dbname

Model & Migration Model ใชแ้ทนตาราง DB, Migration สรา้ง/แกไ้ขโครงสรา้งตาราง

CRUD Eloquent ใช ้method เช่น create(), find(), save(), delete()

Query Builder API ส าหรบัเขยีน SQL แบบ Fluent และใชไ้ดทุ้ก DB

ความสมัพนัธ ์Model ก าหนด relation แบบ hasOne, hasMany, belongsToMany, ใชง้านงา่ย

การตัง้ค่าเช่ือมต่อฐานข้อมูลใน Laravel

1. ไฟล ์.env — จดุเร่ิมต้นของการตัง้ค่า

 Laravel ใชไ้ฟล ์.env เพื่อเกบ็คอนฟิกทีเ่ปลีย่นแปลงไดต้าม environment (development,
production ฯลฯ)

 ไฟลน์ี้ไมค่วรถูก commit ขึน้ระบบ version control เพราะมขีอ้มลูลบั เช่น รหสัผ่านฐานขอ้มลู
ตวัอยา่งการตัง้ค่า database ใน .env:
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=laravel_database
DB_USERNAME=root

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 10

DB_PASSWORD=secret

2. ความหมายของแต่ละตวัแปร

ตวัแปร ความหมาย ตวัอย่างค่า

DB_CONNECTION ประเภทฐานขอ้มลูทีใ่ช ้(ชื่อ driver) mysql, pgsql, sqlite, sqlsrv

DB_HOST ทีอ่ยู ่server ของฐานขอ้มลู 127.0.0.1, localhost, IP หรอื hostname

DB_PORT พอรต์เชื่อมต่อฐานขอ้มลู 3306 (MySQL), 5432 (PostgreSQL)

DB_DATABASE ชื่อฐานขอ้มลูทีจ่ะเชื่อมต่อ laravel_database

DB_USERNAME ชื่อผูใ้ชฐ้านขอ้มลู root

DB_PASSWORD รหสัผ่านของผูใ้ชฐ้านขอ้มลู secret

3. ตวัอย่างการเช่ือมต่อฐานข้อมลูแต่ละประเภท
MySQL
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=laravel_db
DB_USERNAME=root
DB_PASSWORD=secret
PostgreSQL
DB_CONNECTION=pgsql
DB_HOST=127.0.0.1
DB_PORT=5432
DB_DATABASE=laravel_db
DB_USERNAME=postgres
DB_PASSWORD=secret
SQLite

 ก าหนดไฟลฐ์านขอ้มลูทีเ่กบ็ในโปรเจกต ์เช่น
DB_CONNECTION=sqlite
DB_DATABASE=/full/path/to/database.sqlite

 หรอืใชไ้ฟลใ์นโปรเจกต์
DB_CONNECTION=sqlite

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 11

DB_DATABASE=database/database.sqlite

4. การตัง้ค่าในไฟล ์config/database.php

 Laravel อ่านค่าใน .env แลว้น ามาใส่ใน config ทีอ่ยูใ่น config/database.php
 ตวัอยา่งส่วนทีเ่กีย่วขอ้ง:

'mysql' => [
 'driver' => 'mysql',
 'host' => env('DB_HOST', '127.0.0.1'),
 'port' => env('DB_PORT', '3306'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'unix_socket' => env('DB_SOCKET', ''),
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'prefix' => '',
 'strict' => true,
 'engine' => null,
],

 env() จะอ่านค่าในไฟล ์.env โดยมคี่าดฟีอลตถ์า้ไมเ่จอ

5. การทดสอบการเช่ือมต่อ

 สามารถใชค้ าสัง่ Artisan เช่น
php artisan migrate:status
เพื่อทดสอบว่าการเชื่อมต่อฐานขอ้มลูส าเรจ็หรอืไม่

 หรอืเขยีนโคด้เชค็งา่ย ๆ:
try {
 DB::connection()->getPdo();
 echo "Connected to database successfully.";
} catch (\Exception $e) {
 echo "Could not connect to the database. Please check your configuration.";
}

6. ค าแนะน าเพ่ิมเติม

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 12

 ใน environment production ใหต้ัง้ค่าการเชื่อมต่อใหถู้กตอ้ง ปลอดภยั และเกบ็ขอ้มลูลบัใน
.env

 หลกีเลีย่งการเกบ็ขอ้มลูลบัในไฟล ์config หรอืโคด้โดยตรง
 ควรตัง้ค่าให ้DB_CONNECTION ตรงกบัฐานขอ้มลูทีใ่ชง้านจรงิ เช่น บางครัง้ dev ใช ้SQLite

แต่ production ใช ้MySQL
 อยา่ลมื restart server หรอื clear config cache (php artisan config:clear) หลงัแกไ้ข .env

นี่คอืตวัอยา่งโปรแกรม Laravel แบบเตม็ไฟล ์3 โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์ที่
แสดงการตัง้ค่าเชื่อมต่อฐานขอ้มลูและใชง้าน Eloquent ORM พรอ้มค าอธบิายโคด้และผลการรนั

ตวัอย่างโปรแกรมพื้นฐาน 3 โปรแกรม

ตวัอย่างท่ี 1: การเช่ือมต่อฐานข้อมูลและดึงข้อมลูด้วย Eloquent (Model: User)
โครงสร้างไฟล ์
routes/web.php
app/Models/User.php
app/Http/Controllers/UserController.php
resources/views/users.blade.php

routes/web.php
use App\Http\Controllers\UserController;

Route::get('/users', [UserController::class, 'index']);

app/Models/User.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{
 protected $fillable = ['name', 'email'];
}

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 13

app/Http/Controllers/UserController.php
namespace App\Http\Controllers;

use App\Models\User;

class UserController extends Controller
{
 public function index()
 {
 $users = User::all();
 return view('users', compact('users'));
 }
}

resources/views/users.blade.php
<!DOCTYPE html>
<html>
<head><title>User List</title></head>
<body>

<h1>Users</h1>

@foreach($users as $user)
 {{ $user->name }} - {{ $user->email }}
@endforeach

</body>
</html>

ค าอธิบาย

 เชื่อมต่อฐานขอ้มลูผ่าน .env (เช่น MySQL)
 Model User แทนตาราง users

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 14

 Controller ดงึขอ้มลูทัง้หมดแลว้ส่งไปที ่View
 View แสดงรายชื่อผูใ้ชใ้นรปูแบบลสิต์

ผลการรนั
แสดงหน้าเวบ็รายชื่อผูใ้ชท้ัง้หมดในตาราง users

ตวัอย่างท่ี 2: การสร้างข้อมลูใหม่ (Create) ด้วยฟอรม์
โครงสร้างไฟล ์
routes/web.php
app/Http/Controllers/ProductController.php
app/Models/Product.php
resources/views/product_create.blade.php

routes/web.php
use App\Http\Controllers\ProductController;

Route::get('/product/create', [ProductController::class, 'create']);
Route::post('/product/store', [ProductController::class, 'store'])->name('product.store');

app/Models/Product.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Product extends Model
{
 protected $fillable = ['name', 'price'];
}

app/Http/Controllers/ProductController.php
namespace App\Http\Controllers;

use App\Models\Product;
use Illuminate\Http\Request;

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 15

class ProductController extends Controller
{
 public function create()
 {
 return view('product_create');
 }

 public function store(Request $request)
 {
 $request->validate([
 'name' => 'required|min:3',
 'price' => 'required|numeric|min:0',
]);

 Product::create($request->all());

 return redirect()->back()->with('success', 'Product created successfully!');
 }
}

resources/views/product_create.blade.php
<!DOCTYPE html>
<html>
<head><title>Create Product</title></head>
<body>

<h1>Create Product</h1>

@if(session('success'))
 <p style="color: green;">{{ session('success') }}</p>
@endif

@if ($errors->any())

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 16

 <div style="color: red;">

 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

<form method="POST" action="{{ route('product.store') }}">
 @csrf
 <label>Name:</label>

 <input type="text" name="name" value="{{ old('name') }}">

 <label>Price:</label>

 <input type="number" name="price" step="0.01" value="{{ old('price') }}">

 <button type="submit">Create</button>
</form>

</body>
</html>

ค าอธิบาย

 มฟีอรม์กรอกชื่อสนิคา้และราคา
 Controller ตรวจสอบ Validation
 ถา้ผ่าน สรา้งขอ้มลูใหมใ่นตาราง products
 แจง้ผลลพัธผ์่าน session

ผลการรนั

 แสดงฟอรม์สรา้งสนิคา้
 ถา้ขอ้มลูไมถู่กตอ้ง จะแสดงขอ้ความ error
 ถา้ถูกตอ้ง แสดงขอ้ความ success

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 17

ตวัอย่างท่ี 3: การอปัเดตข้อมลู (Update)
โครงสร้างไฟล ์
routes/web.php
app/Http/Controllers/PostController.php
app/Models/Post.php
resources/views/post_edit.blade.php

routes/web.php
use App\Http\Controllers\PostController;

Route::get('/post/{id}/edit', [PostController::class, 'edit'])->name('post.edit');
Route::post('/post/{id}/update', [PostController::class, 'update'])->name('post.update');

app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Post extends Model
{
 protected $fillable = ['title', 'content'];
}

app/Http/Controllers/PostController.php
namespace App\Http\Controllers;

use App\Models\Post;
use Illuminate\Http\Request;

class PostController extends Controller
{
 public function edit($id)
 {
 $post = Post::findOrFail($id);

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 18

 return view('post_edit', compact('post'));
 }

 public function update(Request $request, $id)
 {
 $request->validate([
 'title' => 'required|min:3',
 'content' => 'required',
]);

 $post = Post::findOrFail($id);
 $post->update($request->all());

 return redirect()->route('post.edit', $post->id)->with('success', 'Post updated successfully!');
 }
}

resources/views/post_edit.blade.php
<!DOCTYPE html>
<html>
<head><title>Edit Post</title></head>
<body>

<h1>Edit Post</h1>

@if(session('success'))
 <p style="color: green;">{{ session('success') }}</p>
@endif

@if ($errors->any())
 <div style="color: red;">

 @foreach ($errors->all() as $error)
 {{ $error }}

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 19

 @endforeach

 </div>
@endif

<form method="POST" action="{{ route('post.update', $post->id) }}">
 @csrf

 <label>Title:</label>

 <input type="text" name="title" value="{{ old('title', $post->title) }}">

 <label>Content:</label>

 <textarea name="content">{{ old('content', $post->content) }}</textarea>

 <button type="submit">Update</button>
</form>

</body>
</html>

ค าอธิบาย

 ดงึขอ้มลูโพสตท์ีจ่ะแกไ้ขมาแสดงในฟอรม์
 ฟอรม์ส่งขอ้มลูไปอปัเดตใน Controller
 Controller ท า Validation และอปัเดตขอ้มลูในฐานขอ้มลู
 แจง้ผลลพัธผ์่าน session

ผลการรนั

 แสดงฟอรม์แกไ้ขโพสต์
 แสดงขอ้ความ error ถา้ขอ้มลูไมถู่กตอ้ง
 แสดงขอ้ความ success เมื่ออปัเดตส าเรจ็

ตวัอย่างโปรแกรมแนวประยกุต ์3 โปรแกรม

ตวัอย่างท่ี 4: ระบบ Blog Post กบัความสมัพนัธ ์One-to-Many (Post - Comments)

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 20

โครงสร้างไฟล ์
routes/web.php
app/Models/Post.php
app/Models/Comment.php
app/Http/Controllers/PostController.php
resources/views/post_show.blade.php

routes/web.php
use App\Http\Controllers\PostController;

Route::get('/post/{id}', [PostController::class, 'show'])->name('post.show');

app/Models/Post.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Post extends Model
{
 protected $fillable = ['title', 'content'];

 public function comments()
 {
 return $this->hasMany(Comment::class);
 }
}

app/Models/Comment.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Comment extends Model
{

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 21

 protected $fillable = ['post_id', 'author', 'comment'];

 public function post()
 {
 return $this->belongsTo(Post::class);
 }
}

app/Http/Controllers/PostController.php
namespace App\Http\Controllers;

use App\Models\Post;

class PostController extends Controller
{
 public function show($id)
 {
 $post = Post::with('comments')->findOrFail($id);
 return view('post_show', compact('post'));
 }
}

resources/views/post_show.blade.php
<!DOCTYPE html>
<html>
<head><title>Post Details</title></head>
<body>

<h1>{{ $post->title }}</h1>
<p>{{ $post->content }}</p>

<h3>Comments</h3>

 @foreach($post->comments as $comment)

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 22

 {{ $comment->author }}: {{ $comment->comment }}
 @endforeach

</body>
</html>

ค าอธิบาย

 แสดงขอ้มลูโพสตพ์รอ้มคอมเมนตท์ีเ่กีย่วขอ้งผ่านความสมัพนัธ์
 ใช ้eager loading (with('comments')) เพื่อลดจ านวน query

ผลการรนั

 แสดงโพสตพ์รอ้มคอมเมนต์ในหน้าเดยีวกนั

ตวัอย่างท่ี 5: ระบบผู้ใช้และบทบาท (Roles) แบบ Many-to-Many
โครงสร้างไฟล ์
routes/web.php
app/Models/User.php
app/Models/Role.php
app/Http/Controllers/UserController.php
resources/views/user_roles.blade.php

routes/web.php
use App\Http\Controllers\UserController;

Route::get('/user/{id}/roles', [UserController::class, 'showRoles'])->name('user.roles');

app/Models/User.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{

ศูนยห์นงัสือราคานกัเรียน

Laravel MVC Web Programming: Intermediate หนา้ 23

 protected $fillable = ['name', 'email'];

 public function roles()
 {
 return $this->belongsToMany(Role::class);
 }
}

app/Models/Role.php
namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Role extends Model
{
 protected $fillable = ['name'];

 public function users()
 {
 return $this->belongsToMany(User::class);
 }
}

app/Http/Controllers/UserController.php
namespace App\Http\Controllers;

use App\Models\User;

class UserController extends Controller
{
 public function showRoles($id)
 {
 $user = User::with('roles')->findOrFail($id);
 return view('user_roles', compact('user'));

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 5

