

ค าน า

ปัจจุบนัการพฒันาเวบ็แอปพลเิคชนัไดก้้าวไปไกลกว่าการจดัวาง HTML และเขยีน JavaScript เพื่อ
โต้ตอบกบัผูใ้ชเ้ท่านัน้ เทคโนโลยเีฟรมเวริก์สมยัใหม่ได้เขา้มามบีทบาทส าคญัในการเพิม่ประสทิธภิาพ
ของแอปพลเิคชนัและยกระดบัประสบการณ์ของผูใ้ชง้าน หนึ่งในเฟรมเวริก์ที่ไดร้บัความนิยมและไดร้บั
การจบัตามองอย่างต่อเนื่องในช่วงไม่กี่ปีที่ผ่านมาคอื Svelte — เฟรมเวริก์ที่เน้นความเรยีบง่าย
ประสทิธภิาพ และแนวทางทีแ่ตกต่างจากเฟรมเวริก์แบบเดมิ

จากความส าเรจ็ของหนังสอื Svelte Web Programming: Beginner ซึง่ไดว้างรากฐานใหก้บั
ผูอ่้านในดา้นแนวคดิพืน้ฐานของ Svelte และการสรา้งเวบ็แอปพลเิคชนัอย่างเป็นระบบ หนังสอื Svelte
Web Programming: Intermediate เล่มนี้จงึได้ถูกเขยีนขึน้เพื่อสานต่อความรูไ้ปอกีขัน้ โดยมุ่งเน้นใน
ระดบั “กลางถงึขัน้สูง” ที่จ าเป็นส าหรบัการพฒันาเว็บแอปพลเิคชนัที่มคีวามซบัซ้อนมากขึน้ พรอ้ม
รองรบัการใชง้านในโลกจรงิอยา่งมปีระสทิธภิาพ

ภายในหนังสอืเล่มนี้ ผูอ่้านจะไดพ้บกบัหวัขอ้ทีล่กึขึน้เกี่ยวกบั กลไก Reactivity ซึง่เป็นหวัใจ
ส าคญัของ Svelte ไม่ว่าจะเป็นการใช้ $: เพื่อสรา้ง reactive statements, การท า derived reactivity,
และการใช้ reactive blocks เพื่อสร้างตรรกะที่ปรบัตัวตามข้อมูลอย่างชาญฉลาด นอกจากนี้ยงั
ครอบคลุมการจดัการ Event และ Lifecycle ของ component ในหลากหลายบรบิท เช่น การใชง้าน
event handler, การเชื่อมโยงกบั API ผ่าน lifecycle functions รวมถงึการสรา้ง custom event ทีใ่ช้
สื่อสารระหว่าง components

อกีหนึ่งจุดเด่นของหนังสอืคอืการน าเสนอเรื่อง Component ท่ีซ้อนกนั, การใช ้ Slot, การส่ง
Props, และเทคนิคการอ้างองิ DOM ผ่าน bind:this อย่างถูกวธิ ีซึง่เป็นประเดน็ทีม่กัสรา้งความสบัสน
ใหก้บัผู้เริม่ต้นใช้งาน นอกจากนี้ยงัอธบิายเรื่อง Store และ Global State ซึ่งมคีวามส าคญัต่อการ
พฒันาแอปพลเิคชนัหลายหน้า โดยจะกล่าวถงึการใช้ writable, readable, derived store ตลอดจนการ
สรา้ง custom store เพื่อจดัการ state รว่มในลกัษณะต่าง ๆ

ทา้ยทีสุ่ด หนังสอืยงัเสนอวธิกีาร เช่ือมต่อกบั External APIs ซึง่ถอืเป็นองคป์ระกอบส าคญั
ของแอปพลเิคชนัสมยัใหม่ ผูอ่้านจะไดเ้รยีนรูก้ารใช้ fetch(), การโหลดขอ้มลูผ่าน onMount(), การ
จดัการสถานะ loading/error/empty และตวัอย่างแนวประยุกต์ที่สามารถน าไปปรบัใช้กบัระบบจรงิได้
อยา่งมัน่ใจ

หนังสอืเล่มนี้จงึเหมาะส าหรบัผู้ทีม่พีื้นฐานการใชง้าน Svelte อยู่แล้ว และต้องการขยบัขยาย
ทกัษะไปสู่การพฒันาแอปพลเิคชนัที่มคีวามยดืหยุ่นและสามารถดูแลรกัษาในระยะยาว ไม่ว่าจะเป็น
นกัพฒันารายบุคคล ทมีพฒันาในองคก์ร หรอืผูส้อนทีต่อ้งการทรพัยากรการเรยีนรูท้ีค่รบถว้น

ผูเ้ขยีนขอขอบคุณผูอ่้านทุกท่านที่ร่วมเดนิทางในการเรยีนรู ้Svelte อย่างจรงิจงั และหวงัเป็น
อย่างยิง่ว่า Svelte Web Programming: Intermediate เล่มนี้ จะเป็นคู่มอืส าคญัทีช่่วยต่อยอดศกัยภาพ
ของท่านในการสรา้งสรรค์เว็บแอปพลเิคชนัที่ทนัสมยั มปีระสทิธภิาพ และรองรบัการพฒันาในระดบั
production ไดอ้ยา่งเตม็ที ่

ขอใหทุ้กท่านสนุกกบัการเรยีนรู ้และพฒันาโปรเจกตท์ีย่อดเยีย่มดว้ย Svelte ต่อไป

ดว้ยรกัและปรารถนาด ี
ศนูยห์นังสือราคานักเรียน

สารบญั

หน้า
บทที ่6 Reactivity และ $: statement (Reactivity and $: statement) 1

 Reactivity และ $: statement
 Reactivity และ $: statement — รายละเอยีดเชงิลกึ
 Reactivity ของตวัแปร (let) ใน Svelte — เชงิลกึ
 การใช ้$: เพื่อ re-compute ใน Svelte — เชงิลกึ
 การใช ้Reactive Block ใน Svelte — เชงิลกึ
การประยกุตใ์ชง้าน Derived Reactivity และ Reactive Blocks

บทที ่7 การจดัการ Event และ Lifecycle (Event Manipulation and Lifecycle) 39
 การจดัการ Event และ Lifecycle
 การจดัการ Event และ Lifecycle เชงิลกึ
 การจดัการ Event และ Lifecycle — เพิม่เตมิ
 on:click, on:input, on:submit และ Event อื่น ๆ ใน Svelte
 แนวประยกุต์
 โปรแกรมแนวประยกุตท์ี ่3: Lifecycle Example – API Fetcher
 การสรา้งและใช ้Custom Event ดว้ย createEventDispatcher()
 Lifecycle Functions ใน Svelte ทัง้ 4 ตวั

บทที ่8 การจดัการ Component แบบซอ้นกนั (Component Management) 108
 การจดัการ Component แบบซอ้นกนั
 การจดัการ Component แบบซอ้นกนั — รายละเอยีดเชงิลกึ
 การส่ง Props ไปยงั Child Component ใน Svelte
 การจดัการ Slot ใน Svelte
 bind:this เพื่ออา้งองิ DOM หรอื Component ใน Svelte
 ตวัอยา่งบรูณาการ

บทที ่9 Store และ Global State (Store and Global State) ... 156
 Store และ Global State
 Store และ Global State ใน Svelte — เชงิลกึ

 การแนะน าอย่างละเอยีดของ writable, readable, และ derived store
 เชงิลกึเกีย่วกบัการใช ้$store shorthand ใน Svelte
 การสรา้ง Custom Store ใน Svelte
 การจดัการ Shared State หลายหน้า (Shared Global State) ใน Svelte
 ตวัอยา่งบรูณาการ

บทที ่10 การเชื่อมต่อกบั External APIs (External APIs Connection) 218
 การเชื่อมต่อกบั External APIs
 การเชื่อมต่อกบั External APIs ใน Svelte — รายละเอยีดเชงิลกึ
 การใช ้fetch() และ async/await
 การโหลดขอ้มลูใน onMount()
 การจดัการ Loading, Error และ Empty State ใน Svelte

บรรณานุกรม ... 266

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 1

บทท่ี 6
Reactivity และ $: statement
(Reactivity and $: statement)

เน้ือหา

 Reactivity และ $: statement
 Reactivity และ $: statement — รายละเอยีดเชงิลกึ
 Reactivity ของตวัแปร (let) ใน Svelte — เชงิลกึ
 การใช ้$: เพื่อ re-compute ใน Svelte — เชงิลกึ
 การใช ้Reactive Block ใน Svelte — เชงิลกึ
 การประยกุตใ์ชง้าน Derived Reactivity และ Reactive Blocks

บทท่ี 6: Reactivity และ $: statement
 Svelte เป็นเฟรมเวริก์ทีม่จีุดเด่นในเรื่องของ Reactivity หรอืการตอบสนองต่อการเปลีย่นแปลงของ
ขอ้มลูแบบอตัโนมตั ิซึง่ช่วยใหก้ารพฒันาเวบ็แอปพลเิคชนัมคีวามกระชบัและเป็นธรรมชาตมิากขึน้กว่า
หลายเฟรมเวริก์ทีต่้องอาศยัแนวคดิ Virtual DOM การจดัการ Reactivity ใน Svelte มคีวามแตกต่าง
อย่างสิ้นเชิง เพราะถูกออกแบบให้คอมไพล์ในขัน้ตอน build time ส่งผลให้การอปัเดต UI มี
ประสิทธิภาพสูงและมโีครงสร้างโค้ดที่เข้าใจง่ายกว่า ในบทนี้ เราจะส ารวจแนวคิดและการใช้งาน
Reactivity โดยเฉพาะการใช ้$: statement และเทคนิคทีเ่กี่ยวขอ้ง เช่น reactive block และ derived
values เพื่อสรา้งการตอบสนองทีเ่ป็นธรรมชาตภิายในคอมโพเนนต์
 หวัใจของ Reactivity ใน Svelte เริม่ต้นจากการใชต้วัแปร let ซึง่มบีทบาทส าคญัในการก าหนดค่าที่
สามารถเปลี่ยนแปลงได้ภายในคอมโพเนนต์ เมื่อค่าของตวัแปรที่ประกาศด้วย let ถูกเปลี่ยนแปลง
Svelte จะตรวจจบัและอปัเดต UI ทีเ่กี่ยวขอ้งโดยอตัโนมตั ิลกัษณะการท างานนี้ท าใหไ้ม่จ าเป็นต้องใช้
ฟังก์ชนั setState หรอืการผูก event แบบซบัซอ้น ตวัอย่างเช่น การเปลีย่นค่าของตวัแปร count ที่
ประกาศดว้ย let จะท าให ้UI อปัเดตโดยทนัท ีท าใหก้ารโต้ตอบของผูใ้ชก้บัคอมโพเนนต์เป็นไปอย่าง
ราบรืน่
 อย่างไรก็ตาม การเปลี่ยนแปลงตัวแปรบางครัง้ต้องมกีารค านวณค่าที่ตามมาใหม่ การ ใช้ $:
statement จงึเป็นอกีฟีเจอรส์ าคญัของ Svelte ซึง่ท าหน้าทีเ่ป็น reactive declaration เมื่อใดทีต่วัแปร
ทีอ่ยู่ใน $: statement เปลีย่นค่า โคด้ทีอ่ยู่ใน $: ... จะถูกประมวลผลซ ้าโดยอตัโนมตั ินี่คอืวธิกีารที่
สะดวกในการจดัการค่าทีข่ ึน้กบัค่าของตวัแปรอื่นโดยไม่ตอ้งเขยีนฟังกช์นัหรอื watcher เพิม่เตมิ

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 2

 นอกจาก $: statement แลว้ Svelte ยงัมโีครงสรา้งทีเ่รยีกว่า reactive block ซึง่ใชร้ปูแบบ {$: { ...
}} เพื่อตอบสนองต่อการเปลีย่นแปลงหลายตวัแปรภายในบลอ็กเดยีวกนั Reactive block ท าใหส้ามารถ
รวมตรรกะทีซ่บัซอ้นในการค านวณหรอืด าเนินการหลายขัน้ตอนเมื่อมกีารเปลีย่นแปลงค่าของตวัแปรที่
เกี่ยวขอ้ง ตวัอย่างเช่น การอปัเดตขอ้มูลจาก API หรอืการค านวณค่าที่ซบัซ้อนหลายขัน้ตอนภายใน
reactive block จะช่วยใหโ้คด้อ่านงา่ยและดเูป็นล าดบัขัน้ตอนตามธรรมชาต ิ
 อกีแนวคดิหนึ่งทีส่ าคญัคอื derived values ซึง่หมายถงึค่าทีค่ านวณขึน้มาจากตวัแปรอื่น ๆ แบบ
อตัโนมตั ิโดยไม่จ าเป็นต้องก าหนดค่าใหม่ดว้ยตนเอง Derived values ช่วยลดความซ ้าซอ้นของโค้ด
และท าใหแ้น่ใจว่าค่าทีไ่ดจ้ะถูกอปัเดตตามการเปลีย่นแปลงของตวัแปรต้นทางเสมอ ตวัอย่างเช่น ถ้าเรา
มตีวัแปร firstName และ lastName เราสามารถสรา้ง derived value fullName เพื่อรวมชื่อเตม็ไดแ้บบ
อตัโนมตัเิมือ่มกีารเปลีย่นชื่อใดชื่อหนึ่ง
 เมือ่รวมแนวคดิทัง้หมดนี้เขา้ดว้ยกนั เราจะเหน็ไดว้่า Reactivity ใน Svelte มคีวามยดืหยุน่และทรง
พลงัอยา่งมาก การใช ้let, $: statement, reactive block, และ derived values ท าใหก้ารสรา้ง
คอมโพเนนตแ์บบ interactive เป็นเรือ่งงา่ยและชดัเจน ทัง้ยงัช่วยลดภาระในการจดัการสถานะและลด
บัก๊ทีอ่าจเกดิจากการอปัเดต UI ดว้ยตนเอง ซึง่เป็นขอ้ไดเ้ปรยีบทีส่ าคญัเมือ่เทยีบกบัเฟรมเวริก์อื่น ๆ
 ในบทถดัไป เราจะลงลกึถงึการประยุกต์ใช ้Reactivity และ $: statement ผ่านตวัอย่างโคด้จรงิ
เพื่อให้เหน็ภาพการท างานของมนัอย่างเป็นรปูธรรม คุณจะได้เรยีนรูว้ธิสีรา้งคอมโพเนนต์ที่ตอบสนอง
อย่างมปีระสทิธภิาพ การสรา้งตรรกะทีซ่บัซอ้นใน reactive block และการออกแบบ derived values ให้
มคีวามกระชบัและอ่านงา่ย ทัง้หมดน้ีจะช่วยเพิม่ศกัยภาพในการพฒันาเวบ็แอปพลเิคชนัดว้ย Svelte ให้
มคีุณภาพสงูและใชง้านไดอ้ยา่งราบรืน่ทีสุ่ด

Reactivity และ $: statement

1. Reactivity ของตวัแปร (let)

 Svelte ใชต้วัแปรแบบ let เพื่อเกบ็สถานะ (state) ภายใน component
 เมือ่เปลีย่นค่า let ตวัแปร Svelte จะ ติดตาม (track) และอปัเดต DOM หรอืค่าทีเ่กี่ยวขอ้งให้

อตัโนมตั ิ
 ไมจ่ าเป็นตอ้งใช ้setState หรอืฟังกช์นัพเิศษเหมอืน React
 ตวัแปรทีป่ระกาศดว้ย let จะท างานแบบ reactive โดยตรง เมือ่ค่ามนัเปลีย่น ตวั component

จะ re-render เฉพาะส่วนทีใ่ชค้่าตวัแปรนัน้

2. การใช้ $: เพ่ือ re-compute

 $: เป็น syntax พเิศษใน Svelte ส าหรบั reactive statement
 ใชเ้ขยีนบรรทดัค าสัง่ทีต่อ้งการให ้re-run ทุกครัง้ทีค่่าทีเ่กีย่วขอ้งเปลีย่น
 $: ท าหน้าทีเ่หมอืน “watcher” หรอื “computed property” ใน Vue

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 3

 Syntax:
$: derivedValue = someExpression;

 ทุกครัง้ทีต่วัแปรใน someExpression เปลีย่น ค่า derivedValue จะถูกค านวณใหมอ่ตัโนมตั ิ

3. การใช้ reactive block

 สามารถเขยีน block ของค าสัง่ทีต่อ้งการให ้re-run ได ้โดยใช ้$: ตามดว้ยบลอ็กค าสัง่
$: {
 // ค าสัง่ทีต่อ้งการให ้re-run เมือ่ค่าทีเ่กีย่วขอ้งเปลีย่น
 console.log(`Count is ${count}`);
}

 เหมาะส าหรบั side effect หรอื logging ทีต่อ้งท าซ ้าเมือ่ค่าเปลีย่น

4. การท า derived values

 Derived values คอืค่าทีค่ านวณจากตวัแปรอื่น ๆ แบบ reactive
 ใช ้$: เพื่อประกาศค่าใหมท่ีอ่ปัเดตอตัโนมตัเิมือ่ค่าตน้ทางเปลีย่น

ตวัอยา่ง:
<script>
 let price = 100;
 let quantity = 2;

 // derived value: total price ค านวณจาก price และ quantity
 $: total = price * quantity;
</script>

<p>Price: {price}</p>
<p>Quantity: {quantity}</p>
<p>Total: {total}</p>
เมือ่เปลีย่น price หรอื quantity ค่าของ total จะอปัเดตอตัโนมตั ิ

Reactivity และ $: statement — รายละเอียดเชิงลึก

1. Reactivity ของตวัแปร (let)

 Svelte ท างานโดยการ คอมไพลโ์ค้ดล่วงหน้า (compile-time) เพื่อสรา้งโคด้ทีค่อยตดิตาม
และอปัเดต DOM เมือ่ขอ้มลูเปลีย่น

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 4

 ตวัแปรทีป่ระกาศดว้ย let ภายใน <script> ของ Svelte component จะเป็นตวัแปร reactive
โดยอตัโนมตั ิ

 เมือ่เราสัง่เปลีย่นค่า let เช่น count = 1 Svelte จะตรวจจบัและรเีฟรช (re-render) เฉพาะส่วน
ของ DOM ทีใ่ชต้วัแปรนัน้

 ต่างจาก React ทีต่อ้งเรยีกใช ้setState() เพื่อบอกให ้re-render
 ใน Svelte เพยีงแค่อปัเดตค่า let กเ็พยีงพอ

ตวัอย่าง:
<script>
 let count = 0;

 function increment() {
 count += 1; // แค่เปลีย่นค่า Svelte จะ update UI อตัโนมตั ิ
 }
</script>

<button on:click={increment}>
 Clicked {count} {count === 1 ? 'time' : 'times'}
</button>

 เมือ่คลกิปุ่ ม count เปลีย่น ค่าใน DOM กเ็ปลีย่นตามทนัท ี

2. การใช้ $: เพ่ือ re-compute

 $: เป็นเครือ่งหมายพเิศษทีใ่ชป้ระกาศ reactive declaration หรือ reactive statement
 ค าสัง่นี้จะถูกรนัใหม่ทุกครัง้ทีค่่าทีเ่กีย่วขอ้งเปลีย่น
 มกัใชส้ าหรบั สร้างค่าใหม่ (derived value) หรอื เรียกฟังกช์นัท่ีต้องท างานใหม่ตามตวั

แปร
 ช่วยใหห้ลกีเลีย่งการเขยีนโคด้ซ ้า ๆ ในฟังกช์นัและช่วยเพิม่ประสทิธภิาพ

ตวัอย่าง:
<script>
 let price = 20;
 let quantity = 3;

 // total จะค านวณใหมอ่ตัโนมตัเิมือ่ price หรอื quantity เปลีย่น
 $: total = price * quantity;
</script>

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 5

<p>Price: {price}</p>
<p>Quantity: {quantity}</p>
<p>Total: {total}</p>

 เมือ่แก ้price หรอื quantity ตวัแปร total จะถูกค านวณใหมท่นัท ี

3. การใช้ reactive block

 นอกจาก reactive declaration ทีเ่ป็นการก าหนดค่าแลว้ เราสามารถใช้ reactive block เพื่อรนั
ชุดค าสัง่หลายบรรทดัได้

 ประโยชน์คอืสามารถท า side effect เช่น log, call API, หรอือปัเดตค่าตวัแปรอื่น ๆ
 reactive block จะรนัเมือ่ใดกต็ามทีค่่าทีใ่ชใ้นบลอ็กนัน้เปลีย่น

ตวัอย่าง:
<script>
 let count = 0;

 $: {
 console.log(`Count updated to ${count}`);
 }
</script>

<button on:click={() => count++}>
 Clicked {count} times
</button>

 ทุกครัง้ที ่count เปลีย่น จะมกีารพมิพ ์log ลง console อตัโนมตั ิ

4. การท า derived values

 Derived values คอืค่าที ่ค านวณได้จากตวัแปรอ่ืนโดยอตัโนมติั
 โดยใช ้$: รว่มกบัการค านวณภายใน reactive declaration
 ท าใหไ้มต่อ้งคอยเขยีนโคด้ซ ้าหรอืสรา้ง state เพิม่เตมิ

ตวัอย่างการใช้งานจริง:
<script>
 let firstName = "John";
 let lastName = "Doe";

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 6

 // ชื่อเตม็ derived จาก firstName และ lastName
 $: fullName = `${firstName} ${lastName}`;
</script>

<input bind:value={firstName} placeholder="First Name" />
<input bind:value={lastName} placeholder="Last Name" />

<p>Your full name is: {fullName}</p>

 เมือ่เปลีย่นชื่อหรอืนามสกุล ขอ้ความชื่อเตม็จะอปัเดตทนัที

สรปุจดุส าคญั

หวัข้อ รายละเอียดส าคญั

Reactive let เปลีย่นค่า let ภายใน component จะ trigger update UI โดยอตัโนมตั ิ

$: statement ใชเ้ขยีนการค านวณหรอืฟังกช์นัทีต่อ้งรนัซ ้าเมือ่ค่าทีเ่กี่ยวขอ้งเปลีย่น

Reactive block บลอ็กค าสัง่หลายบรรทดัทีร่นัใหมเ่มือ่ค่าในบลอ็กเปลีย่น เหมาะกบั side effects

Derived values ค านวณค่าทีข่ ึน้กบัตวัแปรอื่น ๆ โดยไมต่อ้งเขยีนโคด้เพิม่หรอืเกบ็ state ซ ้า

Reactivity ของตวัแปร (let) ใน Svelte — เชิงลึก

1. ตวัแปร let คือ State ของ Component

 ใน Svelte ตวัแปรทีป่ระกาศดว้ย let ภายใน <script> ของ component คอื state หรอืขอ้มลูที ่
component ใชเ้กบ็ค่าและสถานะ

 สามารถเปลีย่นค่าไดต้ลอดเวลา โดยใช ้assignment ปกต ิเช่น count = 1;

2. การเปล่ียนค่า let ตวัแปรจะท าให้ Component อปัเดต UI อตัโนมติั

 เมือ่เราเขยีนโคด้เปลีย่นค่า let เช่น count = count + 1
 Svelte จะ ตรวจจบัการเปล่ียนแปลงน้ีและรีเฟรช (re-render) เฉพาะส่วนของ DOM ท่ีใช้

ตวัแปรน้ี ใหเ้องโดยอตัโนมตั ิ
 ไมต่อ้งเรยีกฟังกช์นัพเิศษ หรอื setState เหมอืน React
 ท าใหโ้คด้สัน้และเขยีนงา่ย

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 7

3. ตวัอย่างง่าย ๆ
<script>
 let count = 0;

 function increment() {
 count = count + 1;
 }
</script>

<button on:click={increment}>
 You clicked {count} {count === 1 ? 'time' : 'times'}
</button>

 เมือ่คลกิปุ่ ม ตวัแปร count ถูกเพิม่ขึน้ทลีะ 1
 ขอ้ความในปุ่ มจะอปัเดตตามค่า count แบบเรยีลไทม ์

4. วิธีท่ี Svelte ท างานกบั let

 เมือ่เราเขยีน count = count + 1 หรอืก าหนดค่าใหมใ่หต้วัแปร let
 Svelte คอมไพลโ์คด้ใหม้กีารแจง้เตอืน (notify) เพื่อรเีฟรช UI เฉพาะส่วนทีเ่กี่ยวขอ้ง
 ช่วยเพิม่ประสทิธภิาพ ลดการ re-render ทีไ่ม่จ าเป็น

5. ข้อควรระวงั

 ตอ้งเปลีย่นค่าโดยตรง เช่น count = 10 หรอื count++ (ตอ้งเขยีนแบบ count = count + 1 หรอื
count += 1)

 ถา้เปลีย่นค่าโดยแกไ้ขตวัแปรทีเ่ป็นออ็บเจก็ต์หรอือารเ์รย ์เช่น obj.prop = 1 แบบน้ี Svelte ไม่รู้
ว่าค่าเปล่ียน เพราะไมไ่ดเ้ปลีย่น reference ของ obj

 ในกรณนีัน้ ตอ้งเขยีนแบบสรา้งออ็บเจก็ตใ์หม ่เช่น
obj = {...obj, prop: 1};
เพื่อให ้Svelte รูว้่ามกีารเปลีย่นแปลงและจะอปัเดต UI

6. สรปุ

ข้อดีของ Reactive let ใน Svelte

เปลีย่นแปลงค่าปกตดิว้ย = แลว้ UI อปัเดตทนัท ี

ไมต่อ้งเรยีก setState หรอืฟังกช์นัพเิศษ

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 8

ข้อดีของ Reactive let ใน Svelte

มปีระสทิธภิาพเพราะ re-render เฉพาะส่วนทีใ่ชต้วัแปร

งา่ยต่อการเขยีนและอ่านโคด้

นี่คอืตวัอยา่งโปรแกรม Svelte แบบเตม็ไฟล ์รวมทัง้โครงสรา้งโปรเจกต์ ค าอธบิายโคด้ และผลการรนั
จ านวน 3 โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยุกต ์ทีเ่น้นหวัขอ้ Reactivity ของตวัแปร (let)

โครงสร้างโปรเจกต์ (เหมือนกนัทุกตวัอย่าง)
my-svelte-app/
└── src/
 ├── BasicCounter.svelte
 ├── ToggleSwitch.svelte
 ├── TextInput.svelte
 ├── ShoppingCart.svelte
 ├── DarkModeToggle.svelte
 └── Timer.svelte

โปรแกรมพื้นฐาน 3 ตวัอย่าง

1. BasicCounter.svelte
<script>
 let count = 0;

 function increment() {
 count += 1;
 }
</script>

<button on:click={increment}>
 Clicked {count} {count === 1 ? 'time' : 'times'}
</button>
ค าอธิบายโค้ด:

 ประกาศตวัแปร count ดว้ย let

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 9

 ฟังกช์นั increment เพิม่ค่า count ทลีะ 1
 ปุ่ มแสดงจ านวนครัง้ทีค่ลกิแบบเรยีลไทมด์ว้ย reactive state

ผลการรนั:
 กดปุ่ มครัง้แรก จะแสดง "Clicked 1 time"
 กดเพิม่ขึน้ จะแสดง "Clicked 2 times", "Clicked 3 times" เป็นต้น

2. ToggleSwitch.svelte
<script>
 let isOn = false;

 function toggle() {
 isOn = !isOn;
 }
</script>

<button on:click={toggle}>
 {isOn ? "ON" : "OFF"}
</button>
ค าอธิบายโค้ด:

 ตวัแปร Boolean isOn เกบ็สถานะเปิด/ปิด
 ฟังกช์นั toggle สลบัสถานะ
 ปุ่ มแสดงขอ้ความ ON หรอื OFF ตามสถานะแบบ reactive

ผลการรนั:
 ปุ่ มแสดง "OFF" เริม่ต้น
 คลกิปุ่ มเปลีย่นเป็น "ON" และสลบักลบัได ้

3. TextInput.svelte
<script>
 let name = "";
</script>

<input placeholder="Type your name" bind:value={name} />
<p>Hello, {name || "stranger"}!</p>
ค าอธิบายโค้ด:

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 10

 ตวัแปร name เกบ็ขอ้ความจาก input
 ใช ้two-way binding กบั <input>
 ขอ้ความแสดงตามค่าตวัแปรแบบ reactive

ผลการรนั:
 เมือ่พมิพช์ื่อ จะเหน็ขอ้ความ "Hello, [name]!" อปัเดตทนัท ี
 ถา้ไมพ่มิพแ์สดง "Hello, stranger!"

โปรแกรมแนวประยกุต ์3 ตวัอย่าง

4. ShoppingCart.svelte
<script>
 let items = [
 { id: 1, name: "Apple", price: 50, quantity: 1 },
 { id: 2, name: "Banana", price: 20, quantity: 2 },
];

 // ฟังกช์นัเพิม่จ านวนสนิคา้
 function incrementQuantity(id) {
 const item = items.find(i => i.id === id);
 item.quantity += 1;
 items = [...items]; // รแีอสซายน์เพื่อแจง้ Svelte ว่าขอ้มลูเปลีย่น
 }

 // ฟังกช์นัลดจ านวนสนิคา้
 function decrementQuantity(id) {
 const item = items.find(i => i.id === id);
 if (item.quantity > 0) {
 item.quantity -= 1;
 items = [...items];
 }
 }

 // ค านวณราคารวม (derived)
 $: total = items.reduce((sum, item) => sum + item.price * item.quantity, 0);

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 11

</script>

<h2>Shopping Cart</h2>

 {#each items as item (item.id)}

 {item.name} - ฿{item.price} x {item.quantity}
 <button on:click={() => decrementQuantity(item.id)}>-</button>
 <button on:click={() => incrementQuantity(item.id)}>+</button>

 {/each}

<p>Total: ฿{total}</p>
ค าอธิบายโค้ด:

 ใช ้let items เกบ็รายการสนิคา้
 ฟังกช์นัเพิม่/ลดจ านวนสนิคา้ปรบัค่าภายในอารเ์รยแ์ลว้รแีอสซายน์ใหม ่เพื่อให ้Svelte รูว้่า

ขอ้มลูเปลีย่น
 ใช ้reactive declaration $: ค านวณ total อตัโนมตั ิ

ผลการรนั:
 กดปุ่ ม + หรอื - เพื่อปรบัจ านวนสนิคา้
 ราคารวมอปัเดตตามจ านวนสนิคา้แบบเรยีลไทม์

5. DarkModeToggle.svelte
<script>
 let darkMode = false;

 function toggleDarkMode() {
 darkMode = !darkMode;
 if (darkMode) {
 document.body.style.backgroundColor = "#222";
 document.body.style.color = "#eee";
 } else {

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 12

 document.body.style.backgroundColor = "";
 document.body.style.color = "";
 }
 }
</script>

<button on:click={toggleDarkMode}>
 {darkMode ? "Switch to Light Mode" : "Switch to Dark Mode"}
</button>
ค าอธิบายโค้ด:

 ใชต้วัแปร Boolean darkMode เกบ็สถานะธมี
 เมือ่กดปุ่ ม เปลีย่นค่า darkMode และเปลีย่นสพีืน้หลงัและขอ้ความของ <body> โดยตรง
 ขอ้ความปุ่ มอปัเดตตามสถานะ

ผลการรนั:
 เริม่ตน้เป็น Light Mode
 กดปุ่ มเปลีย่นเป็น Dark Mode และกลบัมาได ้

6. Timer.svelte
<script>
 let time = 0;
 let interval;

 function startTimer() {
 clearInterval(interval);
 interval = setInterval(() => {
 time += 1; // เพิม่เวลา ทุก 1 วนิาท ี
 }, 1000);
 }

 function stopTimer() {
 clearInterval(interval);
 }

 function resetTimer() {

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 13

 time = 0;
 clearInterval(interval);
 }
</script>

<p>Time elapsed: {time} seconds</p>
<button on:click={startTimer}>Start</button>
<button on:click={stopTimer}>Stop</button>
<button on:click={resetTimer}>Reset</button>
ค าอธิบายโค้ด:

 ตวัแปร time เกบ็เวลาทีผ่่านไป
 ใช ้setInterval เพื่อเพิม่ค่า time ทุกวนิาท ี
 ปุ่ ม Start, Stop, Reset ควบคุม timer
 การเปลีย่นค่า time จะอปัเดต UI อตัโนมตั ิ

ผลการรนั:
 กด Start แลว้เวลานบัเพิม่ทลีะวนิาท ี
 กด Stop หยดุเวลา
 กด Reset ตัง้ค่าเวลาเป็น 0

การใช้ $: เพ่ือ re-compute ใน Svelte — เชิงลึก

1. $: คืออะไร?

 $: (dollar-colon) เป็น reactive statement หรอื reactive declaration ใน Svelte
 ใชส้ าหรบัประกาศว่าบรรทดัหรอืบลอ็กค าสัง่นี้ควรถูก รนัใหม่ (re-run) ทุกครัง้ทีค่่าทีเ่กีย่วขอ้ง

ถูกเปลีย่นแปลง
 คลา้ยกบั computed properties ใน Vue หรอื useMemo ใน React แต่เรยีบงา่ยและ

ตรงไปตรงมา

2. รปูแบบการใช้งาน $:
แบบประกาศค่าใหม่ (Reactive declaration)
$: total = price * quantity;

 ทุกครัง้ที ่price หรอื quantity เปลีย่น ค่า total จะถูกค านวณใหมอ่ตัโนมตั ิ

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 14

แบบ reactive block (หลายบรรทดั)
$: {
 console.log(`Count is now ${count}`);
 doSomething(count);
}

 บลอ็กนี้จะถูกรนัใหมทุ่กครัง้ทีค่่าทีใ่ชภ้ายในบลอ็ก เช่น count เปลีย่น

3. การใช้งานหลกั

 ค านวณค่าใหม่แบบอตัโนมติั (Derived Values)
 ท างาน side effect เม่ือข้อมลูเปล่ียน (เช่น log, เรียก API)
 หลีกเล่ียงการเขียนโค้ดซ า้ในฟังกช์นั

4. ข้อควรระวงั

 อยา่เขยีน reactive statement ทีท่ าใหเ้กดิ loop ไม่ส้ินสดุ เช่น
let count = 0;
$: count = count + 1; // หา้มท าแบบน้ีเพราะจะวนลปูไมห่ยดุ

 ควรตรวจสอบ logic ให ้reactive statement ไมท่ าใหค้่าเปลีย่นตวัเองวนลปู

5. ตวัอย่างโปรแกรมง่าย ๆ
<script>
 let price = 10;
 let quantity = 2;

 $: total = price * quantity;
</script>

<p>Price: {price}</p>
<p>Quantity: {quantity}</p>
<p>Total: {total}</p>

<button on:click={() => price += 5}>Increase Price</button>
<button on:click={() => quantity += 1}>Increase Quantity</button>

 เมือ่กดปุ่ มเพิม่ราคา หรอืเพิม่จ านวน total จะค านวณและแสดงใหมท่นัท ี

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 15

นี่คอืตวัอยา่งโปรแกรม Svelte แบบเตม็ไฟล ์พรอ้มโครงสรา้งโปรเจกต ์ค าอธบิายโคด้ และผลการรนั
จ านวน 3 โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยุกต ์ทีเ่น้นการใช้ $: เพ่ือ re-compute
โดยเฉพาะ

โครงสร้างโปรเจกต์ (เหมือนกนัทุกตวัอย่าง)
my-svelte-app/
└── src/
 ├── BasicReactive.svelte
 ├── TemperatureConverter.svelte
 ├── ShoppingCalculator.svelte
 ├── BudgetTracker.svelte
 ├── CryptoPriceTracker.svelte
 └── FormValidation.svelte

โปรแกรมพื้นฐาน 3 ตวัอย่าง

1. BasicReactive.svelte
<script>
 let a = 5;
 let b = 10;

 // reactive declaration ค านวณ sum ใหมเ่มือ่ a หรอื b เปลีย่น
 $: sum = a + b;
</script>

<p>a = {a}</p>
<p>b = {b}</p>
<p>Sum = {sum}</p>

<button on:click={() => a += 1}>Increase a</button>
<button on:click={() => b += 1}>Increase b</button>
ค าอธิบายโค้ด:

 ตวัแปร a และ b เป็น state
 $: sum = a + b คอื reactive declaration ค านวณผลรวมใหมทุ่กครัง้ที่ a หรอื b เปลีย่น

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 16

 ปุ่ มเพิม่ค่า a หรอื b จะท าให ้sum ค านวณและแสดงผลใหมท่นัท ี
ผลการรนั:

 เริม่ตน้แสดง a=5, b=10, sum=15
 กดปุ่ มเพิม่ค่า จะเหน็ sum อปัเดตตามค่าทีเ่ปลีย่น

2. TemperatureConverter.svelte
<script>
 let celsius = 0;

 // แปลงเป็นฟาเรนไฮตโ์ดย reactive declaration
 $: fahrenheit = (celsius * 9/5) + 32;
</script>

<label>
 Celsius:
 <input type="number" bind:value={celsius} />
</label>

<p>Fahrenheit: {fahrenheit}</p>
ค าอธิบายโค้ด:

 รบัค่าอุณหภมูใินองศาเซลเซยีสจาก input
 $: แปลงเป็นฟาเรนไฮตแ์ละแสดงผลทนัทเีมือ่เซลเซยีสเปลีย่น

ผลการรนั:
 เมือ่พมิพค์่าเซลเซยีส ผลลพัธฟ์าเรนไฮตอ์ปัเดตตามแบบเรยีลไทม์

3. ShoppingCalculator.svelte
<script>
 let price = 100;
 let quantity = 1;

 // ค านวณราคาทัง้หมด reactive
 $: total = price * quantity;

 // ค านวณภาษ ี7%

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 17

 $: tax = total * 0.07;

 // ราคาสุทธริวมภาษ ี
 $: finalPrice = total + tax;
</script>

<label>Price: <input type="number" bind:value={price} /></label>
<label>Quantity: <input type="number" bind:value={quantity} /></label>

<p>Total: ฿{total}</p>
<p>Tax (7%): ฿{tax.toFixed(2)}</p>
<p>Final Price: ฿{finalPrice.toFixed(2)}</p>
ค าอธิบายโค้ด:

 Reactive declaration หลายตวัค านวณราคา, ภาษ ีและรวมราคาสุทธ ิ
 ค่าอปัเดตทุกครัง้ที่ price หรอื quantity เปลีย่น

ผลการรนั:
 ป้อนราคาหรอืจ านวนจะค านวณราคาและภาษอีตัโนมตัแิละแสดงผลแบบเรยีลไทม์

โปรแกรมแนวประยกุต ์3 ตวัอย่าง

4. BudgetTracker.svelte
<script>
 let incomes = [1000, 500, 200];
 let expenses = [400, 150];

 $: totalIncome = incomes.reduce((a, b) => a + b, 0);
 $: totalExpenses = expenses.reduce((a, b) => a + b, 0);
 $: balance = totalIncome - totalExpenses;
</script>

<h2>Budget Tracker</h2>
<p>Total Income: ฿{totalIncome}</p>
<p>Total Expenses: ฿{totalExpenses}</p>
<p>Balance: ฿{balance}</p>

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 18

ค าอธิบายโค้ด:
 ค านวณรายไดร้วม รายจา่ยรวม และยอดคงเหลอืแบบ reactive
 หากเพิม่/ลบหรอืแกไ้ขขอ้มลูใน array ตอ้งรแีอสซายน์ใหมเ่พื่อให ้reactive ท างาน

ผลการรนั:
 แสดงยอดรวมและยอดคงเหลอืตามขอ้มลูทีม่ ี

5. CryptoPriceTracker.svelte
<script>
 import { onMount } from 'svelte';

 let btcPrice = 0;
 let ethPrice = 0;
 let totalValue = 0;

 onMount(async () => {
 const res = await
fetch('https://api.coingecko.com/api/v3/simple/price?ids=bitcoin,ethereum&vs_currencies=usd');
 const data = await res.json();
 btcPrice = data.bitcoin.usd;
 ethPrice = data.ethereum.usd;
 });

 let btcAmount = 1;
 let ethAmount = 2;

 // ค านวณมลูค่ารวมแบบ reactive
 $: totalValue = (btcPrice * btcAmount) + (ethPrice * ethAmount);
</script>

<h2>Crypto Portfolio</h2>
<p>BTC Price: ${btcPrice}</p>
<p>ETH Price: ${ethPrice}</p>

<label>BTC Amount: <input type="number" bind:value={btcAmount} /></label>

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 19

<label>ETH Amount: <input type="number" bind:value={ethAmount} /></label>

<p>Total Portfolio Value: ${totalValue.toFixed(2)}</p>
ค าอธิบายโค้ด:

 โหลดราคาครปิโตจาก API เมือ่ component mount
 ค านวณมลูค่ารวม portfolio โดยใช ้reactive declaration $:
 ค่า totalValue อปัเดตทนัทเีมือ่ราคา หรอืจ านวนเหรยีญเปลีย่น

ผลการรนั:
 แสดงราคาครปิโตล่าสุด
 แกจ้ านวนเหรยีญจะค านวณมลูค่ารวมใหมท่นัท ี

6. FormValidation.svelte
<script>
 let email = "";
 let password = "";

 // ตรวจสอบ email ว่าถูกตอ้งหรอืไม่
 $: emailValid = /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(email);

 // ตรวจสอบ password อยา่งง่ายว่ามากกว่า 6 ตวัอกัษรหรอืไม่
 $: passwordValid = password.length > 6;

 // ปุ่ ม submit ใชง้านไดเ้มื่อทัง้สองถูกตอ้ง
 $: formValid = emailValid && passwordValid;
</script>

<form on:submit|preventDefault={() => alert("Form submitted!")}>
 <input type="email" bind:value={email} placeholder="Email" />
 {#if email && !emailValid}
 <p style="color:red;">Invalid email format</p>
 {/if}

 <input type="password" bind:value={password} placeholder="Password" />
 {#if password && !passwordValid}

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 20

 <p style="color:red;">Password must be more than 6 characters</p>
 {/if}

 <button type="submit" disabled={!formValid}>Submit</button>
</form>
ค าอธิบายโค้ด:

 ใช ้reactive declarations ตรวจสอบความถูกตอ้งของ email และ password
 ก าหนดสถานะปุ่ ม submit ตามผลการตรวจสอบ
 แสดงขอ้ความเตอืนแบบ reactive

ผลการรนั:
 ป้อน email และ password แลว้แสดงขอ้ความผดิพลาดทนัทหีากไมถู่กตอ้ง
 ปุ่ ม Submit จะใชง้านไดเ้มือ่ฟอรม์ถูกตอ้งเท่านัน้

การใช้ Reactive Block ใน Svelte — เชิงลึก

1. Reactive Block คืออะไร?

 Reactive block คอื บลอ็กค าสัง่หลายบรรทดั ทีใ่ชเ้ครือ่งหมาย $: น าหน้า ตามดว้ย { ... }
 บลอ็กนี้จะถูก รนัใหม่ทุกครัง้เม่ือค่าท่ีใช้อยู่ในบลอ็กนัน้เปล่ียนแปลง
 เหมาะส าหรบัการท างานทีม่หีลายค าสัง่ เช่น การค านวณหลายค่า, การเรยีกฟังกช์นั side

effect (log, fetch, update ตวัแปรอื่น ฯลฯ)

2. รปูแบบการใช้งาน
$: {
 // ค าสัง่หลายบรรทดั
 const fullName = firstName + " " + lastName;
 console.log(`Name updated: ${fullName}`);
 updateUI(fullName);
}

 บลอ็กนี้จะรนัใหมเ่มือ่ใดกต็ามทีค่่า firstName หรอื lastName เปลีย่นแปลง
 ไมต่อ้งประกาศตวัแปรส่งออก (export) เสมอไป แค่เขยีนค าสัง่ในบลอ็กกไ็ด้

3. การใช้งาน Reactive Block กบั Side Effects

 Reactive block สามารถใชแ้ทนการเขยีน watch หรอื useEffect ใน React
 เหมาะส าหรบัการท า side effect ทีต่อ้งการใหเ้กดิขึน้ทนัทเีมือ่ค่าตวัแปรเปลีย่น

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 21

4. ข้อควรระวงั

 หลกีเลีย่งการเขยีนโคด้ทีท่ าใหเ้กดิ ลปู reactive ไม่ส้ินสดุ เช่น reactive block เปลีย่นตวัแปร
ทีถู่กบลอ็กนี้สงัเกตอยู่

 เขยีน reactive block ใหค้ านวณหรอื side effect อยา่งระมดัระวงั

5. ตวัอย่างโปรแกรมง่าย ๆ
<script>
 let count = 0;

 // reactive block รนัทุกครัง้ที ่count เปลีย่น
 $: {
 console.log(`Count has changed to ${count}`);
 }
</script>

<button on:click={() => count++}>Increase</button>

 ทุกครัง้ที ่count เปลีย่น จะพมิพข์อ้ความลง console

นี่คอืตวัอยา่งโปรแกรม Svelte แบบเตม็ไฟล ์พรอ้มโครงสรา้ง ค าอธบิายโคด้ และผลการรนั จ านวน 3
โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์ทีเ่น้นการใช้ Reactive Block ($: { ... }) โดยเฉพาะ

โครงสร้างโปรเจกต์ (เหมือนกนัทุกตวัอย่าง)
my-svelte-app/
└── src/
 ├── CounterLogger.svelte
 ├── UserGreeting.svelte
 ├── PriceTaxCalculator.svelte
 ├── AutoSaveForm.svelte
 ├── WindowSizeTracker.svelte
 └── ThemeSwitcher.svelte

โปรแกรมพื้นฐาน 3 ตวัอย่าง

ศูนยห์นงัสือราคานกัเรียน

Svelte Web Programming: Intermediate หนา้ 22

1. CounterLogger.svelte
<script>
 let count = 0;

 // reactive block รนัทุกครัง้ที ่count เปลีย่น
 $: {
 console.log(`Count changed to ${count}`);
 }
</script>

<button on:click={() => count++}>Increase</button>
<p>Count: {count}</p>
ค าอธิบายโค้ด:

 ตวัแปร count เกบ็จ านวนคลกิ
 Reactive block ใช ้console.log แสดงค่าของ count ทุกครัง้ทีม่นัเปลีย่น
 ปุ่ มเพิม่ค่า count ทลีะ 1 และแสดงค่าบนหน้าจอ

ผลการรนั:
 กดปุ่ มทุกครัง้ จะเหน็ console log แสดงค่าทีเ่ปลีย่น
 บนหน้าเวบ็จะแสดงจ านวนคลกิล่าสุด

2. UserGreeting.svelte
<script>
 let firstName = "";
 let lastName = "";
 let fullName = "";

 // reactive block ค านวณ fullName และ log เมือ่ชื่อเปลีย่น
 $: {
 fullName = firstName + " " + lastName;
 console.log(`Full name updated: ${fullName}`);
 }
</script>

<label>First Name: <input bind:value={firstName} /></label>

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 6

