

ค ำน ำ

ในยุคที่เวบ็แอปพลเิคชนัมคีวามซบัซ้อนและผู้ใช้คาดหวงัประสทิธภิาพสูงสุดจากทุกคลกิ Svelte ได้
กลายมาเป็นทางเลอืกทีน่่าสนใจส าหรบันกัพฒันาเวบ็ยุคใหม่ ดว้ยแนวคดิ “compile-time framework” ที่
แปลกใหม่ Svelte ไม่เพยีงลดขนาดของ JavaScript บน client-side แต่ยงัช่วยใหโ้คด้กระชบั อ่านง่าย
และม ีperformance ทีเ่หนือกว่า framework แบบเดมิอย่าง React หรอื Vue ในหลายสถานการณ์
หนังสอื Svelte Web Programming: Professional เล่มนี้จงึถอืก าเนิดขึน้เพื่อตอบโจทยน์ักพฒันามอื
อาชพีทีต่้องการยกระดบัจากพืน้ฐานสู่การใช้งาน Svelte และ SvelteKit ในระดบั production อย่าง
แทจ้รงิ

โครงสรา้งของหนังสอืเริม่ต้นจากการน า TypeScript เขา้มาใช้งานร่วมกบั Svelte อย่างเป็น
ระบบ (บทที ่16) ผูอ่้านจะไดเ้รยีนรูต้ ัง้แต่การเปิดใชง้าน TypeScript ในโปรเจกต์ Svelte ไปจนถงึการ
Typing องคป์ระกอบส าคญัอย่าง props, store และ context รวมถงึการใช ้TypeScript กบั SvelteKit
อยา่งปลอดภยัในสภาพแวดลอ้มจรงิ ซึง่เนื้อหาน้ีไมเ่พยีงช่วยลดขอ้ผดิพลาดขณะเขยีนโคด้ แต่ยงัช่วยให้
ทมีพฒันาท างานรว่มกนัไดอ้ย่างมปีระสทิธภิาพมากขึน้

ต่อเนื่องดว้ยบทที ่17 ซึง่มุ่งเน้นดา้นการทดสอบแอปพลเิคชนั Svelte อย่างครอบคลุม ทัง้ Unit
Testing, Integration Testing ไปจนถงึ E2E Testing ผ่านเครื่องมอืชัน้น าอย่าง Vitest, Jest, @testing-
library/svelte และ Playwright/Cypress โดยใหต้วัอย่างชดัเจน พรอ้มแนวทางการ mock store, events
และการเรยีก fetch เพื่อใหผู้อ่้านสามารถสรา้งระบบทีเ่ชื่อถอืไดแ้ละตรวจสอบการท างานในทุกระดบัได้
อยา่งมัน่ใจ

เมื่อระบบถูกสรา้งขึ้นแล้ว การปรบัปรุงประสทิธภิาพ (บทที่ 18) ถือเป็นหวัใจส าคญัในการ
เตรยีมความพรอ้มสู่ production หนังสอืเล่มนี้จงึอธบิายวธิลีด bundle size, ใช ้lazy load, ตรวจสอบ
memory leaks และ fine-tune update cycles ของ Svelte/SvelteKit อย่างละเอยีด พรอ้มแนวทางการ
profiling และเทคนิค optimization จรงิทีใ่ชใ้นระบบระดบัองคก์ร

หลงัจากระบบท างานไดด้แีละรวดเรว็แลว้ ขัน้ตอนต่อไปคอืการ deploy ซึง่ครอบคลุมอยู่ในบทที ่
19 ผูอ่้านจะได้เรยีนรูก้าร build โปรเจกต์ทัง้แบบ static และ SSR, การเลอืกใช ้SvelteKit adapter ที่
เหมาะสม, วธิ ีdeploy ไปยงัแพลตฟอรม์ต่างๆ เช่น Netlify, Vercel หรอื Docker ตลอดจนการจดัการ
secrets และ environment variables อย่างปลอดภยั ช่วยใหร้ะบบสามารถน าขึน้ production ไดอ้ย่าง
ราบรืน่และมัน่คง

ท้ายที่สุด บทที่ 20 ของหนังสือคือการบูรณาการความรู้ทัง้หมด เพื่อสร้างระบบระดับ
production จรงิอย่างมรีะบบ ตัง้แต่การออกแบบโครงสรา้งโปรเจกต์ การแยกโมดูลเพื่อการ reuse และ
maintain ทีด่ ีการท า code splitting อยา่งชาญฉลาด ไปจนถงึการสรา้ง CI/CD pipeline ทีอ่ตัโนมตั ิและ
การจดัการ error และ logging อย่างเป็นระบบ ซึ่งเนื้อหานี้เป็นสิง่ที่นักพฒันาสายมอือาชพีไม่ควร
มองขา้ม

หนังสอื Svelte Web Programming: Professional จงึไม่ได้เป็นเพยีงต าราเทคนิค แต่คอื
แนวทางสู่การสร้างซอฟต์แวร์ระดบัองค์กรด้วย Svelte/SvelteKit อย่างมัน่คง มปีระสทิธภิาพ และ
ปลอดภยั ผูเ้ขยีนหวงัว่าหนงัสอืเล่มนี้จะเป็นเพื่อนคู่คดิส าหรบันกัพฒันาทุกคนในการต่อยอดจากพืน้ฐาน
สู่ความเชีย่วชาญ และรว่มผลกัดนัมาตรฐานการพฒันาเวบ็แอปพลเิคชนัของคุณไปอกีระดบั

ขอให้การเดนิทางสู่โลกของ Svelte ที่ทรงพลงันี้ เต็มไปด้วยแรงบนัดาลใจ ความเขา้ใจ และ
ความส าเรจ็ในทุกโปรเจกตข์องคุณ

ดว้ยรกัและปรารถนาด ี
ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่16 TypeScript กบั Svelte (TypeScript and Svelte) ... 1

 TypeScript กบั Svelte
 TypeScript กบั Svelte (เชงิลกึ)
 TypeScript กบั Svelte อยา่งละเอยีด
 การเพิม่ TypeScript ในโปรเจกต ์Svelte
 การ Typing Props, Store, และ Context ใน Svelte + TypeScript
การใช ้SvelteKit + TypeScript อยา่งปลอดภยั

บทที ่17 การทดสอบ (Testing Svelte App) ... 52
 การทดสอบ (Testing Svelte App)
 การทดสอบ (Testing Svelte App) — รายละเอยีดเชงิลกึ
 การทดสอบ Unit Test ดว้ย Vitest และ Jest
 การ Mock Store, Event และ Fetch ในการทดสอบ Svelte App
 การใช ้@testing-library/svelte ส าหรบัทดสอบ Svelte Components
 Integration Test และ E2E Testing ดว้ย Playwright / Cypress

บทที ่18 Optimization และ Performance (Optimization and Performance) 121
 Optimization และ Performance ใน Svelte / SvelteKit
 Optimization และ Performance ใน Svelte / SvelteKit (เชงิลกึ)
 การลด Bundle Size ใน Svelte / SvelteKit (เชงิลกึ)
 การแยกโหลดหน้าแบบ Lazy Load ใน Svelte / SvelteKit (เชงิลกึ)
 การจดัการ Memory Leaks และ Update Cycles ใน Svelte/SvelteKit (เชงิลกึ)
 ตวัอยา่งบรูณาการ

บทที ่19 การ Deploy แอป Svelte (Svelte Application Deployment) 177
 การ Deploy แอป Svelte
 การ Deploy แอป Svelte / SvelteKit (รายละเอยีดเชงิลกึ)
 การ Build โปรเจกตแ์บบ Static หรอื SSR ใน SvelteKit
 การใชง้าน SvelteKit Adapter (Node, Static, Vercel, Cloudflare)

 การ Deploy แอป SvelteKit ไปยงั Netlify / Vercel / Docker
 การตัง้ค่า Environment Variables และ Secrets ใน SvelteKit

บทที ่20 โปรเจกตจ์รงิ / Best Practices (Production/Best Practices) 236
 โปรเจกตจ์รงิ / Best Practices
 โปรเจกตจ์รงิ / Best Practices (เชงิลกึ)
 การสรา้งโปรเจกตร์ะดบั Production ดว้ย SvelteKit
 โครงสรา้งโปรเจกตแ์ละการแยก Module ใน Svelte/SvelteKit
 Code Splitting และ Reusability ใน Svelte/SvelteKit
 การท า CI/CD Pipeline ส าหรบั Svelte/SvelteKit
 การจดัการ Error + Logging ส าหรบั Production ใน Svelte/SvelteKit

บรรณานุกรม ... 311

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 1

บทท่ี 16
TypeScript กบั Svelte
(TypeScript and Svelte)

เน้ือหา

 TypeScript กบั Svelte
 TypeScript กบั Svelte (เชงิลกึ)
 TypeScript กบั Svelte อยา่งละเอยีด
 การเพิม่ TypeScript ในโปรเจกต ์Svelte
 การ Typing Props, Store, และ Context ใน Svelte + TypeScript
 การใช ้SvelteKit + TypeScript อยา่งปลอดภยั

บทน าบทท่ี 16: TypeScript กบั Svelte
ในช่วงไม่กี่ปีทีผ่่านมา TypeScript ไดก้ลายเป็นเครื่องมอืส าคญัส าหรบันักพฒันาเวบ็สมยัใหม่ทีต่้องการ
โคด้ที่ปลอดภยั ตรวจสอบไดล้่วงหน้า และสามารถขยายตวัไดด้ ีในขณะเดยีวกนั Svelte ซึง่เป็นเฟรม
เวริก์ JavaScript ที่เน้นการคอมไพล์ในขัน้ตอน build-time ก็ได้รบัความนิยมเพิม่ขึ้นอย่างต่อเนื่อง
เนื่องจากประสทิธภิาพสูงและแนวคดิที่ลดความซบัซ้อนของโค้ด การผสมผสานระหว่าง TypeScript
และ Svelte จงึกลายเป็นแนวทางทีน่่าสนใจส าหรบัผูท้ีต่้องการพฒันาแอปพลเิคชนัทีม่คีุณภาพสูงทัง้ใน
ดา้นโครงสรา้งและประสทิธภิาพ

บทนี้จะพาผูอ่้านเขา้สู่โลกของการพฒันา Svelte ดว้ย TypeScript อย่างเป็นระบบ โดยเริม่จาก
พืน้ฐานของการตดิตัง้และตัง้ค่าโปรเจกต์ใหร้องรบั TypeScript อย่างถูกต้อง ไม่ว่าจะเป็นการสรา้งโปร
เจกต์ใหม่ดว้ย create-svelte หรอืการปรบัโปรเจกต์เดมิใหร้องรบั TypeScript พรอ้มแนะน าไฟลส์ าคญั
เช่น tsconfig.json และ svelte.config.js ทีเ่กีย่วขอ้งกบัการก าหนดค่าการคอมไพล ์

เมื่อโปรเจกต์พร้อมใช้งานแล้ว บทนี้จะลงลึกไปที่การก าหนดชนิดข้อมูล (typing) ส าหรบั
องคป์ระกอบหลกัของ Svelte ไดแ้ก่ props, store และ context ซึง่ถอืเป็นหวัใจส าคญัของการสื่อสาร
และการจดัการข้อมูลระหว่าง component ต่าง ๆ ผู้อ่านจะได้เรยีนรูว้ธิรีะบุประเภทข้อมูลให้ชดัเจน
รวมถงึเทคนิคเพื่อหลกีเลีย่งขอ้ผดิพลาดทีม่กัเกดิขึน้เมือ่ใชช้นิดขอ้มลูทีไ่มแ่น่นอน

ในส่วนของ props บทนี้จะอธบิายการก าหนดชนิดของ prop ที ่component ภายนอกส่งเขา้มา
โดยใชไ้วยากรณ์ของ TypeScript ที่ผสมผสานกบั Svelte อย่างกลมกลนื ทัง้ยงัแสดงตวัอย่างการใช ้
interface และ generics เพื่อเพิม่ความยดืหยุน่และความปลอดภยัของโคด้

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 2

ถดัไปคอื store ซึง่เป็นกลไกจดัการ state ของ Svelte ผูอ่้านจะไดเ้รยีนรูก้ารสรา้ง store แบบ
typed ดว้ย writable และ readable พรอ้มทัง้การใชช้นิดขอ้มลูเพื่อควบคุมค่าทีส่ามารถส่งผ่านไปยงัส่วน
ต่าง ๆ ของแอปพลเิคชนั นอกจากนี้ยงัมตีวัอย่างการประยุกต์ใชก้บั derived store และ custom store
เพื่อแสดงศกัยภาพของ TypeScript ในการจดัการ state ทีซ่บัซอ้น

context API ซึง่ใชแ้ชรข์อ้มลูระหว่าง component แบบลกึซอ้นกส็ามารถก าหนดชนิดขอ้มลูได้
เช่นกนั บทนี้จะเสนอแนวทางการใช้ setContext และ getContext ควบคู่กบั TypeScript เพื่อใหก้าร
แลกเปลีย่นขอ้มลูมคีวามปลอดภยั ปราศจากขอ้ผดิพลาดทีเ่กดิจากการใช ้key หรอื type ไมต่รงกนั

ทา้ยทีสุ่ด บทนี้จะปิดทา้ยดว้ยการน า TypeScript มาใชร้่วมกบั SvelteKit ซึง่เป็นเฟรมเวริก์เตม็
รปูแบบของ Svelte ส าหรบัการสรา้งแอปพลเิคชนัแบบ SSR และ SPA ผูอ่้านจะไดเ้ขา้ใจรปูแบบการ
typing ของ routing, load function, endpoint, และ environment variables พรอ้มแนวทางปฏบิตัทิี่
ปลอดภยัและยดืหยุน่ส าหรบัโคด้ production

TypeScript กบั Svelte
หวัข้อท่ีครอบคลมุ

1. ✅ การเพิม่ TypeScript ในโปรเจกต ์Svelte/SvelteKit
2. ✅ การ typing props, store, และ context
3. ✅ การใช ้SvelteKit + TypeScript อยา่งปลอดภยั

� 1. การเพ่ิม TypeScript ในโปรเจกต ์Svelte
� ส าหรบั SvelteKit (แนะน า):
หากคุณเริม่จาก 0 ใหใ้ช ้template แบบ TypeScript ไดเ้ลย:
npm create svelte@latest my-app
เลอืก: TypeScript + ESLint + Prettier (แนะน า)
cd my-app
npm install
npm run dev
� ถ้าเร่ิมจากโปรเจกต ์JavaScript:
สามารถเพิม่ TS แบบ manual:
npm install --save-dev typescript svelte-preprocess
touch tsconfig.json
จากนัน้ปรบั svelte.config.js:
import preprocess from 'svelte-preprocess';

export default {

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 3

 preprocess: preprocess(),
 kit: {
 // ...
 }
}
เพิม่ไฟล ์tsconfig.json:
{
 "extends": "./.svelte-kit/tsconfig.json",
 "compilerOptions": {
 "strict": true,
 "types": ["svelte"]
 }
}
เปลีย่นนามสกุลไฟลจ์าก .svelte → .svelte และสามารถใช ้<script lang="ts"> ไดเ้ลย

� 2. การ typing props, store และ context

✳ Typing Props (ใน Component)
Parent.svelte
<script lang="ts">
 import Child from './Child.svelte';
</script>

<Child name="John" age={25} />
Child.svelte
<script lang="ts">
 export let name: string;
 export let age: number;
</script>

<p>{name} is {age} years old.</p>

✳ Typing Store
// src/stores/counter.ts

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 4

import { writable } from 'svelte/store';

export const count = writable<number>(0);
<!-- ใชง้านใน .svelte -->
<script lang="ts">
 import { count } from '../stores/counter';
</script>

<p>Count is {$count}</p>

✳ Typing Custom Store ด้วย interface
// src/stores/user.ts
import { writable } from 'svelte/store';

export interface User {
 id: number;
 name: string;
}

export const user = writable<User | null>(null);

✳ Typing Context (setContext / getContext)
// src/lib/auth.ts
import { getContext, setContext } from 'svelte';
import type { Writable } from 'svelte/store';

const key = Symbol();

export function initAuth(userStore: Writable<string | null>) {
 setContext<Writable<string | null>>(key, userStore);
}

export function useAuth() {
 return getContext<Writable<string | null>>(key);

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 5

}
การใช้งานใน component:
<script lang="ts">
 import { initAuth } from '$lib/auth';
 import { writable } from 'svelte/store';

 initAuth(writable('John'));
</script>

 3. การใช้ SvelteKit + TypeScript อย่างปลอดภยั
SvelteKit มรีะบบ TypeScript support โดยตรงในหลายจดุ เช่น:
� การใช้ load แบบ type-safe
// +page.ts (client-side)
import type { PageLoad } from './$types';

export const load: PageLoad = async ({ fetch }) => {
 const res = await fetch('/api/user');
 const user: { id: number; name: string } = await res.json();
 return { user };
};
� การใช้ +page.server.ts
// +page.server.ts
import type { PageServerLoad } from './$types';

export const load: PageServerLoad = async () => {
 return { msg: 'Hello from server' };
};
� การใช้งาน locals / cookies แบบ type-safe
แก ้hooks.server.ts:
// src/hooks.server.ts
import type { Handle } from '@sveltejs/kit';

export const handle: Handle = async ({ event, resolve }) => {
 event.locals.user = 'admin';

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 6

 return resolve(event);
};
เพิม่ใน src/app.d.ts:
// src/app.d.ts
declare namespace App {
 interface Locals {
 user: string;
 }
}

� ตวัอย่างผลลพัธ ์

จดุท่ีใช้ TypeScript ตวัอย่าง Type ผลลพัธ ์/ ประโยชน์

Props ของ component export let name: string ช่วยใหใ้ช ้component แบบปลอดภยั

Store writable<User>() Store ม ีtype ชดัเจน ป้องกนัการใชผ้ดิ

Context API setContext<MyType>(key,…) ได ้IntelliSense + ป้องกนั null

ฟังกช์นัโหลดขอ้มลู (load) PageLoad, PageServerLoad โหลดขอ้มลูแบบปลอดภยัจาก fetch/api

TypeScript กบั Svelte (เชิงลึก)

� เหตผุลท่ีควรใช้ TypeScript กบั Svelte

 ✅ ป้องกนั bug จากการใชต้วัแปรผดิชนิด
 ✅ ช่วยใหโ้คด้อ่านงา่ยขึน้ (auto-completion, IntelliSense)
 ✅ ใชร้ว่มกบั IDE ไดเ้ตม็ที ่(เช่น VS Code)
 ✅ รองรบัการพฒันาโปรเจกตข์นาดใหญ่ทีต่อ้งการความปลอดภยัของ type และการแยกส่วน

� 1. การเพ่ิม TypeScript ในโปรเจกต์
� 1.1 ส าหรบั SvelteKit
npm create svelte@latest my-app
เลอืก template: "SvelteKit + TypeScript"
โปรเจกตท์ีไ่ดจ้ะม:ี
src/
 routes/
 lib/

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 7

 app.d.ts ✅ type global
 stores/ ✅ custom store
svelte.config.js
tsconfig.json ✅ ควบคุม TS ทัง้หมด
✅ ไมต่อ้งตัง้ค่าเอง ทุกอยา่งพรอ้มใช้

� 1.2 ส าหรบั Svelte ปกติ (non-SvelteKit)
npm install --save-dev typescript svelte-preprocess
เพิม่ใน rollup.config.js หรอื vite.config.ts:
import sveltePreprocess from 'svelte-preprocess';

export default {
 preprocess: sveltePreprocess(),
 // ...
}
เพิม่ tsconfig.json (ตวัอยา่ง):
{
 "compilerOptions": {
 "target": "es6",
 "strict": true,
 "moduleResolution": "node",
 "types": ["svelte"]
 },
 "include": ["src/**/*"]
}

� 2. Typing Props, Store และ Context (เชิงลึก)

� Typing Props ใน Component
Svelte ไมใ่ช ้interface Props แบบ React แต่ใช ้export let พรอ้ม type:
<script lang="ts">
 export let title: string;
 export let count?: number; // optional prop
</script>

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 8

คุณสามารถตัง้ค่า default ไดเ้ช่นกนั:
export let count: number = 0;

� Typing Store
✅ Writable
import { writable } from 'svelte/store';

const count = writable<number>(0);
✅ Readable
import { readable } from 'svelte/store';

const time = readable<Date>(new Date(), (set) => {
 const interval = setInterval(() => set(new Date()), 1000);
 return () => clearInterval(interval);
});
✅ Derived
import { derived } from 'svelte/store';

const double = derived(count, $count => $count * 2);
✅ Custom store แบบมี interface
interface User {
 id: number;
 name: string;
}

const user = writable<User | null>(null);

� Typing Context API
// lib/context.ts
import { setContext, getContext } from 'svelte';
import type { Writable } from 'svelte/store';

const key = Symbol();

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 9

export function initTheme(store: Writable<string>) {
 setContext<Writable<string>>(key, store);
}

export function useTheme(): Writable<string> {
 return getContext<Writable<string>>(key);
}
✅ เทยีบเท่า Dependency Injection แบบ type-safe

� 3. การใช้ SvelteKit + TypeScript อย่างปลอดภยั

� การ typing load function
// +page.ts
import type { PageLoad } from './$types';

export const load: PageLoad = async () => {
 return { name: 'Alice' };
};
ช่วยให ้return type, params, error, และ fetch เป็น type-safe

� Global Typing (เช่น Locals, Session)
app.d.ts
declare namespace App {
 interface Locals {
 user: {
 id: number;
 name: string;
 };
 }

 interface Session {
 token: string;
 }
}

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 10

ใช้งานใน hooks.server.ts
export const handle = async ({ event, resolve }) => {
 event.locals.user = { id: 1, name: 'Admin' };
 return resolve(event);
};

� Type module context (layout, error page)

 +layout.ts → LayoutLoad
 +page.server.ts → PageServerLoad
 +layout.server.ts → LayoutServerLoad
 +error.svelte → ม ีaccess ไปยงั error: Error & { message: string }

� เคลด็ลบั TypeScript กบั SvelteKit (Best Practice)

เทคนิค ค าแนะน า

lang="ts" อยา่ลมืใส่ใน <script lang="ts"> ทุกไฟล ์

ใช ้strict mode เปิด strict เพื่อความแม่นย า (ใน tsconfig.json)

ใช ้$types อยา่พมิพ ์type ดว้ยตวัเอง ใช ้import จาก ./$types แทน

แยก Store และ Interface เกบ็ใน src/stores/, src/types/ เพื่อแยก concerns

หลกีเลีย่ง any ใช ้union type, optional, generics แทน any

� สรปุภาพรวมแบบมืออาชีพ

ฟีเจอร ์ ตวัอย่าง ประโยชน์หลกั

Props typing export let id: number ป้องกนัการส่ง prop ผดิชนิด

Store typing `writable<User null>()`

Context typing setContext<Writable<string>>() ช่วยให ้code ใชง้านซ ้า และ type-safe

load() typing export const load: PageLoad = … ป้องกนั fetch และ return ผดิโครงสรา้ง

app.d.ts declare Locals, Session ท าใหร้ะบบ auth / permission type-safe

TypeScript กบั Svelte อย่างละเอียด

� บทท่ี 16: TypeScript กบั Svelte

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 11

� ความส าคญัของ TypeScript กบั Svelte
Svelte รองรบัการใชง้าน TypeScript โดยตรงโดยไมต่อ้งใช ้wrapper หรอื plugin ภายนอก ท าให้
นกัพฒันาไดร้บัประโยชน์จาก static typing, auto-complete และการตรวจสอบขอ้ผดิพลาดที ่compile
time ไดอ้ยา่งเตม็ที ่โดยไมสู่ญเสยีความเรยีบง่ายของ Svelte

� หวัข้อท่ี 1: การเพ่ิม TypeScript ในโปรเจกต ์Svelte
วิธีที ่1: สร้างโปรเจกตใ์หม่พร้อม TypeScript (แนะน า)
npm create vite@latest my-app -- --template svelte-ts
cd my-app
npm install
npm run dev
Vite จะสรา้งโครงสรา้งโปรเจกตพ์รอ้มใชง้าน TypeScript และตัง้ค่าทัง้หมดใหอ้ตัโนมตั ิเช่น:

 tsconfig.json
 ใช ้.svelte ทีร่องรบั <script lang="ts">
 มไีฟล ์app.d.ts ส าหรบั global type

วิธีที ่2: เพิม่ TypeScript ภายหลงั
หากคุณมโีปรเจกต ์Svelte อยูแ่ลว้:
npx svelte-add@latest typescript
ค าสัง่นี้จะเพิม่ไฟล ์config และ dependency ทีจ่ าเป็นใหโ้ดยอตัโนมตั ิ
โค้ดตวัอย่าง .svelte ทีใ่ช้ TypeScript:
<script lang="ts">
 let count: number = 0;

 function increment(): void {
 count += 1;
 }
</script>

<button on:click={increment}>
 Count is {count}
</button>

� หวัข้อท่ี 2: การ Typing Props, Store และ Context

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 12

✅ Typing Props ใน Svelte
ใน <script lang="ts"> เราสามารถใช ้export let พรอ้มระบุ type ไดเ้ลย:
<script lang="ts">
 export let name: string;
 export let age: number;
</script>

<p>Hello {name}, age {age}</p>
หากส่ง prop ผดิประเภท จะเกดิขอ้ผดิพลาดที ่compile time (ช่วยลด bug ไดม้าก)

✅ Typing Store
Svelte store สามารถใชก้บั TypeScript ไดง้า่ย:
// store.ts
import { writable } from 'svelte/store';

export const counter = writable<number>(0);
หากตอ้งการ store ทีซ่บัซอ้น:
type User = {
 id: number;
 name: string;
};

export const user = writable<User | null>(null);

✅ Typing Context
การใช ้context ใน Svelte ใช ้setContext และ getContext ซึง่สามารถ type ไดช้ดัเจนมากขึน้:
// context.ts
export const ThemeContextKey = Symbol();

export type Theme = 'light' | 'dark';
// Parent.svelte
<script lang="ts">
 import { setContext } from 'svelte';
 import { ThemeContextKey, Theme } from './context';

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 13

 const theme: Theme = 'dark';
 setContext(ThemeContextKey, theme);
</script>
// Child.svelte
<script lang="ts">
 import { getContext } from 'svelte';
 import { ThemeContextKey, Theme } from './context';

 const theme = getContext<Theme>(ThemeContextKey);
</script>

� หวัข้อท่ี 3: การใช้ SvelteKit + TypeScript อย่างปลอดภยั
SvelteKit ออกแบบใหร้องรบั TypeScript ตัง้แต่ตน้ โดยเมือ่สรา้งโปรเจกต์จะมตีวัเลอืกใหใ้ช ้TypeScript
ทนัท ี
npm create svelte@latest my-app
แลว้เลอืก "TypeScript" ตอน setup
✅ การใช้ TypeScript ใน Routing
SvelteKit ใช ้+page.ts, +layout.ts, +server.ts แยก logic:
// +page.ts
export const load = async () => {
 const res = await fetch('/api/products');
 const products: Product[] = await res.json();
 return { products };
};
// +page.svelte
<script lang="ts">
 export let data: {
 products: Product[];
 };
</script>

 {#each data.products as product}

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 14

 {product.name}
 {/each}

✅ ประโยชน์จากการใช้ TypeScript:

 ป้องกนั bug จาก prop / store / endpoint ทีไ่มต่รง type
 ท างานรว่มกบั IDE ไดด้ ี(IntelliSense, Jump to Definition)
 ปลอดภยัมากขึน้ในการ refactor โคด้
 เพิม่ความมัน่ใจเวลาท างานในทมี

� สรปุ
การใช ้TypeScript กบั Svelte/SvelteKit ท าใหก้ารพฒันา:

 ปลอดภยัขึ้น
 ชดัเจนขึ้น
 บ ารงุรกัษาโค้ดง่ายขึ้น

ทัง้ยงั ไม่เพ่ิมความซบัซ้อนมากนัก เพราะ Svelte ออกแบบมาให ้TS integration เป็นธรรมชาต ิหาก
คุณท างานในทมี หรอืเขยีนโปรเจกตท์ีม่คีวามซบัซอ้น TypeScript คอืเครือ่งมอืส าคญัทีค่วรใชอ้ยา่งยิง่

การเพ่ิม TypeScript ในโปรเจกต ์Svelte

� การเพ่ิม TypeScript ในโปรเจกต ์Svelte
Svelte รองรบั TypeScript แบบ built-in โดยไมต่อ้งใช ้loader ภายนอกเพิม่เตมิ และคุณสามารถเริม่
ใชไ้ดง้า่ยมากไมว่่าจะสรา้งโปรเจกตใ์หมห่รอืเพิม่เขา้ไปในโปรเจกตท์ีม่อียูแ่ลว้

� วิธีท่ี 1: สร้างโปรเจกต์ใหม่พร้อม TypeScript (แนะน าท่ีสดุ)
ใช ้Vite ซึง่เป็นวธิทีีร่วดเรว็และเป็นมาตรฐานใน Svelte community:
npm create vite@latest my-svelte-app -- --template svelte-ts
cd my-svelte-app
npm install
npm run dev
หรอืถา้ใช ้SvelteKit:
npm create svelte@latest my-sveltekit-app
เลอืก Skeleton project แลว้เลอืก TypeScript เมือ่ wizard ถาม
ระบบจะสรา้งไฟล ์TypeScript ทัง้หมดใหอ้ตัโนมตั ิเช่น:

 tsconfig.json – การตัง้ค่า TypeScript

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 15

 app.d.ts – ส าหรบัประกาศ global types
 .svelte ไฟลจ์ะรองรบั <script lang="ts">

� วิธีท่ี 2: เพ่ิม TypeScript เข้าไปในโปรเจกต ์Svelte ท่ีมีอยู่แล้ว
หากคุณมโีปรเจกต ์Svelte อยูแ่ลว้และตอ้งการเพิม่ TypeScript:

1. ตดิตัง้ dependency ทีจ่ าเป็น:
npm install --save-dev typescript svelte-preprocess @tsconfig/svelte

2. สรา้งไฟล ์tsconfig.json:
{
 "extends": "@tsconfig/svelte/tsconfig.json",
 "include": ["src/**/*"],
 "exclude": ["node_modules/*", "__sapper__/*", "public/*"]
}

3. ตดิตัง้ svelte-preprocess และตัง้ค่าใน svelte.config.js:
import sveltePreprocess from 'svelte-preprocess';

export default {
 preprocess: sveltePreprocess(),
};

4. เปลีย่น <script> ในไฟล ์.svelte เป็น <script lang="ts"> เช่น:
<script lang="ts">
 let count: number = 0;
 function increment(): void {
 count += 1;
 }
</script>

<button on:click={increment}>Count is {count}</button>

� ตวัอย่างโครงสร้างไฟลโ์ปรเจกตท่ี์ใช้ TypeScript
my-svelte-app/
│
├── src/
│ ├── App.svelte

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 16

│ ├── main.ts
│ └── stores.ts
│
├── svelte.config.js
├── tsconfig.json
├── vite.config.ts
└── package.json

� ข้อดีของการใช้ TypeScript กบั Svelte

 ✅ ตรวจสอบ type ผดิพลาดล่วงหน้า
 ✅ IntelliSense จาก editor อยา่ง VSCode
 ✅ ปลอดภยัต่อการ refactor
 ✅ เหมาะกบัทมีทีท่ างานรว่มกนัหลายคน
 ✅ รองรบัการท างานกบั REST API, Store, และ Component ทีซ่บัซอ้น

� ตวัอย่าง: เพ่ิม TypeScript ในไฟล ์Svelte
<script lang="ts">
 export let name: string;

 function greet(): void {
 alert(`Hello, ${name}`);
 }
</script>

<button on:click={greet}>Greet</button>
หากคุณส่งค่า name ทีไ่มใ่ช่ string เขา้มา จะม ีerror แจง้ทนัท!ี

� สรปุ

วิธี รายละเอียด

✅ วธิทีี ่
1

สรา้งโปรเจกตใ์หมด่ว้ย template svelte-ts หรอื SvelteKit + TypeScript

✅ วธิทีี ่
2

เพิม่ TypeScript เขา้โปรเจกต ์Svelte ทีม่อียู ่ดว้ยการตดิตัง้ typescript และ svelte-
preprocess

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 17

วิธี รายละเอียด

✅ Tips ใช ้<script lang="ts"> ในทุกไฟล ์.svelte และใช ้export let พรอ้ม type เพื่อความปลอดภยั

ดา้นล่างนี้คอื ตวัอย่างโปรแกรม Svelte + TypeScript จ านวน 6 โปรแกรม แบ่งเป็น:

 ✅ 3 โปรแกรมพื้นฐาน: ตวัอยา่งงา่ย เหมาะกบัผูเ้ริม่ต้น
 ✅ 3 โปรแกรมแนวประยุกต์: ตวัอยา่งซบัซอ้นขึน้ ใชก้บัโปรเจกตจ์รงิได้

� หมวดท่ี 1: โปรแกรมพื้นฐาน Svelte + TypeScript

� โปรแกรมท่ี 1: Counter App
✅ โครงสร้าง
counter-app/
├── src/
│ ├── App.svelte
│ └── main.ts
├── tsconfig.json
├── svelte.config.js
├── vite.config.ts
└── package.json
✅ src/App.svelte
<script lang="ts">
 let count: number = 0;

 const increment = (): void => {
 count += 1;
 };
</script>

<h1>Count: {count}</h1>
<button on:click={increment}>Increment</button>
✅ src/main.ts
import App from './App.svelte';

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 18

const app = new App({
 target: document.body,
});

export default app;
✅ ผลการรนั:
หน้าเวบ็แสดงตวัเลข Count พรอ้มปุ่ ม “Increment” เมือ่คลกิจะเพิม่ค่า count

� โปรแกรมท่ี 2: Greeting Props
✅ src/App.svelte
<script lang="ts">
 export let name: string;
</script>

<h1>Hello, {name}!</h1>
✅ src/main.ts
import App from './App.svelte';

const app = new App({
 target: document.body,
 props: {
 name: 'Svelte Developer'
 }
});

export default app;
✅ ผลการรนั:
แสดงขอ้ความ: Hello, Svelte Developer!

� โปรแกรมท่ี 3: Custom Typed Store
✅ src/stores.ts
import { writable } from 'svelte/store';

export const name = writable<string>('Guest');

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 19

✅ src/App.svelte
<script lang="ts">
 import { name } from './stores';
</script>

<h1>Welcome, {$name}!</h1>
<input bind:value={$name} placeholder="Enter your name" />
✅ ผลการรนั:
ม ีinput ส าหรบักรอกชื่อ แสดงค าว่า: Welcome, ...! และอปัเดตอตัโนมตัเิมือ่พมิพ์

� หมวดท่ี 2: โปรแกรมแนวประยกุต ์Svelte + TypeScript

� โปรแกรมท่ี 4: Form Validation (Email Checker)
✅ src/App.svelte
<script lang="ts">
 let email: string = '';
 let error: string = '';

 function validate(): void {
 const pattern = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;
 error = pattern.test(email) ? '' : 'Invalid email address';
 }
</script>

<input type="email" bind:value={email} placeholder="Enter your email" />
<button on:click={validate}>Validate</button>

{#if error}
 <p style="color:red">{error}</p>
{:else if email}
 <p style="color:green">Valid email ✅</p>
{/if}
✅ ผลการรนั:
กรอก email แลว้กด Validate จะแสดงว่า valid หรอืไม ่(ตรวจสอบดว้ย regex)

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 20

� โปรแกรมท่ี 5: Fetch API ด้วย TypeScript
✅ src/App.svelte
<script lang="ts">
 import { onMount } from 'svelte';

 type User = {
 id: number;
 name: string;
 email: string;
 };

 let users: User[] = [];

 onMount(async () => {
 const res = await fetch('https://jsonplaceholder.typicode.com/users');
 users = await res.json();
 });
</script>

<h1>User List</h1>

 {#each users as user}
 {user.name} ({user.email})
 {/each}

✅ ผลการรนั:
แสดงรายชื่อผูใ้ชจ้าก API (jsonplaceholder.typicode.com/users) พรอ้มอเีมล

� โปรแกรมท่ี 6: To-do List (ใช้ Store + TypeScript)
✅ src/stores.ts
import { writable } from 'svelte/store';

export type Todo = {

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 21

 id: number;
 text: string;
 done: boolean;
};

export const todos = writable<Todo[]>([]);
✅ src/App.svelte
<script lang="ts">
 import { todos, Todo } from './stores';
 let newTodo: string = '';

 function addTodo(): void {
 if (newTodo.trim()) {
 todos.update(current => [
 ...current,
 { id: Date.now(), text: newTodo, done: false }
]);
 newTodo = '';
 }
 }

 function toggleDone(id: number): void {
 todos.update(current =>
 current.map(todo =>
 todo.id === id ? { ...todo, done: !todo.done } : todo
)
);
 }
</script>

<h1>My Todo List</h1>

<input bind:value={newTodo} placeholder="New task..." />
<button on:click={addTodo}>Add</button>

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 22

 {#each $todos as todo}

 <input type="checkbox" checked={todo.done} on:change={() => toggleDone(todo.id)} />

 {todo.text}

 {/each}

✅ ผลการรนั:
ผูใ้ชส้ามารถเพิม่รายการงาน กด checkbox เพื่อขดีฆา่เมือ่เสรจ็งาน

� สรปุ

ประเภท โปรแกรม ฟีเจอรห์ลกั

พืน้ฐาน Counter ตวัแปร + ฟังกช์นั

พืน้ฐาน Greeting Props ส่ง props แบบ typed

พืน้ฐาน Store ใช ้writable พรอ้ม type

ประยกุต ์Email Validation ฟอรม์ + ตรวจ email

ประยกุต ์API Fetch ใช ้TypeScript + onMount

ประยกุต ์To-do List Store, Add, Toggle, Type-safe

การ Typing Props, Store, และ Context ใน Svelte + TypeScript

� 1. การ Typing Props (ใน Component)
Svelte ใช ้export let ส าหรบัรบั props จาก component ภายนอก และเมือ่ใช ้TypeScript เราสามารถ
ก าหนดชนิดขอ้มลูให ้props ไดง้า่ยมาก
✅ ตวัอย่างพ้ืนฐาน
<script lang="ts">
 export let name: string;
 export let age: number;

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 23

</script>

<p>Hello {name}, age {age}</p>
หาก component อื่นส่ง props แบบผดิชนิดเขา้มา TypeScript จะแจง้เตอืนทนัท ี
✅ ตวัอย่างการส่ง props จาก main.ts
import App from './App.svelte';

const app = new App({
 target: document.body,
 props: {
 name: 'Alice',
 age: 25
 }
});

✅ เทคนิค: การรวม Props เป็น Interface
หาก props หลายตวั แนะน าใหส้รา้ง interface แยกเพื่อให ้type ชดัเจน:
// types.ts
export interface UserProps {
 name: string;
 email: string;
 age?: number; // optional
}
<script lang="ts">
 import type { UserProps } from './types';
 export let name: UserProps['name'];
 export let email: UserProps['email'];
</script>

� 2. การ Typing Store
Svelte store (writable, readable, derived) รองรบั TypeScript แบบสมบูรณ์ และสามารถก าหนดชนิด
ขอ้มลูใหก้บั state ไดโ้ดยตรง
✅ ตวัอย่าง writable<T>()
// src/stores.ts

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 24

import { writable } from 'svelte/store';

export const count = writable<number>(0);

export const name = writable<string>('Guest');

export interface Todo {
 id: number;
 text: string;
 done: boolean;
}

export const todos = writable<Todo[]>([]);
ใน component:
<script lang="ts">
 import { count } from './stores';

 function increment() {
 count.update(n => n + 1);
 }
</script>

<h1>Count: {$count}</h1>
<button on:click={increment}>Add</button>

✅ Custom Store แบบมี type
// src/customStore.ts
import { writable } from 'svelte/store';

interface AuthState {
 user: string;
 token: string;
}

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 25

function createAuthStore() {
 const { subscribe, set, update } = writable<AuthState | null>(null);

 return {
 subscribe,
 login: (user: string, token: string) =>
 set({ user, token }),
 logout: () => set(null)
 };
}

export const authStore = createAuthStore();

� 3. การ Typing Context (setContext / getContext)
Context ใชใ้นการส่งค่าจาก component แมไ่ปยงั component ลกูโดยไมต่อ้งผ่าน props
ตอ้งใช ้Symbol() เพื่อป้องกนั key ซ ้า และใช ้generic ใน getContext เพื่อ type ทีป่ลอดภยั
✅ ตวัอย่าง: สร้าง Context แบบ Typed
// context.ts
export const ThemeKey = Symbol();
export type Theme = 'light' | 'dark';
✅ ใน component แม่ (Parent)
<script lang="ts">
 import { setContext } from 'svelte';
 import { ThemeKey, Theme } from './context';

 const theme: Theme = 'dark';
 setContext(ThemeKey, theme);
</script>

<slot />
✅ ใน component ลกู (Child)
<script lang="ts">
 import { getContext } from 'svelte';
 import { ThemeKey, Theme } from './context';

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 26

 const theme = getContext<Theme>(ThemeKey);
</script>

<p>Current theme: {theme}</p>
หากใช ้getContext โดยไมไ่ดก้ าหนด type (<Theme>) จะไมส่ามารถตรวจสอบไดว้่าค่าทีไ่ดต้รงชนิด
หรอืไม่

� สรปุ

จดุใช้งาน วิธี typing ตวัอย่าง

Props export let name: string; รบั props อยา่งปลอดภยั

Store writable<T>(), interface ใชก้บั state หลายแบบ

Context getContext<Type>(key) ใชก้บั global settings เช่น theme, user

� ข้อดีของการ typing ท่ีดี:

 ป้องกนัการส่งค่าผดิประเภท
 Editor แนะน าค่าได ้(IntelliSense)
 ปลอดภยัในการ refactor
 ท างานรว่มกบัทมีไดง้่าย

ดา้นล่างนี้คอื ตวัอย่างโปรแกรม Svelte + TypeScript ทีแ่สดงการใช ้Props, Store และ Context
แบบ typed แบ่งเป็น 2 หมวด:

� โปรแกรมพื้นฐาน (3 โปรแกรม)
แสดงวธิใีชง้านพืน้ฐานของ Props, Store และ Context

� โปรแกรมท่ี 1: Props แบบ TypeScript
✅ โครงสร้าง
props-demo/
├── src/
│ ├── App.svelte
│ └── main.ts
├── tsconfig.json

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Professional หนา้ 27

└── package.json
✅ src/App.svelte
<script lang="ts">
 export let username: string;
</script>

<h1>Hello, {username}!</h1>
✅ src/main.ts
import App from './App.svelte';

const app = new App({
 target: document.body,
 props: {
 username: 'SvelteDev'
 }
});

export default app;
✅ ค าอธิบาย:

 ใช ้export let พรอ้มก าหนด type (string)
 ส่งค่า username แบบ type-safe

✅ ผลการรนั:
Hello, SvelteDev!

� โปรแกรมท่ี 2: Writable Store แบบมี Type
✅ โครงสร้าง
store-demo/
├── src/
│ ├── App.svelte
│ ├── stores.ts
│ └── main.ts
✅ src/stores.ts
import { writable } from 'svelte/store';

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 16

