

ค ำน ำ

ในยุคทีเ่ทคโนโลยเีวบ็มกีารเปลีย่นแปลงอย่างรวดเรว็และไม่หยุดนิ่ง Java Server Pages (JSP) ยงัคง
เป็นหนึ่ งในเทคโนโลยีที่ทรงพลังและได้ร ับความนิยมในหมู่นักพัฒนาเว็บแอปพลิเคชัน ด้วย
ความสามารถในการผสานการแสดงผล (View) กบัโคด้ฝัง่เซริฟ์เวอร ์(Backend) ไดอ้ย่างยดืหยุ่น JSP
ถูกน ามาใชใ้นระบบองคก์รขนาดใหญ่ ระบบธุรกจิภายในองคก์ร และระบบทีต่อ้งการความเสถยีรในระยะ
ยาว ดว้ยเหตุนี้ หนงัสอื JSP Web Programming: Professional จงึถูกจดัท าขึน้เพื่อตอบโจทยน์ักพฒันา
เวบ็ที่ต้องการยกระดบัทกัษะ JSP สู่ระดบัมอือาชพี โดยไม่เพยีงแต่ครอบคลุมพื้นฐานเท่านัน้ แต่ยงั
ขยายขอบเขตความรูไ้ปยงัเทคโนโลยทีีท่นัสมยัและการประยกุตใ์ชใ้นระบบจรงิ

แนวโน้มของ Java Web Application ยุคใหม่เน้นการท างานแบบกระจายตวั การตอบสนองที่
รวดเรว็ และการผสานเทคโนโลยหีลายรปูแบบ JSP จงึไม่สามารถท างานโดดเดีย่วไดอ้ีกต่อไป แต่ต้อง
สามารถท างานร่วมกบัเทคโนโลยเีสรมิอื่น ๆ ได้ เช่น Servlet 4.0+, RESTful APIs, WebSocket,
Spring Framework, และ JavaScript Framework ฝัง่ Frontend อย่าง Angular, React และ Vue.js
หนังสอืเล่มนี้ได้น าเสนอแนวทางที่ครอบคลุมการใช้ JSP ร่วมกบัเทคโนโลยเีหล่านี้อย่างเป็นระบบ
พรอ้มแนะน าการเขยีนโคด้ทีส่ะอาด มโีครงสรา้งทีย่ดืหยุน่ และพรอ้มขยายในระดบัโปรดกัชนั

ขณะเดยีวกนั เรากไ็ม่สามารถมองขา้มบรบิทของ ความเปลีย่นแปลงใน Java EE ทีก่ าลงัก้าว
เขา้สู่ Jakarta EE อย่างเป็นทางการ ซึง่ส่งผลต่อการวางแผนพฒันาแอปพลเิคชันด้วย JSP อย่าง
หลกีเลี่ยงไม่ได้ หนังสอืเล่มนี้ได้อธบิายถงึบรบิทดงักล่าวอย่างละเอยีด พรอ้มชี้ให้เหน็ว่าการยา้ยจาก
Java EE สู่ Jakarta EE นัน้ ไม่ไดเ้ป็นเพยีงแค่การเปลีย่นชื่อแพก็เกจ แต่ยงัส่งผลต่อโครงสรา้ง โคด้
และการใชง้านไลบรารหีลกัในระยะยาว การเขา้ใจความเปลีย่นแปลงนี้จงึเป็นหวัใจส าคญัของนักพฒันา
JSP สมยัใหม ่

แมว้่าจะมเีทคโนโลยใีหม่ ๆ ทีเ่ขา้มาแทนที ่JSP โดยเฉพาะในดา้น View Layer เช่น JSF
(JavaServer Faces), Thymeleaf และ FreeMarker หนังสอืเล่มนี้ไดเ้ปรยีบเทยีบขอ้ดขีอ้เสยีของแต่
ละเทคโนโลยอีย่างตรงไปตรงมา พรอ้มแสดงตวัอย่างโคด้ทีแ่สดงใหเ้หน็ภาพรวมและความแตกต่างเชงิ
โครงสรา้งอย่างชดัเจน เพื่อให้ผู้อ่านสามารถเลอืกเทคโนโลยทีี่เหมาะสมกบับรบิทของตนเองได้โดยมี
ขอ้มลูทีร่อบดา้น

นอกจากความสามารถเชงิเทคนิคของ JSP แลว้ หนงัสอืเล่มนี้ยงัชีใ้หเ้หน็ถงึทศิทางใหม่ของการ
พฒันาเวบ็ดว้ย สถาปัตยกรรม Microservices ซึง่ก าลงัไดร้บัความนิยมอย่างสูงในองคก์รยุคใหม่ ดว้ย
การออกแบบระบบใหแ้ยกเป็นบรกิารยอ่ย ๆ ทีส่ามารถพฒันา ทดสอบ และดพีลอยแยกจากกนัได ้ท าให้
สามารถน า JSP มาใชใ้นส่วนของบรกิารเฉพาะ เช่น ระบบแสดงผล Frontend ของบาง Service หรอืใช้
รว่มกบั API Gateway ทีเ่ป็นตวักลางควบคุมการเขา้ถงึบรกิารต่าง ๆ

ในส่วนตวัอยา่งแนวประยุกต์ หนังสอืไดน้ าเสนอ 3 โปรแกรมระดบั Production ซึง่แสดงการใช ้JSP
รว่มกบัส่วนประกอบทีจ่ าเป็นต่อการพฒันาระบบยคุใหม ่ไดแ้ก่:

1. ระบบ Authentication และ Authorization อยา่งปลอดภยั
2. การใช ้API Gateway เพื่อควบคุมเสน้ทางของ Request ในระบบ

3. การผสานการท างานกบัระบบ Cache เพื่อลดภาระเซริฟ์เวอรแ์ละเพิม่ความเรว็
แต่ละตัวอย่างมีโครงสร้างแบบแยกโมดูล พร้อมค าอธิบายอย่างเป็นขัน้ตอน และสามารถน าไป
ประยกุตใ์ชไ้ดท้นัทใีนองคก์รจรงิ

ทา้ยทีสุ่ด หนังสอืยงัน าเสนอ แนวทางการใชง้าน JSP บน Cloud Services อย่างเช่น AWS,
Google Cloud และ Microsoft Azure รวมถงึการตัง้ค่าเซริฟ์เวอร์, การดพีลอยแบบ Auto Scaling, การ
จดัการ Configuration ดว้ย Secret Manager หรอื dotenv ท าใหผู้อ่้านเขา้ใจแนวทางการพฒันา JSP
Web Application ทีพ่รอ้มใชง้านในระบบ Cloud Native ไดอ้ยา่งมัน่ใจ

ดว้ยโครงสรา้งที่ครอบคลุมทัง้ภาคทฤษฎแีละการปฏบิตั ิหนังสอื JSP Web Programming:
Professional เล่มนี้ จงึเหมาะส าหรบันักพฒันา Java ทีต่้องการยกระดบัทกัษะ JSP ใหท้นัสมยั พรอ้ม
รบัมอืกบัเทคโนโลยใีนอนาคต และสามารถประยุกต์ใช้งานจรงิในโลกองค์กรและระบบขนาดใหญ่ได้
อยา่งมัน่คง

ขอใหผู้อ่้านทุกท่านไดร้บัประโยชน์จากเนื้อหาในหนังสอืเล่มนี้ และสามารถน าความรูไ้ปต่อยอด
การพฒันาเวบ็ในระดบัมอือาชพีไดอ้ย่างมัน่ใจและยัง่ยนื

ดว้ยรกัและปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า
บทที ่15 การบูรณาการ JSP กบั Frameworks (JSP and Frameworks) 1

 การบูรณาการ JSP กบั Frameworks
 รายละเอยีดเชงิลกึ การบรูณาการ JSP กบั Frameworks
 การใชง้าน JSP รว่มกบั Spring MVC
 การใช ้JSP ในโปรเจกตท์ีใ่ช ้Hibernate/JPA ส าหรบั ORM
 การสรา้ง RESTful API และการเรยีกใชง้านผ่าน JSP
 การใช ้JSP กบั Frontend สมยัใหม ่(React, Angular) แบบ Hybrid
ตวัอยา่งบรูณาการ

บทที ่16 การทดสอบและ Debugging ระดบัมอือาชพี (Testing and Debugging) 65
 การทดสอบและ Debugging ระดบัมอือาชพี
 รายละเอยีดเชงิลกึ การทดสอบและ Debugging ระดบัมอือาชพีส าหรบั JSP
 การเขยีน Unit Test ส าหรบั Servlet และ JSP Backend ดว้ย JUnit/Mockito
 การดบีกั JSP ใน IDE (Eclipse, IntelliJ) แบบ Step-by-Step
 การจดัการ Log (Log4j, SLF4J) และการวเิคราะห ์Log ใน Production
 การวเิคราะห ์Memory Leak และปัญหาประสทิธภิาพใน JSP/Servlet
 การวเิคราะห ์Memory Leak และปัญหาประสทิธภิาพ
 การวเิคราะห ์Memory Leak และปัญหาประสทิธภิาพ (Memory Leak & Performance

Bottleneck Analysis)" ส าหรบั JSP/Servlet-based Web Application
 Workshop JSP Performance & Memory

บทที ่17 การจดัการ Deployment และ CI/CD (Deployment and CI/CD) 148
 การจดัการ Deployment และ CI/CD
 การจดัการ Deployment และ CI/CD (เชงิลกึ)
 การสรา้งและจดัการ WAR File ส าหรบั JSP/Servlet Project
 การ Deploy JSP บน Apache Tomcat และ Application Server อื่น ๆ
 การตัง้ค่า Virtual Host และ Context Path บน Apache Tomcat

 แนวทางการตัง้ค่า CI/CD ส าหรบั JSP Projects โดยใช ้Jenkins, GitHub Actions และ
GitLab CI

 การ Monitor และ Backup Server ส าหรบั JSP Projects
บทที ่18 การพฒันา JSP แบบ Modular และ Clean Code (JSP Modular and Clean Code)
 .. 224

 การพฒันา JSP แบบ Modular และ Clean Code
 การพฒันา JSP แบบ Modular และ Clean Code — รายละเอยีดเชงิลกึ
 การออกแบบ Modular Project Structure
 การแยก Java Code ออกเป็น Service, DAO, Controller
 การใช ้Design Pattern ใน JSP/Java Web
 การใช ้Dependency Injection แบบงา่ยใน JSP/Java Web

บทที ่19 แนวทางความปลอดภยัขัน้สงู (Advanced Security) ... 319
 แนวทางความปลอดภยัขัน้สูง
 แนวทางความปลอดภยัขัน้สูง — รายละเอยีดเชงิลกึ
 การใชง้าน Spring Security หรอื Framework Security อื่นๆ
 การเขา้รหสัขอ้มลูและจดัการ Authentication / Authorization
 การป้องกนั SQL Injection ดว้ย PreparedStatement
 การตรวจสอบและจดัการ Vulnerabilities ทีพ่บบ่อยใน JSP

บทที ่20 แนวโน้มและเทคโนโลยเีสรมิใน JSP และ Java Web (JSP and Java Web) 371
 แนวโน้มและเทคโนโลยเีสรมิใน JSP และ Java Web
 แนวโน้มและเทคโนโลยเีสรมิใน JSP และ Java Web (รายละเอยีดเชงิลกึ)
 ความเปลีย่นแปลงและอนาคตของ JSP ใน Java EE และ Jakarta EE
 เทคโนโลยแีทน JSP: JSF, Thymeleaf, FreeMarker (รายละเอยีดเชงิลกึ + ตวัอยา่ง)
 การน า Microservices มาใชร้ว่มกบั JSP
 ตวัอยา่งแนวประยกุต ์(3 โปรแกรม) — เพิม่ Authentication, API Gateway, Cache
 แนวทางการใช ้Cloud Services กบั JSP Web Application

บรรณานุกรม ... 434

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 1

บทท่ี 15
การบรูณาการ JSP กบั Frameworks

 (JSP and Frameworks)

เน้ือหา

 การบูรณาการ JSP กบั Frameworks
 รายละเอยีดเชงิลกึ การบรูณาการ JSP กบั Frameworks
 การใชง้าน JSP รว่มกบั Spring MVC
 การใช ้JSP ในโปรเจกตท์ีใ่ช ้Hibernate/JPA ส าหรบั ORM
 การสรา้ง RESTful API และการเรยีกใชง้านผ่าน JSP
 การใช ้JSP กบั Frontend สมยัใหม ่(React, Angular) แบบ Hybrid
 ตวัอยา่งบรูณาการ

บทน าหนังสือ (ส าหรบับทท่ี 15: การบรูณาการ JSP กบั Frameworks)
ในยุคของการพฒันาเว็บแอปพลเิคชนัที่เปลี่ยนแปลงอย่างรวดเร็ว นักพฒันาไม่เพยีงต้องเข้าใจการ
ท างานของ JSP (JavaServer Pages) อย่างลกึซึง้เท่านัน้ แต่ยงัต้องสามารถน าไปประยุกต์ใชร้่วมกบั
เฟรมเวริก์และเทคโนโลยสีมยัใหม่ไดอ้ย่างมปีระสทิธภิาพ บทที ่15 นี้จงึมุ่งเน้นการบูรณาการ JSP เขา้
กบัเฟรมเวริก์ยอดนิยม เช่น Spring MVC, Hibernate/JPA, RESTful API และเทคโนโลย ีfrontend
สมยัใหม ่เพื่อเสรมิพลงัใหก้บัการพฒันาเวบ็ทีค่รบวงจรและทนัสมยั

หวัขอ้แรกทีเ่ราจะกล่าวถงึคอืการใชง้าน JSP ร่วมกบั Spring MVC ซึง่เป็นหนึ่งในเฟรมเวริก์
ยอดนิยมของ Java โดยเฉพาะในส่วนของ View Layer การตัง้ค่า View Resolver และการส่งขอ้มลูผ่าน
Model ถอืเป็นพืน้ฐานส าคญัทีน่ักพฒันาต้องเขา้ใจ หากสามารถเชื่อมโยง JSP เขา้กบั Spring MVC ได้
อยา่งถูกตอ้ง จะช่วยใหก้ารแยกหน้าทีข่อง Controller และ View มคีวามชดัเจนและยดืหยุน่มากขึน้

จากนัน้เราจะต่อยอดไปสู่การใช ้JSP ในโปรเจกต์ทีม่กีารจดัการฐานขอ้มลูดว้ย Hibernate หรอื
JPA ซึง่เป็นเครื่องมอื ORM (Object-Relational Mapping) ทีท่รงพลงั ในส่วนนี้ผูอ่้านจะไดเ้รยีนรูก้าร
สรา้ง Model, การแมปข้อมูลจากฐานขอ้มูล และการแสดงผลผ่านหน้า JSP อย่างเป็นระบบ ท าให้
สามารถพฒันาเวบ็แอปทีม่กีารจดัเกบ็ขอ้มลูไดอ้ยา่งมปีระสทิธภิาพ

เมือ่พูดถงึระบบเวบ็ยุคใหม่ การสรา้ง RESTful API กเ็ป็นสิง่จ าเป็นอย่างหลกีเลีย่งไม่ได ้ในบท
นี้เราจะเจาะลกึถงึแนวทางการสรา้ง RESTful API ดว้ย Spring ร่วมกบัการเรยีกใชง้านผ่าน JSP ไม่ว่า
จะเป็นการดงึข้อมูล JSON มาจดัแสดง หรอืการส่งข้อมูลกลบัไปยงัเซริฟ์เวอร ์ซึ่งช่วยให้ JSP มี
ความสามารถในการตดิต่อกบั Backend แบบ API ไดอ้ยา่งยดืหยุน่

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 2

นอกจากนี้เรายงัไมล่มืบทบาทของ frontend framework ทีก่ าลงัไดร้บัความนิยมอย่างแพร่หลาย
เช่น React และ Angular ในบทนี้เราจะน าเสนอแนวทางการผสาน JSP เขา้กบัเทคโนโลยเีหล่านี้ใน
รปูแบบ Hybrid Application ทีเ่ปิดโอกาสให ้JSP ท างานร่วมกบั JavaScript Framework ไดใ้นลกัษณะ
ทีเ่กือ้หนุนกนั ท าใหส้ามารถน าจดุเด่นของทัง้สองฝัง่มาใชร้ว่มกนัอยา่งมปีระสทิธภิาพ

บทน้ีไมไ่ดมุ้ง่เน้นเพยีงแค่ทฤษฎ ีแต่ยงัน าเสนอกรณีศกึษาจรงิ ตวัอย่างโคด้ทีใ่ชง้านไดจ้รงิ และ
แนวทางการแกปั้ญหาในสถานการณ์ทีซ่บัซอ้น ผูอ่้านจะไดฝึ้กฝนและประยุกต์ใชค้วามรูท้ีไ่ดจ้ากบทก่อน
หน้า มาสู่การพฒันาเวบ็แอปแบบ full-stack ทีม่ที ัง้ backend และ frontend ครบถว้น

สุดทา้ย ผูอ่้านจะเขา้ใจว่าแม ้JSP จะเป็นเทคโนโลยทีีอ่ยู่มานาน แต่กย็งัสามารถยนืหยดัอยู่ใน
โลกของการพฒันาเวบ็ไดอ้ยา่งสง่างาม หากน ามาบูรณาการกบัเครื่องมอืและแนวคดิใหม่ ๆ อย่างถูกวธิ ี
บทน้ีจงึเป็นอกีกา้วส าคญัทีจ่ะพาผูอ่้านจากการเป็นนักพฒันา JSP ระดบัพืน้ฐาน ไปสู่การเป็นนักพฒันา
เวบ็ระดบัมอือาชพีทีพ่รอ้มเผชญิกบัความทา้ทายของเทคโนโลยสีมยัใหมอ่ยา่งแทจ้รงิ

การบูรณาการ JSP กบั Frameworks

1. การใช้งาน JSP ร่วมกบั Spring MVC (View Resolver, Model)

 Spring MVC เป็น Framework ยอดนิยมส าหรบัสรา้งเวบ็แอปทีม่โีครงสรา้ง MVC (Model-
View-Controller)

 JSP มกัใชเ้ป็น View เพื่อแสดงผลขอ้มลูใน Spring MVC
 View Resolver ท าหน้าทีแ่ปลงชื่อ View เป็นไฟล ์JSP จรงิ ๆ เช่น "home" -> "/WEB-

INF/views/home.jsp"
 Controller จะรบัค าขอ, ประมวลผล, ใส่ขอ้มลูใน Model แลว้ส่งชื่อ View กลบั
 JSP จะดงึขอ้มลูจาก Model ผ่าน Expression Language (EL) แสดงผลหน้าเวบ็

ตวัอย่างโค้ด Controller (Java):
@Controller
public class HomeController {
 @RequestMapping("/home")
 public String home(Model model) {
 model.addAttribute("message", "Welcome to Spring MVC with JSP!");
 return "home"; // แปลเป็น /WEB-INF/views/home.jsp โดย ViewResolver
 }
}
ตวัอย่าง JSP (home.jsp):
<html>
<body>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 3

 <h1>${message}</h1>
</body>
</html>

2. การใช้ JSP ในโปรเจกตท่ี์ใช้ Hibernate/JPA ส าหรบั ORM

 Hibernate/JPA ช่วยใหก้ารจดัการฐานขอ้มลูแบบ Object-Relational Mapping (ORM) งา่ยขึน้
 Controller หรอื Service จะเรยีกใชง้าน Entity จากฐานขอ้มลูผ่าน Hibernate/JPA
 ขอ้มลูทีไ่ดจ้ะถูกส่งต่อไปยงั JSP ผ่าน Model
 JSP จะท าหน้าทีแ่สดงผลขอ้มลูโดยใช ้EL และ JSTL

ตวัอย่างการเรียกข้อมลูใน Controller:
@Autowired
private UserRepository userRepository;

@RequestMapping("/users")
public String listUsers(Model model) {
 List<User> users = userRepository.findAll();
 model.addAttribute("users", users);
 return "users"; // users.jsp
}
ตวัอย่าง JSP แสดงข้อมลู List:
<table border="1">
 <tr><th>ID</th><th>Name</th><th>Email</th></tr>
 <c:forEach var="user" items="${users}">
 <tr>
 <td>${user.id}</td>
 <td>${user.name}</td>
 <td>${user.email}</td>
 </tr>
 </c:forEach>
</table>

3. การสร้าง RESTful API และการเรียกใช้งานผา่น JSP

 สรา้ง REST API ดว้ย Spring Boot หรอื Framework อื่นๆ เพื่อใหบ้รกิารขอ้มลูในรปูแบบ
JSON

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 4

 JSP สามารถเรยีก API เหลา่นี้ผ่าน JavaScript (AJAX) เพื่อดงึขอ้มลูมาแสดงผลแบบไดนามกิ
 วธินีี้ช่วยแยก Backend กบั Frontend ออกจากกนัอย่างชดัเจน (Hybrid Architecture)

ตวัอย่าง REST Controller:
@RestController
public class UserRestController {
 @GetMapping("/api/users")
 public List<User> getUsers() {
 return userRepository.findAll();
 }
}
ตวัอย่าง JSP + AJAX ดึงข้อมลู JSON:
<html>
<head>
<script>
function loadUsers() {
 fetch('/api/users')
 .then(response => response.json())
 .then(data => {
 let table = "<table border='1'><tr><th>ID</th><th>Name</th><th>Email</th></tr>";
 data.forEach(user => {
 table += `<tr><td>${user.id}</td><td>${user.name}</td><td>${user.email}</td></tr>`;
 });
 table += "</table>";
 document.getElementById("userTable").innerHTML = table;
 });
}
</script>
</head>
<body onload="loadUsers()">
 <h2>User List (Loaded via AJAX)</h2>
 <div id="userTable"></div>
</body>
</html>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 5

4. การใช้ JSP กบัเทคโนโลยี Frontend สมยัใหม่ (เช่น React, Angular) แบบ Hybrid
 ในโปรเจกต ์Hybrid บางครัง้ใช ้JSP ส าหรบัจดัการ layout หลกัและ session/authentication
 ส่วน Frontend สมยัใหม ่เช่น React หรอื Angular จะท างานบน client-side และโหลดผ่าน

JSP
 JSP อาจจะส่งค่าเริม่ตน้ (เช่น token, user info) ผ่านการแทรกใน <script> tag หรอื meta tag
 React/Angular จะใชข้อ้มลูนี้เชื่อมต่อกบั REST API หรอื WebSocket เพื่อแสดงขอ้มลูแบบ

dynamic
ตวัอย่าง JSP ฝัง React App:
<html>
<head>
 <title>React with JSP</title>
</head>
<body>
 <div id="root"></div>

 <script>
 // ส่งขอ้มลู session/user ไป React
 window.appConfig = {
 user: "${sessionScope.user}"
 };
 </script>

 <!-- โหลด React Bundle -->
 <script src="static/js/main.js"></script>
</body>
</html>
React app จะอ่าน window.appConfig.user เพ่ือใช้งาน

รายละเอียดเชิงลึก การบูรณาการ JSP กบั Frameworks

1. การใช้งาน JSP ร่วมกบั Spring MVC (View Resolver, Model)

 Spring MVC Architecture:
Spring MVC แยกส่วนการท างานออกเป็น Controller (จดัการค าขอ), Model (เกบ็ขอ้มลู),

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 6

View (แสดงผล)
JSP ถูกใชเ้ป็น View Component เพื่อแสดงขอ้มลูที ่Controller เตรยีมไว ้

 View Resolver:
Spring MVC ใช ้View Resolver เพื่อแปลงชื่อ View ที ่Controller ส่งกลบั (เช่น "home") เป็น
path ของ JSP จรงิ เช่น /WEB-INF/views/home.jsp
ท าใหไ้มต่อ้งระบุ path เตม็ใน Controller

 Model:
Controller จะส่งขอ้มลูทีต่อ้งการแสดงให ้JSP ผ่าน Model (เช่น model.addAttribute("key",
value))
JSP สามารถเขา้ถงึขอ้มลูใน Model ดว้ย Expression Language (EL) เช่น ${key}

 ข้อดี:
o ช่วยแยกความรบัผดิชอบชดัเจน
o ลดการใช ้Scriptlet ใน JSP ท าใหโ้คด้สะอาดและง่ายต่อการดแูล
o รองรบัการทดสอบงา่ยขึน้

2. การใช้ JSP ในโปรเจกตท่ี์ใช้ Hibernate/JPA ส าหรบั ORM

 ORM คืออะไร:
ORM (Object-Relational Mapping) คอืเทคนิคเชื่อมโยงขอ้มลูในฐานขอ้มลูกบัวตัถุในโปรแกรม
Hibernate และ JPA เป็น Framework ส าหรบั ORM

 บทบาทของ JSP:
JSP รบัขอ้มลูทีไ่ดจ้าก ORM ผ่าน Controller หรอื Service
ขอ้มลูมกัอยูใ่นรปูแบบ JavaBeans หรอื Collection เช่น List, Map

 การใช้งานใน JSP:
JSP ใช ้EL และ JSTL เพื่อแสดงขอ้มลู เช่น

o <c:forEach> เพื่อวนลปูแสดงขอ้มลูหลายรายการ
o EL เช่น ${user.name}, ${user.email} เพื่อดงึค่าจาก JavaBeans

 ข้อดี:
o ไมต่อ้งเขยีน SQL ตรงใน JSP
o การแยกชัน้ชดัเจนท าใหโ้คด้ดแูลงา่ย
o เพิม่ประสทิธภิาพและลดขอ้ผดิพลาดจาก SQL แบบดบิ

3. การสร้าง RESTful API และการเรียกใช้งานผา่น JSP

 RESTful API คืออะไร:
เป็นสถาปัตยกรรมส าหรบัสรา้ง Web Service ทีใ่ช ้HTTP Methods (GET, POST, PUT,

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 7

DELETE)
ส่งขอ้มลูระหว่าง Client กบั Server โดยปกตเิป็น JSON หรอื XML

 การเรียก API ผา่น JSP:
JSP แสดงผลหน้าเวบ็เป็น HTML และ JavaScript
JavaScript (เช่น AJAX หรอื Fetch API) ดงึขอ้มลู JSON จาก REST API มาประมวลผลและ
แสดงผลแบบไดนามกิบนหน้าเวบ็

 ประโยชน์:
o เพิม่ประสทิธภิาพการโหลดขอ้มลู ไมต่อ้งรเีฟรชหน้าเตม็
o รองรบัการพฒันา Frontend ทีแ่ยกจาก Backend ไดง้า่ยขึน้
o ท าให ้UI ตอบสนองเรว็ขึน้

 ความท้าทาย:
o ตอ้งดแูล CORS (Cross-Origin Resource Sharing) หาก Frontend กบั Backend อยู่

คนละโดเมน
o ตอ้งจดัการ Authentication ใหเ้หมาะสม เช่น Token-based

4. การใช้ JSP กบัเทคโนโลยี Frontend สมยัใหม่ (เช่น React, Angular) แบบ Hybrid

 แนวคิด Hybrid:
ใช ้JSP จดัการส่วน Server-Side Rendering (เช่น Layout, Authentication)
ส่วน Frontend ท างานบน client-side ดว้ย React/Angular

 การส่งข้อมลูจาก JSP ไป Frontend:
JSP สามารถฝังขอ้มลู (เช่น ขอ้มลู session, token) ใน <script> หรอื <meta> tags เพื่อให ้
React/Angular อ่านและใชง้านต่อได ้

 ข้อดี:
o รกัษาความสามารถ SEO จาก Server-Side Rendering
o ใชค้วามสามารถ JSP จดัการ session หรอื user authentication ไดง้า่ย
o Frontend สมยัใหมส่ามารถโฟกสักบั UI/UX ไดเ้ตม็ที ่

 แนวทางปฏิบติั:
o แยก static resources (JS, CSS) ออกจาก JSP เพื่อจดัการ bundle และ cache
o ใช ้API แยกจาก JSP ส าหรบั data communication
o จดัการ route บน client-side กบั server-side อยา่งเหมาะสม

การใช้งาน JSP ร่วมกบั Spring MVC

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 8

การใช้งาน JSP ร่วมกบั Spring MVC (View Resolver, Model)
1. แนวคิดพื้นฐานของ Spring MVC กบั JSP

 Spring MVC เป็น Framework ส าหรบัสรา้งเวบ็แอปทีแ่ยกชัน้ Model, View, Controller อยา่ง
ชดัเจน

 JSP จะท าหน้าทีเ่ป็น View ในการแสดงผลขอ้มลู
 Controller จะรบัค าขอ (Request), ประมวลผลธุรกจิ และส่งขอ้มลูให ้JSP ผ่าน Model
 Spring จะใช ้View Resolver เพื่อแปลงชื่อ View ที ่Controller คนืค่า ไปเป็นไฟล ์JSP ทีจ่ะ

เรนเดอรจ์รงิๆ

2. โครงสร้างไฟลแ์ละต าแหน่ง JSP

 JSP มกัจะวางไวใ้นโฟลเดอรป์ลอดภยั เช่น /WEB-INF/views/ เพื่อป้องกนัการเขา้ถงึโดยตรง
ผ่าน URL

 ตวัอยา่งโครงสรา้งโปรเจกต:์
/src/main/webapp/WEB-INF/views/home.jsp
/src/main/webapp/WEB-INF/views/error.jsp

3. การตัง้ค่า View Resolver ใน Spring MVC

 Spring ตอ้งการก าหนด View Resolver ใหรู้ว้่า JSP อยูท่ีไ่หน และใช ้suffix อะไร เช่น .jsp
ตวัอย่างการตัง้ค่าแบบ Java Config:
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.example")
public class WebConfig implements WebMvcConfigurer {

 @Bean
 public InternalResourceViewResolver viewResolver() {
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/views/");
 resolver.setSuffix(".jsp");
 return resolver;
 }
}

 เมือ่ Controller คนืชื่อ View เช่น "home"
 Spring จะหาว่า JSP จรงิคอื /WEB-INF/views/home.jsp

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 9

4. การส่งข้อมลูผา่น Model จาก Controller

 Controller จะเพิม่ขอ้มลูลงใน Model เพื่อส่งให ้JSP ใชแ้สดงผล
 ตวัอยา่ง Controller:

@Controller
public class HomeController {

 @GetMapping("/home")
 public String home(Model model) {
 model.addAttribute("message", "Hello from Spring MVC!");
 return "home"; // ชื่อ View: home.jsp
 }
}

5. การใช้ข้อมลูใน JSP ผา่น Expression Language (EL)

 JSP สามารถเขา้ถงึขอ้มลูใน Model ผ่าน EL ไดง้า่ย ๆ เช่น ${message}
 ตวัอยา่ง home.jsp:

<html>
<head><title>Home Page</title></head>
<body>
 <h1>${message}</h1>
</body>
</html>

6. ข้อดีของการใช้ JSP กบั Spring MVC

 ลดการใช้ Scriptlets: JSP ใช ้EL แทนการเขยีน Java โคด้ใน JSP ท าใหโ้คด้อ่านงา่ย และ
แยก View กบั Business Logic ชดัเจน

 ความปลอดภยั: JSP ทีอ่ยูใ่น /WEB-INF ไมส่ามารถเขา้ถงึโดยตรงผ่าน URL
 การจดัการง่าย: ใช ้View Resolver ช่วยใหจ้ดัการไฟล ์JSP ไดส้ะดวกและเป็นระบบ
 รองรบั MVC เตม็รปูแบบ: ช่วยใหโ้คด้โปรแกรมแบ่งแยกหน้าทีด่ ีงา่ยต่อการดแูลและทดสอบ

สรปุ

ส่วนประกอบ บทบาทใน Spring MVC + JSP

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 10

ส่วนประกอบ บทบาทใน Spring MVC + JSP

Controller รบัค าขอ, ประมวลผล, เตรยีมขอ้มลู (Model), คนืชื่อ View

Model เกบ็ขอ้มลูทีส่่งจาก Controller ไป JSP

View Resolver แปลงชื่อ View เป็น path JSP จรงิ

JSP แสดงผลขอ้มลูโดยใช ้EL และ JSTL

นี่คอืตวัอยา่งโปรแกรม Spring MVC + JSP จ านวน 3 โปรแกรมพืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์
พรอ้มโครงสรา้ง ค าอธบิาย และผลการรนั

ตวัอย่างพื้นฐาน (Basic Examples)

1. Hello World with Spring MVC + JSP
โครงสร้างโปรเจกต์
/src/main/java/com/example/controller/HomeController.java
/src/main/webapp/WEB-INF/views/hello.jsp
/src/main/java/com/example/config/WebConfig.java
WebConfig.java
package com.example.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@EnableWebMvc
public class WebConfig {

 @Bean
 public InternalResourceViewResolver viewResolver() {
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/views/");
 resolver.setSuffix(".jsp");

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 11

 return resolver;
 }
}
HomeController.java
package com.example.controller;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class HomeController {

 @GetMapping("/hello")
 public String hello(Model model) {
 model.addAttribute("message", "Hello Spring MVC with JSP!");
 return "hello"; // จะไปที ่/WEB-INF/views/hello.jsp
 }
}
hello.jsp
<html>
<head><title>Hello Page</title></head>
<body>
<h1>${message}</h1>
</body>
</html>

ผลการรนั
เขา้ผ่าน URL: http://localhost:8080/yourApp/hello
แสดงผล:
Hello Spring MVC with JSP!

2. Passing Parameters and Showing List in JSP
HomeController.java (เพ่ิม)

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 12

@GetMapping("/users")
public String users(Model model) {
 List<String> userList = Arrays.asList("Alice", "Bob", "Charlie");
 model.addAttribute("users", userList);
 return "users"; // users.jsp
}
users.jsp
<html>
<head><title>User List</title></head>
<body>
<h2>User List</h2>

 <c:forEach var="user" items="${users}">
 ${user}
 </c:forEach>

</body>
</html>
หมายเหต:ุ ตอ้ง import JSTL ใน JSP ดว้ย
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

ผลการรนั
URL: http://localhost:8080/yourApp/users
แสดงรายการ:

 Alice
 Bob
 Charlie

3. Form Submission with JSP and Spring MVC
HomeController.java (เพ่ิม)
@GetMapping("/form")
public String form() {
 return "form"; // form.jsp
}

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 13

@PostMapping("/submit")
public String submit(@RequestParam("name") String name, Model model) {
 model.addAttribute("userName", name);
 return "result"; // result.jsp
}
form.jsp
<html>
<head><title>Input Form</title></head>
<body>
<form method="post" action="submit">
 Name: <input type="text" name="name" />
 <input type="submit" value="Submit" />
</form>
</body>
</html>
result.jsp
<html>
<head><title>Result</title></head>
<body>
<h2>Hello, ${userName}!</h2>
</body>
</html>

ผลการรนั

 เขา้ http://localhost:8080/yourApp/form
 กรอกชื่อแลว้กด submit
 แสดงขอ้ความ “Hello, [ชื่อทีก่รอก]!”

ตวัอย่างแนวประยกุต์ (Advanced Examples)

1. Using JavaBean in Model with Spring MVC + JSP
User.java (JavaBean)
package com.example.model;

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 14

public class User {
 private String name;
 private int age;

 // Constructor
 public User() {}

 public User(String name, int age) {
 this.name = name; this.age = age;
 }

 // Getter & Setter
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public int getAge() { return age; }
 public void setAge(int age) { this.age = age; }
}
HomeController.java (แก้ไข)
@GetMapping("/user")
public String user(Model model) {
 User user = new User("John Doe", 30);
 model.addAttribute("user", user);
 return "user"; // user.jsp
}
user.jsp
<html>
<head><title>User Info</title></head>
<body>
<h2>User Information</h2>
<p>Name: ${user.name}</p>
<p>Age: ${user.age}</p>
</body>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 15

</html>

ผลการรนั
URL: http://localhost:8080/yourApp/user
แสดงขอ้มลู User ทีส่่งมาจาก Controller ผ่าน JSP EL

2. Using Model with List of JavaBeans
HomeController.java (แก้ไข)
@GetMapping("/userlist")
public String userList(Model model) {
 List<User> users = Arrays.asList(
 new User("Alice", 25),
 new User("Bob", 28),
 new User("Charlie", 32)
);
 model.addAttribute("users", users);
 return "userlist"; // userlist.jsp
}
userlist.jsp
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head><title>User List</title></head>
<body>
<h2>Users</h2>
<table border="1">
<tr><th>Name</th><th>Age</th></tr>
<c:forEach var="user" items="${users}">
 <tr>
 <td>${user.name}</td>
 <td>${user.age}</td>
 </tr>
</c:forEach>
</table>
</body>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 16

</html>

ผลการรนั
URL: http://localhost:8080/yourApp/userlist
แสดงตารางขอ้มลู User List

3. Form Binding with Spring MVC + JSP + ModelAttribute
HomeController.java (เพ่ิม)
@GetMapping("/register")
public String showForm(Model model) {
 model.addAttribute("user", new User());
 return "register"; // register.jsp
}

@PostMapping("/register")
public String processForm(@ModelAttribute("user") User user, Model model) {
 model.addAttribute("message", "Registered user: " + user.getName() + ", age " +
user.getAge());
 return "registerResult"; // registerResult.jsp
}
register.jsp
<%@ taglib uri="http://www.springframework.org/tags/form" prefix="form" %>
<html>
<head><title>Register User</title></head>
<body>
<h2>Register</h2>
<form:form method="post" modelAttribute="user" action="register">
 Name: <form:input path="name" />

 Age: <form:input path="age" />

 <input type="submit" value="Register" />
</form:form>
</body>
</html>
registerResult.jsp

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 17

<html>
<head><title>Register Result</title></head>
<body>
<h2>${message}</h2>
</body>
</html>

ผลการรนั

 เขา้ http://localhost:8080/yourApp/register
 กรอกชื่อและอาย ุแลว้ส่งฟอรม์
 แสดงขอ้ความยนืยนัการลงทะเบยีน

การใช้ JSP ในโปรเจกตท่ี์ใช้ Hibernate/JPA ส าหรบั ORM

1. แนวคิดหลกั

 Hibernate/JPA คอืเทคโนโลย ีORM (Object-Relational Mapping) ทีช่่วยให ้Java สามารถ
จดัการกบัฐานขอ้มลูในรปูแบบวตัถุ (Objects) แทนการเขยีน SQL แบบดบิ ๆ

 ในสถาปัตยกรรม MVC ทีใ่ช ้Spring MVC + Hibernate/JPA
o Model คอื Entity และ Data Access Layer (DAO หรอื Repository) ทีต่ดิต่อกบั

ฐานขอ้มลูผ่าน Hibernate/JPA
o Controller จะรบัค าขอ ประมวลผล และน าขอ้มลูทีไ่ดส้่งต่อไปยงั JSP ผ่าน Model
o View (JSP) จะรบัขอ้มลูผ่าน EL และ JSTL เพื่อแสดงผลบนเวบ็

2. โครงสร้างโปรเจกตแ์บบย่อ
/src/main/java/com/example/model/User.java (Entity)
/src/main/java/com/example/repository/UserRepository.java (JPA Repository)
/src/main/java/com/example/controller/UserController.java (Controller)
/src/main/resources/application.properties (config DB)
/src/main/webapp/WEB-INF/views/users.jsp (JSP View)

3. ตวัอย่างไฟลส์ าคญั

3.1 Entity Class - User.java
package com.example.model;

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 18

import jakarta.persistence.Entity;
import jakarta.persistence.Id;
import jakarta.persistence.Table;

@Entity
@Table(name = "users")
public class User {

 @Id
 private Long id;

 private String name;
 private String email;

 // Constructors
 public User() {}
 public User(Long id, String name, String email) {
 this.id = id; this.name = name; this.email = email;
 }

 // Getters and Setters
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public String getEmail() { return email; }
 public void setEmail(String email) { this.email = email; }
}

3.2 Repository Interface - UserRepository.java
package com.example.repository;

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 19

import com.example.model.User;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {
 // JpaRepository ม ีmethod พืน้ฐาน เช่น findAll(), findById(), save(), delete()
}

3.3 Controller - UserController.java
package com.example.controller;

import com.example.model.User;
import com.example.repository.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;

import java.util.List;

@Controller
public class UserController {

 @Autowired
 private UserRepository userRepository;

 @GetMapping("/users")
 public String users(Model model) {
 List<User> users = userRepository.findAll();
 model.addAttribute("users", users);
 return "users"; // users.jsp
 }

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 20

}

3.4 JSP View - users.jsp
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head><title>User List</title></head>
<body>
<h2>User List from Database</h2>
<table border="1">
<tr><th>ID</th><th>Name</th><th>Email</th></tr>
<c:forEach var="user" items="${users}">
 <tr>
 <td>${user.id}</td>
 <td>${user.name}</td>
 <td>${user.email}</td>
 </tr>
</c:forEach>
</table>
</body>
</html>

4. ตวัอย่างไฟล ์Configuration (application.properties)
spring.datasource.url=jdbc:mysql://localhost:3306/yourdb
spring.datasource.username=root
spring.datasource.password=yourpassword
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

5. ค าอธิบายโดยสงัเขป

 เมือ่ผูใ้ชเ้ขา้ URL /users
 Controller เรยีก userRepository.findAll() เพื่อดงึขอ้มลู User ทัง้หมดจากฐานขอ้มลู
 ขอ้มลูส่งเขา้ Model ดว้ย key ชื่อ users
 JSP ใช ้<c:forEach> ลปูขอ้มลู User แลว้แสดงตาราง

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 21

 ขอ้มลูแต่ละเรคอรด์แสดงผ่าน EL เช่น ${user.name}

6. ผลการรนั (สมมติฐาน)

ID Name Email

1 Alice Smith alice@example.com

2 Bob Johnson bob@example.com

3 Charlie Lee charlie@example.com

7. สรปุข้อดี

 แยกความรบัผดิชอบชดัเจน: Entity ดแูลขอ้มลู, Repository ดแูลฐานขอ้มลู, Controller จดัการ
ค าขอ, JSP แสดงผล

 ไมต่อ้งเขยีน SQL ใน JSP หรอื Controller
 ใช ้EL/JSTL แสดงผลขอ้มลูแบบงา่ยและปลอดภยั
 Hibernate/JPA ช่วยจดัการเชื่อมต่อ DB, Transaction, Mapping แบบอตัโนมตั ิ

นี่คอืตวัอยา่งโปรแกรมแบบเตม็ไฟลพ์รอ้มโครงสรา้ง ค าอธบิายโคด้ และผลการรนั จ านวน 3 โปรแกรม
พืน้ฐานและ 3 โปรแกรมแนวประยกุต ์ทีใ่ช ้JSP รว่มกบั Hibernate/JPA ส าหรบั ORM

ตวัอย่างพื้นฐาน 3 โปรแกรม — JSP + Hibernate/JPA

ตวัอย่างท่ี 1: แสดงรายการ User ทัง้หมดจากฐานข้อมลู
โครงสร้างไฟล ์
src/main/java/com/example/model/User.java
src/main/java/com/example/repository/UserRepository.java
src/main/java/com/example/controller/UserController.java
src/main/resources/application.properties
src/main/webapp/WEB-INF/views/users.jsp
src/main/java/com/example/config/WebConfig.java

1. User.java (Entity)
package com.example.model;

import jakarta.persistence.Entity;

mailto:alice@example.com
mailto:bob@example.com
mailto:charlie@example.com

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 22

import jakarta.persistence.Id;
import jakarta.persistence.Table;

@Entity
@Table(name = "users")
public class User {
 @Id
 private Long id;
 private String name;
 private String email;

 public User() {}
 public User(Long id, String name, String email) {
 this.id = id; this.name = name; this.email = email;
 }

 // getters and setters
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public String getEmail() { return email; }
 public void setEmail(String email) { this.email = email; }
}

2. UserRepository.java
package com.example.repository;

import com.example.model.User;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 23

 // JpaRepository ม ีmethod พืน้ฐาน เช่น findAll(), save(), delete()
}

3. UserController.java
package com.example.controller;

import com.example.model.User;
import com.example.repository.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;

import java.util.List;

@Controller
public class UserController {

 @Autowired
 private UserRepository userRepository;

 @GetMapping("/users")
 public String getUsers(Model model) {
 List<User> users = userRepository.findAll();
 model.addAttribute("users", users);
 return "users"; // ไปที ่users.jsp
 }
}

4. users.jsp
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head><title>User List</title></head>
<body>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 24

<h2>User List</h2>
<table border="1">
<tr><th>ID</th><th>Name</th><th>Email</th></tr>
<c:forEach var="user" items="${users}">
 <tr>
 <td>${user.id}</td>
 <td>${user.name}</td>
 <td>${user.email}</td>
 </tr>
</c:forEach>
</table>
</body>
</html>

5. application.properties (ตวัอย่างเช่ือมต่อ MySQL)
spring.datasource.url=jdbc:mysql://localhost:3306/yourdb
spring.datasource.username=root
spring.datasource.password=yourpassword
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

6. WebConfig.java (ตัง้ค่า View Resolver)
package com.example.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@EnableWebMvc
public class WebConfig {
 @Bean

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 25

 public InternalResourceViewResolver viewResolver() {
 InternalResourceViewResolver vr = new InternalResourceViewResolver();
 vr.setPrefix("/WEB-INF/views/");
 vr.setSuffix(".jsp");
 return vr;
 }
}

ผลการรนั
เปิดเบราเซอรท์ี ่http://localhost:8080/yourApp/users
แสดงตาราง User ทัง้หมดจากฐานขอ้มลู MySQL

ตวัอย่างท่ี 2: เพ่ิมข้อมลู User ผา่น JSP Form และบนัทึกด้วย Hibernate/JPA

1. UserController.java (เพ่ิม)
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.ModelAttribute;

@GetMapping("/userForm")
public String userForm(Model model) {
 model.addAttribute("user", new User());
 return "userForm"; // userForm.jsp
}

@PostMapping("/saveUser")
public String saveUser(@ModelAttribute("user") User user) {
 userRepository.save(user);
 return "redirect:/users";
}

2. userForm.jsp
<%@ taglib uri="http://www.springframework.org/tags/form" prefix="form" %>
<html>
<head><title>User Form</title></head>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 26

<body>
<h2>Add New User</h2>
<form:form method="post" action="saveUser" modelAttribute="user">
 ID: <form:input path="id" />

 Name: <form:input path="name" />

 Email: <form:input path="email" />

 <input type="submit" value="Save" />
</form:form>
</body>
</html>

ผลการรนั

 เขา้ http://localhost:8080/yourApp/userForm
 กรอกขอ้มลูและกด Save
 ระบบบนัทกึขอ้มลูและ redirect ไปหน้า /users เพื่อแสดงขอ้มลูทัง้หมด

ตวัอย่างท่ี 3: ลบข้อมลู User จาก JSP

1. UserController.java (เพ่ิม)
import org.springframework.web.bind.annotation.PathVariable;

@GetMapping("/deleteUser/{id}")
public String deleteUser(@PathVariable("id") Long id) {
 userRepository.deleteById(id);
 return "redirect:/users";
}

2. users.jsp (เพ่ิมลิงกล์บ)
<c:forEach var="user" items="${users}">
 <tr>
 <td>${user.id}</td>
 <td>${user.name}</td>
 <td>${user.email}</td>
 <td>Delete</td>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 27

 </tr>
</c:forEach>

ผลการรนั

 ทีห่น้า /users จะมลีงิก ์Delete ในแต่ละแถว
 คลกิลงิกเ์พื่อลบ User ตาม id และรเีฟรชหน้าแสดงขอ้มลูล่าสุด

ตวัอย่างแนวประยกุต์ 3 โปรแกรม — ใช้ JSP + Hibernate/JPA + Spring MVC

ตวัอย่างท่ี 1: Pagination แสดงผล User ทีละหน้า

1. UserController.java (แก้ไข)
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.web.bind.annotation.RequestParam;

@GetMapping("/usersPage")
public String getUsersPage(Model model,
 @RequestParam(defaultValue = "0") int page,
 @RequestParam(defaultValue = "5") int size) {

 Pageable pageable = PageRequest.of(page, size);
 Page<User> usersPage = userRepository.findAll(pageable);
 model.addAttribute("usersPage", usersPage);
 model.addAttribute("currentPage", page);
 return "usersPage"; // usersPage.jsp
}

2. usersPage.jsp
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head><title>User List Pagination</title></head>
<body>

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 28

<h2>Users (Page ${currentPage + 1})</h2>
<table border="1">
<tr><th>ID</th><th>Name</th><th>Email</th></tr>
<c:forEach var="user" items="${usersPage.content}">
 <tr>
 <td>${user.id}</td>
 <td>${user.name}</td>
 <td>${user.email}</td>
 </tr>
</c:forEach>
</table>

<c:if test="${usersPage.hasPrevious()}">
 Previous
</c:if>

<c:if test="${usersPage.hasNext()}">
 Next
</c:if>

</body>
</html>

ผลการรนั

 แสดงผูใ้ชท้ลีะหน้า 5 คน
 มลีงิก ์Next / Previous เพื่อเลื่อนดหูน้าต่อไป

ตวัอย่างท่ี 2: ค้นหาข้อมูล User ด้วยช่ือ

1. UserRepository.java (เพ่ิม Method)
import java.util.List;

List<User> findByNameContainingIgnoreCase(String name);

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 29

2. UserController.java (เพ่ิม)
@GetMapping("/search")
public String searchUsers(@RequestParam("keyword") String keyword, Model model) {
 List<User> users = userRepository.findByNameContainingIgnoreCase(keyword);
 model.addAttribute("users", users);
 return "users"; // ใช ้users.jsp แสดงผล
}

3. searchForm.jsp
<html>
<head><title>Search Users</title></head>
<body>
<h2>Search Users</h2>
<form action="search" method="get">
 Name: <input type="text" name="keyword" />
 <input type="submit" value="Search" />
</form>
</body>
</html>

ผลการรนั

 กรอกชื่อบางส่วนในแบบฟอรม์
 ระบบคน้หาและแสดง User ทีช่ื่อใกลเ้คยีงในหน้า users.jsp

ตวัอย่างท่ี 3: อพัเดตข้อมูล User

1. UserController.java (เพ่ิม)
@GetMapping("/editUser/{id}")
public String editUser(@PathVariable("id") Long id, Model model) {
 User user = userRepository.findById(id).orElse(null);
 model.addAttribute("user", user);
 return "editUser"; // editUser.jsp
}

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 30

@PostMapping("/updateUser")
public String updateUser(@ModelAttribute("user") User user) {
 userRepository.save(user);
 return "redirect:/users";
}

2. editUser.jsp
<%@ taglib uri="http://www.springframework.org/tags/form" prefix="form" %>
<html>
<head><title>Edit User</title></head>
<body>
<h2>Edit User</h2>
<form:form method="post" modelAttribute="user" action="updateUser">
 ID: <form:input path="id" readonly="true" />

 Name: <form:input path="name" />

 Email: <form:input path="email" />

 <input type="submit" value="Update" />
</form:form>
</body>
</html>

ผลการรนั

 เปิด http://localhost:8080/yourApp/editUser/{id}
 แกไ้ขขอ้มลู User แลว้ส่งฟอรม์
 ระบบอพัเดตขอ้มลูในฐานขอ้มลูและ redirect ไปหน้าแสดงขอ้มลูทัง้หมด

การสรา้ง RESTful API และการเรียกใช้งานผ่าน JSP

1. แนวคิดหลกั

 RESTful API คอืบรกิาร HTTP ทีส่่งขอ้มลู JSON/XML เพื่อให ้Client (เช่น Frontend หรอื
JSP) เรยีกใชไ้ด ้

 ใน Spring Boot/Spring MVC เราจะสรา้ง Controller แบบ REST ทีส่่งขอ้มลู JSON
 ฝัง่ JSP จะใช ้AJAX (เช่น jQuery, Fetch API) เรยีก REST API แลว้น าขอ้มลูมาแสดงผลโดย

ไมต่อ้งรเีฟรชหน้า

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 31

 แยกแยะระหว่าง View (JSP) กบั Backend (API) ช่วยใหส้ถาปัตยกรรมโปรเจกตย์ดืหยุน่

2. ตวัอย่างโปรเจกตแ์บบเตม็ไฟล ์— สร้าง REST API และเรียกจาก JSP

โครงสร้างโปรเจกต์
src/main/java/com/example/controller/RestUserController.java (REST API)
/src/main/java/com/example/controller/UserJspController.java (JSP Controller)
/src/main/java/com/example/model/User.java (Entity)
/src/main/resources/application.properties (DB config)
/src/main/webapp/WEB-INF/views/userList.jsp (JSP View)

3. โค้ดตวัอย่าง

3.1 Entity: User.java
package com.example.model;

import jakarta.persistence.Entity;
import jakarta.persistence.Id;

@Entity
public class User {
 @Id
 private Long id;
 private String name;
 private String email;

 public User() {}

 public User(Long id, String name, String email) {
 this.id = id; this.name = name; this.email = email;
 }

 // getters/setters omitted for brevity
 // ...

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 32

}

3.2 REST Controller: RestUserController.java
package com.example.controller;

import com.example.model.User;
import com.example.repository.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api/users")
public class RestUserController {

 @Autowired
 private UserRepository userRepository;

 // GET /api/users - ดงึ User ทัง้หมด
 @GetMapping
 public List<User> getAllUsers() {
 return userRepository.findAll();
 }

 // POST /api/users - เพิม่ User ใหม ่
 @PostMapping
 public User createUser(@RequestBody User user) {
 return userRepository.save(user);
 }
}

3.3 JSP Controller: UserJspController.java
package com.example.controller;

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 33

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class UserJspController {

 @GetMapping("/userList")
 public String userListPage() {
 return "userList"; // userList.jsp
 }
}

3.4 JSP View: userList.jsp
<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
<head>
 <title>User List with REST API</title>
 <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
</head>
<body>
<h2>User List from REST API</h2>
<table border="1" id="userTable">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Email</th></tr>
 </thead>
 <tbody>
 <!-- ขอ้มลูจะถูกเพิม่ดว้ย AJAX -->
 </tbody>
</table>

<script>
 $(document).ready(function () {
 $.ajax({

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 34

 url: '/api/users',
 method: 'GET',
 success: function (users) {
 var tbody = $('#userTable tbody');
 users.forEach(function (user) {
 tbody.append('<tr><td>' + user.id + '</td><td>' + user.name + '</td><td>' +
user.email + '</td></tr>');
 });
 },
 error: function () {
 alert('Error fetching user data');
 }
 });
 });
</script>
</body>
</html>

4. ค าอธิบายโค้ด

 RestUserController
o สรา้ง API /api/users ทีร่องรบั GET (ดงึขอ้มลู User ทัง้หมด) และ POST (เพิม่ User

ใหม)่
o ส่งขอ้มลูกลบัในรปูแบบ JSON อตัโนมตัดิว้ย @RestController

 UserJspController
o ให ้JSP แสดงหน้า userList.jsp

 userList.jsp
o โหลด jQuery
o ใช ้AJAX เรยีก API /api/users ดว้ย GET
o เมือ่ไดข้อ้มลู User ทีเ่ป็น JSON, วนลปูเพิม่ <tr> เขา้ <tbody> ของตาราง

5. ผลการรนั

 เขา้ URL: http://localhost:8080/yourApp/userList
 หน้าเวบ็แสดงตาราง User จากฐานขอ้มลูทีโ่หลดผ่าน REST API แบบ AJAX
 หน้าไมร่เีฟรชขอ้มลู แต่โหลดขอ้มลูแบบไดนามกิจาก API

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 35

ตวัอย่างแนวประยกุต ์

ตวัอย่าง 1: เพ่ิม User ผา่นฟอรม์ใน JSP แล้วเรียก REST API ด้วย AJAX

 เพิม่ <form> ใน JSP
 เมือ่ submit ใช ้AJAX POST ส่งขอ้มลู JSON ไปยงั REST API /api/users
 เมือ่เพิม่ส าเรจ็ โหลดขอ้มลู User ใหม่จาก API มาแสดงในตาราง

ตวัอย่าง 2: ลบ User ด้วย REST API และ AJAX

 สรา้ง REST API DELETE /api/users/{id}
 ใน JSP เพิม่ปุ่ ม Delete ในแต่ละแถว
 ใช ้AJAX เรยีก DELETE API เมือ่ลบส าเรจ็โหลดขอ้มลูใหม่

ตวัอย่าง 3: อพัเดตข้อมลู User ด้วย REST API และ AJAX พร้อมฟอรม์ Modal

 สรา้ง REST API PUT /api/users/{id}
 ใน JSP เพิม่ปุ่ ม Edit แต่ละแถว
 เปิด Modal ฟอรม์แกไ้ขขอ้มลู
 Submit ฟอรม์ดว้ย AJAX PUT
 โหลดขอ้มลูใหมใ่นตารางหลงัอพัเดต

นี่คอืตวัอยา่งโปรแกรมแบบเตม็ไฟล ์+ โครงสรา้ง + ค าอธบิายโคด้ + ผลการรนั จ านวน 3 โปรแกรม
พืน้ฐาน และ 3 โปรแกรมแนวประยกุต ์ทีส่รา้ง RESTful API ดว้ย Spring Boot/JPA และเรยีกใชง้าน
ผ่าน JSP ดว้ย AJAX

ตวัอย่างพื้นฐาน 3 โปรแกรม — RESTful API + JSP + AJAX

ตวัอย่างท่ี 1: แสดงรายการ User ผา่น REST API และ AJAX ใน JSP

โครงสร้างไฟล ์
src/main/java/com/example/model/User.java
src/main/java/com/example/repository/UserRepository.java
src/main/java/com/example/controller/RestUserController.java
src/main/java/com/example/controller/UserJspController.java
src/main/resources/application.properties

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 36

src/main/webapp/WEB-INF/views/userList.jsp

1. User.java
package com.example.model;

import jakarta.persistence.Entity;
import jakarta.persistence.Id;

@Entity
public class User {
 @Id
 private Long id;
 private String name;
 private String email;

 public User() {}

 public User(Long id, String name, String email) {
 this.id = id; this.name = name; this.email = email;
 }

 // getters and setters
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public String getEmail() { return email; }
 public void setEmail(String email) { this.email = email; }
}

2. UserRepository.java
package com.example.repository;

import com.example.model.User;

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 37

import org.springframework.data.jpa.repository.JpaRepository;

public interface UserRepository extends JpaRepository<User, Long> {}

3. RestUserController.java
package com.example.controller;

import com.example.model.User;
import com.example.repository.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/api/users")
public class RestUserController {

 @Autowired
 private UserRepository userRepository;

 @GetMapping
 public List<User> getAllUsers() {
 return userRepository.findAll();
 }
}

4. UserJspController.java
package com.example.controller;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 38

public class UserJspController {

 @GetMapping("/userList")
 public String userListPage() {
 return "userList"; // userList.jsp
 }
}

5. userList.jsp
<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
<head>
 <title>User List via REST API</title>
 <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
</head>
<body>
<h2>User List</h2>
<table border="1" id="userTable">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Email</th></tr>
 </thead>
 <tbody>
 <!-- AJAX จะเตมิขอ้มลูตรงน้ี -->
 </tbody>
</table>

<script>
 $(function() {
 $.ajax({
 url: '/api/users',
 method: 'GET',
 success: function(users) {
 var tbody = $('#userTable tbody');
 users.forEach(function(user) {

ศูนยห์นงัสือราคานกัเรียน

JSP Web Programming: Professional หนา้ 39

 tbody.append('<tr><td>' + user.id + '</td><td>' + user.name + '</td><td>' +
user.email + '</td></tr>');
 });
 },
 error: function() {
 alert('Error loading user data');
 }
 });
 });
</script>
</body>
</html>

6. application.properties (ตวัอย่าง)
spring.datasource.url=jdbc:mysql://localhost:3306/yourdb
spring.datasource.username=root
spring.datasource.password=yourpassword
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true

ผลการรนั

 เขา้ URL /userList
 หน้า JSP โหลดขอ้มลู User ผ่าน AJAX จาก REST API และแสดงตาราง User

ตวัอย่างท่ี 2: เพ่ิม User ผ่าน REST API ด้วย AJAX จาก JSP Form

1. RestUserController.java (เพ่ิม POST)
@PostMapping
public User addUser(@RequestBody User user) {
 return userRepository.save(user);
}

2. userAdd.jsp
<html>

	FP
	0_คำนำ
	0_สารบัญ
	บทที่ 15

