

ค าน า

หนังสอื C++ OOP Professional เล่มนี้ จดัท าขึน้ด้วยจุดมุ่งหมายที่จะเป็นทัง้ คู่มือการเรียนรู้ และ
แนวทางปฏิบติัจริง (Reference & Practice Guide) เพื่อช่วยผู้เรยีนพฒันาและยกระดบัทกัษะการ
เขยีนโปรแกรมเชงิวตัถุ (Object-Oriented Programming: OOP) ด้วยภาษา C++ ตัง้แต่ ผู้เร่ิมต้น
จนถงึ ผู้ช านาญ โดยผูเ้ขยีนตัง้ใจอธบิายทัง้ แนวคิดเชิงทฤษฎี และ การน าไปใช้จริง (Concept and
Practical Use) เพื่อใหผู้เ้รยีนเขา้ใจทัง้แก่นแทข้อง OOP และรูว้ธิลีงมอืเขยีนโปรแกรมเพื่อแก้โจทยแ์ละ
ปัญหาต่าง ๆ ในโลกจรงิไดอ้ยา่งมัน่ใจ

โครงสร้างเน้ือหาของหนังสือ
ผูเ้ขยีนไดอ้อกแบบและจดัล าดบัหวัขอ้การเรยีนรูเ้ป็น 4 ระดบั อยา่งชดัเจน เป็นขัน้เป็นตอน เพื่อให้
ผูเ้รยีนเลอืกศกึษาและพฒันาตนเองไดต้รงตามศกัยภาพและเป้าหมาย:

� ระดบัผู้เริม่ต้น (Beginner Level)
เป็นหวัใจของผูท้ ีเ่พิง่เขา้มาท าความรูจ้กั C++ และ OOP

 ปพูืน้ฐาน ภาษา C++ ตัง้แต่โครงสรา้งโปรแกรม ตวัแปร เงื่อนไข (if, switch) และลปู (for,
while)

 ฟังกช์นัและการส่งค่าผ่าน parameter
 Pointer & Reference พืน้ฐาน
 การรบัและสง่ค่าดว้ย Input/Output (cin, cout, getline)
 แนวคดิของ Object และ Class: เขา้ใจกระบวนทศัน์เชงิออ็บเจกตแ์ละความแตกต่างจากการ

เขยีนโปรแกรมแบบ Procedural
 การสรา้งคลาสและออ็บเจกตจ์รงิ: การใช ้Constructor, Destructor, Access Specifiers (public,

private, protected) และ Getters / Setters เพื่อใหเ้ขา้ใจ Encapsulation ข ัน้ตน้

� ระดบักลาง (Intermediate Level)
เรยีนรูห้วัใจของ OOP เพื่อเขยีนโปรแกรมขนาดใหญ่และเป็นระบบ

 เจาะลกึ Encapsulation และ Abstraction: เทคนิคการซอ่นรายละเอยีด (Data Hiding) และการ
ออกแบบคลาสดว้ย Abstract Class / Pure Virtual Function

 Inheritance (การสบืทอด): public / protected / private, Constructor & Destructor Chain
และการอา้งองิคลาสแม่ (Base::)

 Polymorphism:
o Compile-Time Polymorphism (Overloading): ฟังกช์นัและโอเปอเรเตอร ์

o Run-Time Polymorphism (Overriding): Virtual Functions, Pure Virtual Functions,
Dynamic Binding

 การบรหิารจดัการหน่วยความจ า: new, delete, Shallow Copy vs Deep Copy, Copy
Constructor, Move Constructor, Rule of 3 / Rule of 5

 แนวคดิเกีย่วกบั Static และ Const: static member, static method, const method, const
parameter และ mutable keyword

� ระดบัสงู (Advanced Level)
ยกระดบัทกัษะ C++ และ OOP เพื่อรองรบังานขนาดใหญ่และตอ้งการความยดืหยุน่

 Templates และ Generic Programming:
o Function Templates
o Class Templates
o การออกแบบคลาสใหเ้ป็นอสิระจากชนิดขอ้มลู

 การจดัการขอ้ผดิพลาด (Exception Handling): try, catch, throw และการออกแบบคลาส
Exception เพื่อรองรบั error handling ในโปรแกรมจรงิ

 STL + OOP: เรยีนรูก้ารใช ้vector, list, map, set และโครงสรา้ง STL ร่วมกบัคลาสของตนเอง
 Smart Pointers (C++11 และใหม่กวา่): unique_ptr, shared_ptr, weak_ptr และแนวคดิ RAII

เพื่อการบรหิารหน่วยความจ าอตัโนมตั ิ

� ระดบัมืออาชีพ (Professional Level)
กา้วสู่การเป็นผูพ้ฒันาซอฟตแ์วรอ์าชพี ดว้ยแนวคดิและแนวปฏบิตัสิากล

 Design Patterns:
o Creational Patterns: Singleton, Factory Method
o Structural Patterns: Adapter, Decorator, Composite
o Behavioral Patterns: Observer, Strategy, State
o แนวคดิและกรณีศกึษาการใช ้Design Patterns ในงานจรงิ

 SOLID Principles:
o Single Responsibility Principle
o Open/Closed Principle
o Liskov Substitution Principle
o Interface Segregation Principle
o Dependency Inversion Principle

 การออกแบบโปรแกรมแบบ Modular / Component-Based Architecture

 Test-Driven Development: Unit Test, Mock Objects และการใช ้Framework เช่น Google
Test หรอื Catch2 เพื่อควบคุมคุณภาพโคด้

ขอให้สนุก มีไฟ และท้าทายไปกบัการเรียนรู้ C++ OOP! เพื่อกา้วไปสู่การเป็นโปรแกรมเมอร ์

C++ มอือาชพีไดอ้ยา่งเตม็ภาคภมู!ิ

ดว้ยรกัและปรารถนาด ี
ศนูยห์นังสือราคานักเรียน

สารบญั

หน้า
บทที ่1 พืน้ฐานภาษา C++ ทีต่อ้งรูก้่อนเขา้ OOP (Introduction to C++ Basic) 1

 โครงสรา้งโปรแกรม C++
 ขยายรายละเอยีดของ พืน้ฐานภาษา C++ ก่อนเขา้ OOP
 เครื่องมอืทีต่อ้งใชใ้นการเขยีน C++
ตวัอยา่งโปรแกรม C++

บทที ่2 แนวคดิพืน้ฐานของ OOP และ UML (OOP Basic and UML) 17
 แนวคดิพืน้ฐานของ OOP
 แนวคดิพืน้ฐานของ OOP เชงิลกึ
 แนวคดิของ Class&Object
 แนวคดิของ Object และ Class — ระดบัแก่น (Conceptual Depth)
 ท าไม OOP จงึส าคญัมาก ในการพฒันาโปรแกรมขนาดใหญ่?
 ความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่
 UML (Unified Modeling Language) คอือะไร และท าไมถงึเป็น “เครื่องมอืออกแบบ” ที่

ส าคญัของ OOP
 Class Diagram
 Class Diagram เชงิลกึทีสุ่ดใน UML

บทที ่3 การสรา้งคลาสและวตัถุ (Class and Object) ... 46
 พืน้ฐานการสรา้งคลาสและวตัถุใน C++
 การสรา้งคลาสและวตัถุใน C++ โดยละเอยีด พรอ้ม ตวัอยา่ง UML Class Diagram
 การประกาศและใชง้าน class และ object ใน C++
 การประกาศและใชง้าน class และ object ใน C++ แบบเจาะลกึ
 ตวัอยา่งโปรแกรม: ระบบจดัการบุคคล (Person Management)
 Constructor และ Destructor ใน C++
 Constructor และ Destructor ใน C++ แบบเชงิลกึ
 Access Specifier ใน C++: public, private, protected
 Access Specifier ใน C++ — รายละเอยีดเชงิลกึ พรอ้ม UML

 Getter / Setter (Encapsulation)
 Getter / Setter (Encapsulation) — เชงิลกึ

บทที ่4 Encapsulation และ Abstraction (Encapsulation and Abstraction) 139
 พืน้ฐาน Encapsulation และ Abstraction ใน C++
 อธบิายเชงิลกึเกีย่วกบั Encapsulation และ Abstraction พรอ้มแสดง UML
 อธบิายเชงิลกึเรื่อง การซ่อนรายละเอยีด (Data Hiding) ใน OOP
 การซ่อนรายละเอยีด (Data Hiding) — เชงิลกึ
 การสรา้ง Interface ดว้ย Abstract Class หรอื Pure Virtual Function ใน C++
 การสรา้ง Interface ดว้ย Abstract Class และ Pure Virtual Function — เชงิลกึ
 การใชไ้ฟล ์.h และ .cpp แยกคลาสใน C++
 การใชไ้ฟล ์.h และ .cpp แยกคลาสใน C++ — เชงิลกึ

บทที ่5 การสบืทอด (Inheritance) ... 228
 ความรูเ้บือ้งตน้เกีย่วกบัการสบืทอด (Inheritance)
 Inheritance (การสบืทอดใน C++) อยา่งละเอยีดเชงิลกึ
 การใช ้public / protected / private ในการสบืทอด (Inheritance Access Specifiers) ใน

C++
 การใช ้public / protected / private ในการสบืทอด (Inheritance Access Specifiers) ใน

C++ แบบละเอยีด
 ฟังกช์นั Constructor และ Destructor
 ฟังกช์นั Constructor และ Destructor ใน Inheritance ของ C++ พรอ้มภาพ UML
 การใช ้super (หรอืใน C++ ใช ้Base::) เพื่อเรยีกคลาสแม่ (Base class) ในการสบืทอด

(Inheritance)
 การใช ้Base:: ในการเรยีกคลาสแม่ (super equivalent) ใน C++ แบบละเอยีดเชงิลกึ

พรอ้ม UML Diagram
บรูณาการและประยกุตใ์ชง้าน

บทที ่6 พหุสณัฐาน (Polymorphism) .. 310
 ความรูเ้บือ้งตน้ของ Polymorphism (พหุสณัฐาน)
 Polymorphism (พหุสณัฐาน) ในเชงิลกึ

 อธบิาย Compile-time Polymorphism หรอืการพหุสณัฐานในช่วงคอมไพลแ์บบละเอยีด
เชงิลกึ

 ฟังกช์นั Overloading (Function Overloading)
 Function Overloading (การโอเวอรโ์หลดฟังกช์นั) — รายละเอยีดเชงิลกึ
 Operator Overloading (การโอเวอรโ์หลดตวัด าเนินการ)
 Operator Overloading เพิม่เตมิ (เชงิลกึ)
 Run-time Polymorphism (พหุสณัฐานช่วงรนัไทม)์
 Pointer/Reference กบั Polymorphism

บทที ่7 การจดัการหน่วยความจ า (Memory Management) .. 394
 ความรูเ้บือ้งตน้ Memory Management
 Memory Management ใน C++
 new และ delete ใน C++
 Shallow Copy vs Deep Copy ใน C++
 Shallow Copy vs Deep Copy (เชงิลกึ) ใน C++
 Copy constructor และ Move constructor ใน C++
 Rule of 3 และ Rule of 5 คอือะไร?
 อธบิาย Rule of 3 และ Rule of 5 ใน C++ อยา่งละเอยีด

บทที ่8 Static และ Constant (Static and Constant) .. 479
 ความรูเ้บือ้งตน้เกีย่วกบั Special Methods (Magic / Dunder Methods)
 เชงิลกึ Special Methods (Magic / Dunder Methods)
 __str__, __repr__, __eq__, __lt__, และ __len__ — พรอ้มตวัอยา่งประกอบ
 เชงิลกึทีสุ่ด: __str__, __repr__, __eq__, __lt__, __len__
 การ Overload Operator ใน Python คอือะไร?
 special methods ทีส่ าคญั __call__, __getitem__, และ __setitem__ พรอ้มตวัอยา่ง

และแนวคดิ
 อธบิายเชงิลกึทีสุ่ดของแต่ละเมธอด __call__, __getitem__, และ __setitem__ ในแง่

ของหลกัการท างาน
 แนวคดิบรูณาการ Special Methods (Magic / Dunder Methods)

บทที ่9 Templates และ Generic Programming (Templates and Generic Programming)
 .. 548

 ความรูเ้บือ้งตน้เกีย่วกบั Templates และ Generic Programming ใน C++
 Templates และ Generic Programming ใน C++ แบบละเอยีด พรอ้มแสดง UML

Diagram
 Function Template ใน C++
 Class Template ใน C++
 อธบิายเชงิลกึ: Class Template ใน C++
 การใช ้Template สรา้งคลาสอสิระจากชนิดขอ้มลู (Class Template)
อธบิายเชงิลกึ: การใช ้Class Template เพื่อสรา้งคลาสอสิระจากชนิดขอ้มลู

บทที ่10 การจดัการขอ้ผดิพลาด (Exception Handling) .. 597
 พืน้ฐานการจดัการขอ้ผดิพลาด (Exception Handling) ใน C++
 อธบิายเชงิลกึ: การจดัการขอ้ผดิพลาด (Exception Handling) ใน C++
 try, catch, throw ใน C++ อธบิายเชงิลกึ
 การสรา้ง Exception Class เองใน C++
 อธบิายเชงิลกึ: การสรา้ง Exception Class เองใน C++
 Best Practices ในการจดัการขอ้ผดิพลาด (Exception Handling) ใน C++
 เชงิลกึ: Best Practices ในการจดัการขอ้ผดิพลาด (Exception Handling) ใน C++

บทที ่11 STL (Standard Template Library) .. 654
 พืน้ฐาน STL
 อธบิายเชงิลกึเกีย่วกบัการใช ้STL (Standard Template Library) ร่วมกบั OOP ใน C++
 การสรา้งคลาสทีใ่ชร้่วมกบั STL
 การสรา้งคลาสทีใ่ชร้่วมกบั STL เชงิลกึ
 Lambda และฟังกช์นัพอยน์เตอรก์บัคลาส (Lambda & Function Pointer with Classes)
 แนวคดิเชงิลกึเกีย่วกบั Lambda expressions และ ฟังกช์นัพอยน์เตอรก์บัคลาส ใน C++

บทที ่12 Smart Pointers (Smart Pointers) ... 716
 ความรูพ้ืน้ฐาน Smart Pointer
 Smart Pointers ใน C++11+
 อธบิายเชงิลกึของ Smart Pointers

 unique_ptr, shared_ptr, และ weak_ptr พรอ้มแสดง UML Diagram
 การจดัการหน่วยความจ าอตัโนมตั ิ(Automatic Memory Management)
 อธบิาย เชงิลกึทีสุ่ด ของแนวคดิ การจดัการหน่วยความจ าอตัโนมตั ิ(Automatic Memory

Management) ใน C++
 แบบบรูณาการเชงิประยกุต ์

บทที ่13 Design Patterns (Design Patterns) .. 761
 แนวคดิเบือ้งตน้เกีย่วกบั Design Patterns
 อธบิายแบบ เจาะลกึ พรอ้มทัง้อธบิายแนวคดิ, UML และโคด้ C++ ตวัอยา่ง ของ

Creational Patterns
 Pattern ในหมวด Structural
 อธบิายเชงิลกึ + UML + โจทย ์+ ตวัอยา่งโคด้ + ผลลพัธ ์ของ 3 Pattern ในหมวด

Behavioral
การน า Design Patterns มาใชจ้รงิในโปรเจกต ์

บทที ่14 SOLID Principles (SOLID Principles) .. 832
 SOLID Principles คอือะไร?
 รายละเอยีดเชงิลกึของ SOLID Principles
 Single Responsibility Principle (SRP)
 Open/Closed Principle (OCP) แบบละเอยีด
 Liskov Substitution Principle (LSP) แบบละเอยีด
 Interface Segregation Principle (ISP) แบบละเอยีด
 Dependency Inversion Principle (DIP) แบบละเอยีด

บทที ่15 การเขยีนโปรแกรมแบบ Modular และ Component-Based (Modular and
Component-Based) .. 901

 แนวคดิพืน้ฐาน
 อธบิายเชงิลกึเรื่อง การเขยีนโปรแกรมแบบ Modular และ Component-Based
 อธบิายเชงิลกึเรื่อง การออกแบบคลาสให ้reusable และ maintainable
 การออกแบบคลาสให ้Reusable และ Maintainable — เชงิลกึ
 Interface + Implementation Separation อยา่งละเอยีดเชงิลกึ
 Interface + Implementation Separation ใน C++ — อธบิายละเอยีดทีสุ่ด

 การใช ้namespace และ module (C++20) ในการจดัการโคด้อยา่งเป็นระบบ
บทที ่16 การเขยีน Test และ Mock ส าหรบัคลาส (Test and Mock) 959

 ความรูเ้บือ้งตน้ของ Unit Test และ Mock ของคลาส
 อธบิายเชงิลกึเกีย่วกบัการเขยีน Unit Test และ Mocking ส าหรบัคลาสใน C++
 การทดสอบ Unit Test ของคลาส (Unit Testing of Classes)
 การทดสอบ Unit Test ของคลาสใน C++ — เชงิลกึ
 การใช ้Google Test และ Catch2 ส าหรบั Unit Testing ใน C++

บรรณานุกรม ... 1001

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 1

บทท่ี 1
พ้ืนฐานภาษา C++ ท่ีต้องรู้ก่อนเข้า OOP

(Introduction to C++ Basic)

เน้ือหา

 โครงสรา้งโปรแกรม C++
 ขยายรายละเอยีดของ พืน้ฐานภาษา C++ ก่อนเขา้ OOP
 เครื่องมอืทีต่อ้งใชใ้นการเขยีน C++
 ตวัอยา่งโปรแกรม C++

บทน า
การเรยีนรู ้การเขียนโปรแกรมเชิงวตัถ ุ(Object-Oriented Programming: OOP) ในภาษา C++ นัน้
เป็นกา้วส าคญัสู่การเป็นโปรแกรมเมอร์ที่เขา้ใจกระบวนทศัน์สมยัใหม่และรองรบังานพฒันาซอฟต์แวร์
ขนาดใหญ่ได้อย่างเป็นระบบ แต่ก่อนจะก้าวไปถึงจุดนัน้ ผู้เรยีนจ าเป็นต้องเขา้ใจ พื้นฐานของภาษา
C++ อยา่งชดัเจนเสยีก่อน เนื้อหาตอนแรกของบทนี้จงึมุ่งเน้นไปที่การทบทวนและอธบิายหวัขอ้ส าคญั
ของ C++ ทีผู่เ้รยีนตอ้งรู ้เพื่อเป็นรากฐานใหเ้ขา้ใจและต่อยอดสู่การเขยีนโปรแกรมแบบ OOP ได้อย่าง
เตม็ศกัยภาพ

หวัขอ้แรกคอื โครงสร้างโปรแกรม C++ โดยจะอธบิายตัง้แต่รูปแบบไฟล์ .cpp และ .h
โครงสร้างของ main() จนถึงการใช้งาน #include และ namespace เพื่อให้ผู้เรยีนเขา้ใจกระบวนการ
ท างานของโปรแกรม C++ ตัง้แต่ข ัน้ตอนการคอมไพล์ไปจนถึงการรนัจรงิ จดัเป็นพื้นฐานส าคญัที่ต้อง
เขา้ใจก่อนเขยีนโปรแกรมใหญ่ ๆ หรอืต่อยอดไปถงึ OOP

ต่อมาจะอธบิายถงึ การใช้งานตวัแปร, ประเภทขอ้มลู, และโครงสรา้งควบคุมโปรแกรม เช่น if,
switch, และการท างานของลปู (for, while) ซึง่เป็นหวัใจของการควบคุมล าดบัและทศิทางของโปรแกรม
โดยผูเ้รยีนจะไดเ้หน็ตวัอยา่งและแนวคดิการเลอืกใชใ้หเ้หมาะสมตามบรบิทของโจทยห์รอืโปรเจกตจ์รงิ

อกีทัง้ผู้เรยีนจะได้ทบทวนและท าความเขา้ใจกบั ฟังก์ชนัและการส่งค่าผ่าน parameter เพื่อ
เขา้ใจกระบวนการแตกโจทยเ์ป็นหน่วยย่อย ๆ (decomposition) และเลอืกใช้ฟังก์ชนัเป็นหน่วยท างาน
อสิระ โดยเนื้อหาจะครอบคลุมทัง้การส่งค่าผ่านค่าปกต ิ(pass by value), การส่งค่าผ่าน reference
(pass by reference) และการส่งค่าดว้ย pointer เพื่อปทูางสู่หวัขอ้การใช ้pointer และ reference ในขัน้
สงู

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 2

สุดท้ายผู้เรยีนจะได้เรยีนรู้ Pointer & Reference เบื้องต้น และเขา้ใจกระบวนการจดัการ
Input/Output ดว้ย cin, cout และ getline() อยา่งถูกตอ้งและมปีระสทิธภิาพ เนื้อหาทัง้หมดนี้เป็นหวัใจ
ของการเขยีนโปรแกรม C++ และเป็นจุดเริม่ต้นอนัมัน่คงเพื่อก้าวไปสู่โลกของ OOP ในบทต่อ ๆ ไป
โดยผูเ้รยีนจะมทีัง้ทฤษฎ ีตวัอยา่ง และโจทยจ์รงิเพื่อช่วยเสรมิทกัษะและความเขา้ใจ จนสามารถต่อยอด
สู่การออกแบบและพฒันาโปรแกรม C++ เชงิออ็บเจกตไ์ดอ้ยา่งมัน่ใจ

โครงสร้างโปรแกรม C++
� 1. โครงสร้างโปรแกรม C++
ทุกโปรแกรมภาษา C++ ตอ้งมฟัีงกช์นั main() เป็นจุดเริม่ตน้ของโปรแกรม
#include <iostream> // ไฟล ์header ส าหรบั I/O

using namespace std;

int main() {
 cout << "Hello, C++!" << endl; // แสดงขอ้ความ
 return 0; // ส่งค่ากลบัให ้OS วา่โปรแกรมจบปกต ิ
}
ค าอธิบาย:

 #include <iostream> ใชส้ าหรบัการรบั/ส่งขอ้มลู
 using namespace std; เพื่อเรยีกใชง้าน std:: โดยไม่ตอ้งพมิพซ์ ้า
 int main() คอืจุดเริม่ตน้ของโปรแกรม
 cout คอืการแสดงผลทางหน้าจอ

� 2. การใช้งานตวัแปร, เงื่อนไข และลปู
2.1 ตวัแปร (Variables)
int age = 25;
float score = 89.5;
char grade = 'A';
string name = "John";
bool isPassed = true;
2.2 เงื่อนไข (Condition)
if-else
if (age >= 18) {
 cout << "You are an adult.";

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 3

} else {
 cout << "You are a minor.";
}
switch
switch (grade) {
 case 'A': cout << "Excellent!"; break;
 case 'B': cout << "Good!"; break;
 default: cout << "Try harder.";
}
2.3 ลปู (Loop)
for loop
for (int i = 0; i < 5; i++) {
 cout << "i = " << i << endl;
}
while loop
int i = 0;
while (i < 5) {
 cout << "i = " << i << endl;
 i++;
}

� 3. ฟังกช์นัและการรบัค่าผ่าน Parameter
ฟังกช์นัแบบรบัค่าพารามิเตอร ์
int add(int a, int b) {
 return a + b;
}

int main() {
 cout << add(5, 3); // แสดงผล 8
}
ฟังกช์นัไม่คืนค่า (void)
void greet(string name) {
 cout << "Hello, " << name << endl;
}

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 4

� 4. Pointer และ Reference เบือ้งต้น
Pointer (ตวัช้ี)
int x = 10;
int* ptr = &x; // ptr ชีไ้ปที ่address ของ x

cout << "Value of x: " << x << endl;
cout << "Address of x: " << ptr << endl;
cout << "Value via pointer: " << *ptr << endl;
Reference (ตวัอ้างอิง)
int x = 5;
int& ref = x; // ref คอืชื่ออกีชื่อหนึ่งของ x

ref = 10;
cout << x << endl; // ผลลพัธค์อื 10 เพราะ ref คอื x

� 5. การจดัการ Input/Output (cin, cout, getline)
cin / cout
int age;
cout << "Enter your age: ";
cin >> age; // รบัค่าจากผูใ้ช ้
cout << "You are " << age << " years old." << endl;
getline (ใช้รบัข้อความทัง้บรรทดั)
string name;
cout << "Enter your full name: ";
getline(cin, name);
cout << "Hello, " << name << "!" << endl;

� สรปุ
พืน้ฐานเหล่านี้คอืรากฐานส าคญัก่อนเขา้สู่การเขยีน OOP ใน C++ เพราะคุณตอ้ง:

 เขา้ใจ โครงสร้างภาษา
 สามารถควบคุม ล าดบัการท างานของโปรแกรม
 เขา้ใจ แนวคิด pointer/reference เพื่อไปใชใ้น class/constructor หรอื dynamic memory
 รูจ้กั ฟังกช์นั เพื่อเรยีนรูก้ารสรา้ง method ใน class

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 5

ขยายรายละเอียดของ พื้นฐานภาษา C++ ก่อนเข้า OOP

� 1. โครงสร้างโปรแกรม C++
#include <iostream> // ใชส้ าหรบั cin, cout
#include <string> // ใชส้ าหรบัตวัแปร string

using namespace std;

int main() {
 cout << "สวสัดคีรบั C++" << endl;
 return 0;
}
ส่วนประกอบหลกั:

ส่วนประกอบ อธิบาย

#include สัง่ใหร้วมไฟล ์header

using namespace std ไม่ตอ้งเขยีน std::cout, std::string ทุกครัง้

main() จุดเริม่ตน้ของโปรแกรม

return 0; ส่งค่ากลบัให ้OS (0 = ปกต)ิ

� 2. ตวัแปร, เงื่อนไข, ลปู
� ตวัแปรและชนิดข้อมลู
int a = 10;
float b = 5.5;
char c = 'A';
bool flag = true;
string name = "Kittisak";
ชนิดข้อมลู ความหมาย

int ตวัเลขจ านวนเตม็

float / double ตวัเลขทศนิยม

char ตวัอกัษร 1 ตวั

bool ค่าความจรงิ true/false

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 6

ชนิดข้อมลู ความหมาย

string ขอ้ความหลายตวัอกัษร

� เงื่อนไข (if / else / switch)
ตวัอย่าง if-else แบบซ้อน
int score = 75;
if (score >= 80)
 cout << "เกรด A";
else if (score >= 70)
 cout << "เกรด B";
else
 cout << "เกรด C";
ตวัอย่าง switch-case
char grade = 'B';
switch (grade) {
 case 'A': cout << "ดเียีย่ม"; break;
 case 'B': cout << "ด"ี; break;
 case 'C': cout << "พอใช"้; break;
 default: cout << "ปรบัปรุง";
}

� ลปู (for / while / do-while)
// for loop: นบั 1 ถงึ 5
for (int i = 1; i <= 5; i++) {
 cout << i << " ";
}

// while loop
int i = 1;
while (i <= 5) {
 cout << i << " ";
 i++;
}

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 7

// do-while: ท าก่อนตรวจเงื่อนไข
int x = 1;
do {
 cout << x << " ";
 x++;
} while (x <= 5);

� 3. ฟังกช์นัและ Parameter
� แบบมีพารามิเตอรแ์ละคืนค่า
int multiply(int a, int b) {
 return a * b;
}

int main() {
 cout << multiply(3, 4); // 12
}
� แบบไม่มีพารามิเตอร ์
void greet() {
 cout << "สวสัดคีรบั!";
}
� Pass by Value vs Pass by Reference
void modifyByValue(int x) {
 x = 100;
}

void modifyByRef(int& x) {
 x = 100;
}

int main() {
 int num = 10;
 modifyByValue(num); // ไม่เปลีย่น
 cout << num << endl; // 10

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 8

 modifyByRef(num); // เปลีย่น
 cout << num << endl; // 100
}

� 4. Pointer & Reference
� Pointer
int x = 10;
int* p = &x; // p เกบ็ address ของ x

cout << *p; // แสดงค่า x (10)
� Reference
int a = 5;
int& ref = a; // ref ชีม้าที ่a

ref = 20; // a ถูกเปลีย่นเป็น 20

� 5. การรบั/แสดงผล Input/Output
� cin และ cout
int age;
cout << "Enter age: ";
cin >> age;

cout << "Your age is: " << age;
� getline() ส าหรบัข้อความหลายค า
string fullName;
cout << "Enter your full name: ";
getline(cin, fullName); // รบัขอ้ความรวมช่องวา่ง

cout << "Hello, " << fullName << endl;

� เทคนิคเสริม: การใช้ cin.ignore() กบั getline
int age;
string name;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 9

cin >> age;
cin.ignore(); // ลา้ง newline ทีค่า้งจาก cin
getline(cin, name);

� สรปุเพ่ิมเติม

หวัข้อพื้นฐาน ใช้ใน OOP อย่างไร

function พืน้ฐานของ method ใน class

pointer / reference ใชใ้น constructor, dynamic memory, polymorphism

cin, cout ใชร้บัส่งค่าระหวา่ง object กบั user

loop, condition ใชใ้น method ของ class

string, int, bool ใชเ้ป็นสมาชกิขอ้มลูของคลาส (data members)

เครื่องมือท่ีต้องใช้ในการเขียน C++
� Compiler (ตวัแปลภาษา)

 แปลงไฟล ์.cpp ไปเป็นไฟล ์.exe หรอื .out
 ตวัอยา่ง compiler ทีน่ิยม:

o g++ (GNU Compiler)
o clang++
o MSVC (Microsoft Visual C++)

� IDE หรือ Code Editor
 โปรแกรมทีใ่ชเ้ขยีนโคด้
 ตวัอยา่ง:

o Code::Blocks (รวม compiler แลว้)
o Dev-C++
o Visual Studio
o Visual Studio Code (ตอ้งตดิตัง้ g++)
o CLion (ของ JetBrains)
o Xcode (ส าหรบั macOS)

� ส าหรบัผู้ใช้ Windows
� วิธีท่ี 1: ติดตัง้ Code::Blocks (แนะน าส าหรบัผู้เร่ิมต้น)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 10

1. ไปทีเ่วบ็ไซต:์
� https://www.codeblocks.org/downloads/

2. เลอืกดาวน์โหลด "codeblocks-20.03mingw-setup.exe"
(ม ีcompiler g++ ในตวั ไม่ตอ้งตดิตัง้แยก)

3. ตดิตัง้ตามขัน้ตอน (Next → Next → Install)
4. เปิดโปรแกรม → สรา้งโปรเจกตใ์หม่:

o File → New → Project → Console Application → เลอืก C++
o เขยีนโคด้ แลว้กด Build & Run (F9)

#include <iostream>
using namespace std;

int main() {
 cout << "Hello, C++ on Windows!" << endl;
 return 0;
}

� วิธีท่ี 2: ใช้ Visual Studio Code + g++

1. ตดิตัง้ VS Code:
� https://code.visualstudio.com

2. ตดิตัง้ MinGW (g++):
o ดาวน์โหลดจาก: https://www.mingw-w64.org
o เมื่อตดิตัง้เสรจ็ ตอ้งเพิม่ path ของ bin ลงใน Environment Variables

3. ตรวจสอบวา่ g++ ท างานหรอืไม่:
4. g++ --version
5. เปิด VS Code → ตดิตัง้ Extension: C/C++ จาก Microsoft
6. เขยีนโคด้และรนัดว้ย:
7. g++ main.cpp -o main
8. ./main

� ส าหรบัผู้ใช้ macOS

1. เปิด Terminal แลว้ตดิตัง้ Xcode Command Line Tools:
2. xcode-select --install
3. เขยีนไฟล ์main.cpp ดว้ย Text Editor หรอื VS Code
4. Compile และ Run:

https://www.codeblocks.org/downloads/
https://code.visualstudio.com/
https://www.mingw-w64.org/

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 11

5. g++ main.cpp -o main
6. ./main

� ส าหรบัผู้ใช้ Linux (Ubuntu/Debian)

1. ตดิตัง้ g++ compiler:
2. sudo apt update
3. sudo apt install g++
4. สรา้งไฟลช์ื่อ main.cpp แลว้เขยีนโคด้
5. Compile และ Run:
6. g++ main.cpp -o main
7. ./main

� โครงสร้างไฟลท่ี์แนะน า
MyCppProject/
│
├── main.cpp ← ไฟลห์ลกั
└── [อื่นๆในอนาคต เช่น class.cpp, utils.h]

� ตวัอย่างโปรแกรมแรก
#include <iostream>
using namespace std;

int main() {
 cout << "สวสัด ีC++!" << endl;
 return 0;
}
Compile แลว้รนั:
g++ main.cpp -o hello
./hello

� เคลด็ลบัเพ่ิมเติม

เคลด็ลบั ประโยชน์

ใช ้Ctrl + S บ่อยๆ บนัทกึไฟลก์่อน compile

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 12

เคลด็ลบั ประโยชน์

ตัง้ชื่อไฟลเ์ป็น .cpp ระบบจะรูว้า่เป็น C++

ใช ้endl หรอื \n ขึน้บรรทดัใหม ่

ตรวจสอบ error ที ่compile บอก C++ ตอ้งแม่น syntax

ตวัอย่างโปรแกรม C++

� 1. ตวัแปร, เงื่อนไข (if/switch), และลปู (for/while)
� โค้ด:
#include <iostream>
using namespace std;

int main() {
 int age;
 char grade;

 cout << "กรุณากรอกอายขุองคุณ: ";
 cin >> age;

 if (age >= 18) {
 cout << "คุณเป็นผูใ้หญ่" << endl;
 } else {
 cout << "คุณยงัเป็นเยาวชน" << endl;
 }

 cout << "กรุณากรอกเกรด (A/B/C): ";
 cin >> grade;

 switch (grade) {
 case 'A': cout << "เยีย่มมาก!" << endl; break;
 case 'B': cout << "ดมีาก!" << endl; break;
 case 'C': cout << "พอใช!้" << endl; break;
 default: cout << "ไม่รูจ้กัเกรดนี้!" << endl;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 13

 }

 cout << "นบัเลขจาก 1 ถงึ 5 ดว้ย for loop: ";
 for (int i = 1; i <= 5; i++) {
 cout << i << " ";
 }
 cout << endl;

 cout << "นบัเลขจาก 5 ถงึ 1 ดว้ย while loop: ";
 int j = 5;
 while (j >= 1) {
 cout << j << " ";
 j--;
 }

 return 0;
}
� ผลลพัธ ์(เม่ือป้อนอาย ุ20 และเกรด B):
กรุณากรอกอายขุองคุณ: 20
คุณเป็นผูใ้หญ่
กรุณากรอกเกรด (A/B/C): B
ดมีาก!
นบัเลขจาก 1 ถงึ 5 ดว้ย for loop: 1 2 3 4 5
นบัเลขจาก 5 ถงึ 1 ดว้ย while loop: 5 4 3 2 1

� 2. ฟังกช์นัและ Parameter
� โค้ด:
#include <iostream>
using namespace std;

// ฟังกช์นัรบัพารามเิตอรแ์ละคนืค่าผลบวก
int add(int a, int b) {
 return a + b;
}

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 14

// ฟังกช์นัไม่คนืค่า ใชแ้สดงผล
void greet(string name) {
 cout << "สวสัดคีุณ " << name << "!" << endl;
}

int main() {
 int x = 10, y = 20;
 cout << "ผลบวกของ " << x << " และ " << y << " คอื: " << add(x, y) << endl;

 greet("สมชาย");

 return 0;
}
� ผลลพัธ:์
ผลบวกของ 10 และ 20 คอื: 30
สวสัดคีุณ สมชาย!

� 3. Pointer & Reference เบือ้งต้น
� โค้ด:
#include <iostream>
using namespace std;

void modifyValue(int* ptr) {
 *ptr = 100;
}

void modifyByReference(int& ref) {
 ref = 200;
}

int main() {
 int num = 50;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 15

 cout << "ค่าก่อนเปลีย่น: " << num << endl;

 modifyValue(&num); // ส่ง pointer
 cout << "หลงัจาก modifyValue: " << num << endl;

 modifyByReference(num); // ส่งโดย reference
 cout << "หลงัจาก modifyByReference: " << num << endl;

 return 0;
}
� ผลลพัธ:์
ค่าก่อนเปลีย่น: 50
หลงัจาก modifyValue: 100
หลงัจาก modifyByReference: 200
� ค าอธิบาย:

 *ptr = 100; เปลีย่นค่าที ่pointer ชีอ้ยู ่(ตวัแปร num)
 ref = 200; เป็นอกีชื่อหนึ่งของ num เลยเปลีย่นค่าจรงิ

� 4. การจดัการ Input/Output (cin, cout, getline)
� โค้ด:
#include <iostream>
#include <string>
using namespace std;

int main() {
 string fullName;
 int age;

 cout << "กรุณากรอกชื่อ-นามสกุล: ";
 getline(cin, fullName); // รบัชื่อเตม็

 cout << "กรุณากรอกอาย:ุ ";
 cin >> age;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 16

 cout << "ยนิดตีอ้นรบัคุณ " << fullName << " อาย ุ" << age << " ปี" << endl;

 return 0;
}
� ตวัอย่างผลลพัธ:์
กรุณากรอกชื่อ-นามสกุล: สมชาย ใจด ี
กรุณากรอกอาย:ุ 25
ยนิดตีอ้นรบัคุณ สมชาย ใจด ีอาย ุ25 ปี

� สรปุภาพรวม

หวัข้อ ความสามารถหลกัท่ีควรรู ้

ตวัแปร & เงื่อนไข ควบคุมการตดัสนิใจในโปรแกรม

ลปู ท างานซ ้าแบบอตัโนมตั ิ

ฟังกช์นั แยกงานใหเ้ป็นระบบ สง่ค่าเขา้และคนืค่าได ้

Pointer ใชค้วบคุมหน่วยความจ าโดยตรง

Reference เปลีย่นค่าตวัแปรไดส้ะดวกแบบปลอดภยั

cin / cout / getline รบัขอ้มลูจากผูใ้ช ้แสดงผลอยา่งยดืหยุน่

สรปุ
บทนี้เป็นจุดเริม่ตน้ส าคญัของการเรยีนรู้ C++ เพื่อก้าวไปสู่การเขยีนโปรแกรมเชงิวตัถุ (OOP)

โดยผูเ้รยีนจะไดท้บทวนและเขา้ใจพื้นฐานของภาษา C++ ตัง้แต่โครงสร้างโปรแกรมและการคอมไพล ์
การใช้งานตวัแปร เงื่อนไข (if, switch) และลูป (for, while) ฟังก์ชนัและการส่งค่าผ่าน parameter
ตลอดจนแนวคดิและการใช้งาน pointer และ reference เบื้องต้น นอกจากนี้ยงัครอบคลุมการจดัการ
Input/Output ด้วย cin, cout และ getline เพื่อให้ผู้เรยีนมพีื้นฐานที่แขง็แรงและพร้อมต่อยอดไปสู่การ
เรยีนรูแ้ละพฒันาโปรแกรมแบบ OOP ไดอ้ยา่งมัน่ใจและเป็นระบบ

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 17

บทท่ี 2
แนวคิดพ้ืนฐานของ OOP และ UML

(OOP Basic and UML)

เน้ือหา

 แนวคดิพืน้ฐานของ OOP
 แนวคดิพืน้ฐานของ OOP เชงิลกึ
 แนวคดิของ Class&Object
 แนวคดิของ Object และ Class — ระดบัแก่น (Conceptual Depth)
 ท าไม OOP จงึส าคญัมาก ในการพฒันาโปรแกรมขนาดใหญ่?
 ความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่
 UML (Unified Modeling Language) คอือะไร และท าไมถงึเป็น “เครื่องมอืออกแบบ” ทีส่ าคญั

ของ OOP
 Class Diagram
 Class Diagram เชงิลกึทีสุ่ดใน UML

บทน า
การเขยีนโปรแกรมเป็นทัง้ศาสตรแ์ละศลิป์ทีต่อ้งอาศยัแนวคดิและโครงสรา้งที่ชดัเจน เพื่อใหผู้พ้ฒันาและ
ผูด้แูลรกัษาโปรแกรมเขา้ใจและควบคุมได้ บทนี้จะพาผู้อ่านไปท าความรู้จกัแนวคดิพื้นฐานของ OOP
(Object-Oriented Programming) ตัง้แต่จุดเริม่ตน้ของแนวคดิ จนถึงการออกแบบและพฒันาโปรแกรม
ขนาดใหญ่ทีต่อ้งรองรบัผูใ้ชจ้ านวนมากและมคีวามซบัซอ้นสูง

หวัขอ้แรกคอืการเปรยีบเทยีบแนวคดิของ Programming Paradigm ระหวา่งรปูแบบดัง้เดมิแบบ
Procedural กบั Object-Oriented โดยผูเ้รยีนจะเหน็ขอ้แตกต่างทัง้ในมุมมองของการออกแบบโปรแกรม
การควบคุมขอ้มูลและหน้าที่ รวมถึงข้อดขีอง OOP ที่ช่วยให้ผู้พฒันารวมขอ้มูล (Data) และหน้าที ่
(Function) เป็นหน่วยเดยีวกนั จดัการและบ ารุงรกัษาได้ง่ายขึน้ และแก้ปัญหาการเขยีนโปรแกรมแบบ
เก่าทีต่อ้งเจอกบัโครงสรา้งโคด้ขนาดใหญ่และสลบัซบัซอ้น

ผูเ้รยีนจะไดท้ าความเขา้ใจกบัแนวคดิของ Object และ Class หวัใจของ OOP โดย Object เป็น
ตวัแทนของสิ่งที่ต้องแก้ปัญหาหรืออ้างอิงถึงในโปรแกรม และ Class เป็นพิมพ์เขยีวของ Objects
เหล่านัน้ การเรียนรู้เรื่องนี้ช่วยให้ผู้พฒันาเข้าใจและเลอืกใช้ Encapsulation เพื่อปกป้องข้อมูลและ
ควบคุมการเขา้ถงึไดอ้ยา่งเป็นระบบและเป็นสดัเป็นส่วน

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 18

บทนี้ยงัเน้นถงึความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่ ดว้ยขอ้ดที ัง้ในดา้นการ
ออกแบบและบริหารจดัการระบบ ช่วยลดข้อขดัแย้งของโค้ด รองรบัการท างานเป็นทีม และท าให้
โปรแกรมมโีครงสรา้งชดัเจน สามารถแกไ้ข ปรบัปรุง และขยายต่อไดอ้ยา่งมปีระสทิธภิาพทัง้ในปัจจุบนั
และอนาคต

สุดท้ายผู้เรยีนจะได้รู้จกั UML (Unified Modeling Language) ซึ่งเป็นเครื่องมอืส าคญัของ
นกัพฒันา OOP ในการออกแบบและสื่อสารโครงสรา้งโปรแกรมทัง้ในภาพใหญ่และภาพย่อย UML ช่วย
ให้ผู้เรยีนเขา้ใจกระบวนการออกแบบคลาส วตัถุ และความสมัพนัธ์ขององค์ประกอบต่าง ๆ ได้เป็น
มาตรฐานและเป็นสากล เป็นรากฐานส าคญัสู่การเป็นโปรแกรมเมอร ์C++ OOP มอือาชพีต่อไป

แนวคิดพื้นฐานของ OOP
� Programming Paradigm: Procedural vs Object-Oriented
� Procedural Programming (การเขียนโปรแกรมเชิงโครงสร้าง / เชิงล าดบั)

 ใชแ้นวคดิการแบ่งโปรแกรมเป็นฟังกช์นัหรอืโปรซเียอร ์(procedure / function)
 เน้นการท างานเป็นล าดบัข ัน้ตอน (sequence of instructions)
 ขอ้มลู (data) และฟังกช์นัแยกจากกนั
 ตวัอยา่งภาษา: C, Pascal

ตวัอยา่งแนวคดิ:
// C style
int add(int a, int b) {
 return a + b;
}
การประมวลผลจะไหลจากบนลงล่าง เรยีกใชฟั้งกช์นัเป็นล าดบั

� Object-Oriented Programming (การเขียนโปรแกรมเชิงวตัถ)ุ

 แบ่งโปรแกรมเป็นหน่วยยอ่ยทีเ่รยีกวา่ object
 object ประกอบดว้ย data (attributes) + methods (operations) อยูด่ว้ยกนั
 เน้นการจดักลุ่มขอ้มลูและพฤตกิรรมทีเ่กีย่วขอ้งเขา้ดว้ยกนั (Encapsulation)
 สนบัสนุน inheritance, polymorphism, abstraction

ตวัอยา่งแนวคดิ:
// C++ style
class Calculator {
public:
 int add(int a, int b) {
 return a + b;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 19

 }
};
ทุกอยา่งถูกรวมอยูใ่น class ทีเ่ป็นตวัแทนของ concept หรอืสิง่ของ

� แนวคิดของ Object และ Class
� Class

 คอื แม่พมิพ ์หรอื แบบพมิพเ์ขยีว (blueprint)
 ก าหนดวา่ขอ้มลูอะไรและพฤตกิรรมอะไรบา้งทีว่ตัถุประเภทนัน้ตอ้งม ี
 ขา้งใน class ประกอบดว้ย:

o Attributes (data members) — ขอ้มลู
o Methods (member functions) — การกระท า

ตวัอยา่ง:
class Car {
public:
 string brand;
 int year;

 void start() {
 cout << brand << " started.\n";
 }
};

� Object

 คอื อินสแตนซ์ (instance) หรอื ตวัแทนท่ีสร้างขึ้นจริง จาก class
 แต่ละ object ม ีdata ของตวัเอง

ตวัอยา่ง:
Car myCar;
myCar.brand = "Toyota";
myCar.year = 2020;
myCar.start(); // แสดง: Toyota started.

� ความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่
� เหตผุลหลกัท่ี OOP ส าคญัส าหรบัโปรแกรมขนาดใหญ่:

 ⃣ จดัโครงสร้างโปรแกรมให้เป็นระบบ

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 20

 OOP ท าใหซ้อฟตแ์วรแ์บ่งออกเป็นหน่วยยอ่ย (class / object) ซึง่ท าใหเ้ขา้ใจและจดัการง่าย
 ตวัอยา่ง: ในระบบ e-commerce อาจม ีUser, Product, Order, Cart ซึง่แต่ละ class ดแูลหน้าที่

ตวัเอง
 ⃣ ลดความซบัซ้อน และเพ่ิมการใช้ซ า้

 Class และ object ออกแบบใหใ้ชซ้ ้าได ้(Reusable)
 Code ทีเ่ขยีนครัง้เดยีว สามารถน าไปใชซ้ ้าในส่วนอื่นได ้

 ⃣ ขยายและบ ารงุรกัษาง่าย
 เมื่อระบบใหญ่ขึน้ OOP ช่วยใหเ้พิม่ feature ใหม่โดยไมก่ระทบส่วนอื่นมาก
 การแกไ้ขบัก๊หรอืเปลีย่นแปลง logic เฉพาะจุดง่ายกวา่

 ⃣ สนับสนุนหลกัการ abstraction และ encapsulation
 ซ่อนรายละเอยีดภายใน class ใหผู้ใ้ชส้นใจแคส่ิง่จ าเป็น
 ลดโอกาสเกดิขอ้ผดิพลาดเพราะเขา้ถงึขอ้มลูโดยตรง

 ⃣ เหมาะกบัทีมพฒันา
 แต่ละทมีสามารถพฒันา class หรอื module ของตวัเองได ้โดยไม่ตอ้งเขา้ใจระบบทัง้หมดในเชงิ

ลกึ

� สรปุภาพรวม

ประเดน็ Procedural OOP

โครงสร้าง ฟังกช์นั + ขอ้มลูแยกกนั ขอ้มลู + ฟังกช์นัรวมใน object

การ reuse
reuse ฟังกช์นัไดย้ากขึน้ในระบบ
ใหญ่

class / object reuse ไดส้งู

การจดัการความ
ซบัซ้อน

ควบคุมยากเมื่อโคด้ยาว ควบคุมง่ายเพราะแยกเป็น class

ขยายระบบ ล าบาก
สะดวก ดว้ย inheritance และ
polymorphism

แนวคิดพื้นฐานของ OOP เชิงลึก

 ⃣ Programming Paradigm: Procedural vs Object-Oriented
การเลอืก รปูแบบการเขียนโปรแกรม (Programming Paradigm) มผีลโดยตรงต่อ:

 โครงสรา้งของโปรแกรม
 วธิคีดิของผูพ้ฒันา

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 21

 วธิแีกไ้ขปัญหาต่าง ๆ
� Procedural Programming

 ลกัษณะเด่น:
o โคด้ถูกจดัเป็น ฟังกช์นั (functions) และ โปรซีเยอร ์(procedures)
o ขอ้มลู (data) ถูกเกบ็เป็นตวัแปรอสิระ แยกจากฟังกช์นั
o ฟังกช์นัตอ้งรูโ้ครงสรา้งของขอ้มลูโดยตรง

 ข้อเสีย:
o เมื่อโปรแกรมใหญ่ขึน้ โครงสรา้งจะยุง่เหยงิ (spaghetti code)
o การแกไ้ขตอ้งเขา้ไปแกท้ัง้ในฟังกช์นัและส่วนของขอ้มลู

 ตวัอย่าง:
// Procedural
struct Point {
 int x;
 int y;
};

void movePoint(Point *p, int dx, int dy) {
 p->x += dx;
 p->y += dy;
}
ขอ้มลู (Point) และ ฟังกช์นั (movePoint) แยกกนัโดยสิน้เชงิ

� Object-Oriented Programming (OOP)

 ลกัษณะเด่น:
o รวม ข้อมลู (Attributes) และ พฤติกรรม (Methods) เป็นหน่วยเดยีวกนัคอื Class
o ขอ้มลูและเมธอดอยูภ่ายในออ็บเจกตเ์ดยีวกนั → ม ีEncapsulation

 ข้อดี:
o จดัการง่าย แมโ้ปรแกรมใหญ่ขึน้
o โครงสรา้งเป็นโมดลู (Module) แต่ละคลาสมหีน้าทีข่องตวัเอง
o รองรบัแนวคดิ Reusability, Extensibility, และ Maintainability

 ตวัอย่าง:
// OOP
class Point {
public:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 22

 int x, y;

 void move(int dx, int dy) {
 x += dx;
 y += dy;
 }
};
Point เป็นทัง้ขอ้มลูและเมธอดอยูใ่นคลาสเดยีวกนั

 ⃣ แนวคิดของ Object และ Class
⚡ Class

 เป็น แม่แบบ (blueprint) หรอืตน้แบบของออ็บเจกต์
 ก าหนดทัง้:

o Attributes (ขอ้มลู) — เช่น ชื่อ, ราคา
o Methods (พฤตกิรรม) — เช่น ค านวณราคา, พมิพใ์บเสรจ็

 เป็นตวัแทนของสิง่ของจรงิ ๆ หรอืแนวคดิ
⚡ Object

 เป็น Instance ของ Class
 แต่ละออ็บเจกตม์คี่าของ Attribute ของตวัเอง
 ตวัออ็บเจกตค์อื ส่ิงท่ีเราสร้างและใช้งานจริง

ตวัอย่างเปรียบเทียบ
� Class: Shirt
 Attributes: size, color, price
 Methods: buy(), showDetails()
� Object:
 - Shirt shirt1("L", "red", 299);
 - Shirt shirt2("M", "blue", 199);

 ⃣ ความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่
⚡ 3.1 จดัโครงสร้างโปรแกรมเป็นหน่วยย่อย
โปรแกรมใหญ่ ๆ มโีครงสรา้งซบัซอ้น แต่ OOP จดัการไดโ้ดย:

 แบ่งเป็นคลาสต่าง ๆ
 แต่ละคลาสดแูลหน้าทีเ่ฉพาะ

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 23

 ตวัอยา่ง: ระบบรา้นคา้ออนไลน์
 User
 Product
 Order
 Payment
 ShoppingCart

แต่ละคลาสเขา้ใจไดโ้ดยตรงวา่เกีย่วกบัหน้าทีใ่ด
⚡ 3.2 Encapsulation (การห่อหุ้ม)

 ซ่อนรายละเอยีดภายในคลาส (internal details)
 เผยแพร่เฉพาะสิง่จ าเป็นผ่าน public methods
 ผลลพัธ:์

o คนใชค้ลาสตอ้งรูแ้ค่ “ตอ้งเรยีกเมธอดใด” ไม่ตอ้งรูว้า่ “ท างานภายในอยา่งไร”
⚡ 3.3 Inheritance (การสืบทอด)

 คลาสใหม่ (subclass) สรา้งขึน้จากคลาสเดมิ (parent class)
 น าคุณสมบตัเิดมิกลบัมาใช ้และขยายต่อได้
 ประโยชน์:

o ลดการเขยีนโคด้ซ ้า
o ปรบัแกเ้ฉพาะส่วนใหม ่

 ตวัอยา่ง:
 class Animal { ... };
 class Dog : public Animal { ... };
 class Cat : public Animal { ... };

Dog และ Cat มที ัง้คุณสมบตัขิอง Animal และคุณสมบตัใิหม่ของตวัเอง
⚡ 3.4 Polymorphism (พหรุปู)

 เรยีกใชเ้มธอดเดยีวกนั แต่ท างานแตกต่างกนัไปตามออ็บเจกต์
 ประโยชน์:

o รองรบัการขยายโปรแกรมโดย ไม่ต้องแก้โค้ดเก่า
o เช่น
o Animal* a1 = new Dog();
o Animal* a2 = new Cat();
o
o a1->speak(); // ผลลพัธ:์ "Woof!"
o a2->speak(); // ผลลพัธ:์ "Meow!"

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 24

⚡ 3.5 Abstraction (นามธรรม)
 ใหผู้ใ้ชเ้ขา้ใจวา่ ต้องท าอะไร แต่ ไม่ต้องรู้ว่าท าอย่างไร
 ตวัอยา่ง:
 class Payment {
 public:
 virtual void pay() = 0; // abstract method
 };

ผูใ้ชเ้ลอืกคลาสจรงิ เชน่ CreditCardPayment หรอื PaypalPayment แต่ใชเ้มธอด pay()
เหมอืนกนั

� สรปุ

ประเดน็ Procedural OOP

โครงสรา้ง ฟังกช์นั + ขอ้มลูแยกกนั คลาส = ขอ้มลู + ฟังกช์นั

แนวคดิ จดัการตามล าดบั จดัการเป็นออ็บเจกต์

การขยายและ
บ ารุงรกัษา

ยากขึน้เรื่อย ๆ จดัการไดเ้ป็นระบบ

การใชซ้ ้า
ฟังกช์นัใชซ้ ้าได ้แต่ตอ้งจดัการ
ขอ้มลูเอง

คลาส/ออ็บเจกตใ์ชซ้ ้าไดเ้ตม็รปูแบบ

การรองรบัโปรเจก็ต์
ใหญ่

มขีอ้จ ากดั
ดมีาก (Encapsulation, Inheritance,
Polymorphism)

⚡ ผลลพัธข์อง OOP ในงานจริง
� โคด้อ่านง่าย / แกไ้ขสะดวก
� รองรบัการขยายระบบขนาดใหญ่
� ประหยดัเวลาและลดขอ้ผดิพลาด
� มมีาตรฐาน จดัการเป็นระบบ (Modern Development)

แนวคิดของ Class&Object

� 1. Class คืออะไร?
� Class = “แม่แบบ” (Blueprint)

 เป็นโครงร่างที ่อธิบายคณุสมบติั (Attributes) และ พฤติกรรม (Methods) ของสิง่ ๆ หนึ่ง

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 25

 เป็น นามธรรม (Abstract Concept) ไมใ่ช่สิง่จรงิ แต่เป็น ตน้แบบ ใหส้รา้งสิง่จรงิได ้
 ตวัอยา่งในชวีติจรงิ:

o Class = พิมพเ์ขียวของบ้าน
มกีารอธบิายวา่:

 มหีอ้งนอนกีห่อ้ง
 มหีอ้งน ้ากีห่อ้ง
 มพีืน้ทีเ่ท่าไร

แต่ตวั “พมิพเ์ขยีว” นัน้เองยงั อาศยัอยู่ไม่ได้ เพราะเป็นเพยีงแบบแปลน
ตวัอย่างในโค้ด:
class Car {
public:
 // Attribute: ขอ้มลูเกีย่วกบัรถ
 std::string brand;
 std::string color;
 int year;

 // Method: พฤตกิรรมของรถ
 void start() {
 std::cout << brand << " is starting.\n";
 }
};
� ตรงนี้ Car เป็น Class
มขีอ้มลู (brand, color, year)
มพีฤตกิรรม (start())

� 2. Object คืออะไร?
� Object = “สิง่จรงิ”

 เป็น อินสแตนซ ์(Instance) ของ Class
 มคี่า Attributes ของตวัเอง
 ม ีMethods เพื่อควบคุมการท างาน
 ตวัอยา่งในชวีติจรงิ:

o Object = บ้านจริง
 ตัง้อยูจ่รงิบนทีด่นิ
 มเีลขทีบ่า้น มผีูอ้ยูอ่าศยั

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 26

 มหีอ้งจรงิ ๆ ทีใ่ชง้านได ้
ตวัอย่างในโค้ด:
int main() {
 // สรา้ง object จาก class Car
 Car car1;
 car1.brand = "Toyota";
 car1.color = "Red";
 car1.year = 2022;

 car1.start();
 // Output: Toyota is starting.

 Car car2;
 car2.brand = "Honda";
 car2.color = "Blue";
 car2.year = 2023;

 car2.start();
 // Output: Honda is starting.

 return 0;
}
� car1 และ car2 เป็น Object ทีถู่กสรา้งจาก Class Car แต่มคี่าของตนเอง

� 3. สรปุความแตกต่าง

หวัข้อ Class Object

สถานะ พมิพเ์ขยีว / แม่แบบ สิง่จรงิ / ผลลพัธ ์

ตวัตน ไม่มตีวัตนจรงิ มตีวัตนจรงิ

ประกอบดว้ย Attributes และ Methods (ตอ้งนิยาม) ค่าของ Attributes และ Methods

ตวัอยา่งจรงิ แบบแปลนของบา้น บา้นจรงิ ๆ

ในโคด้ class Car { ... }; Car car1;

� 4. เหตผุลและข้อดีของแนวคิด Class-Object

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 27

� จดักลุ่มขอ้มลู + พฤตกิรรมเป็นหน่วยเดยีวกนั → จดัการง่าย
� ส่งเสรมิ Encapsulation (ห่อหุม้) ขอ้มลูและเมธอดใหอ้ยูร่่วมกนั
� ส่งเสรมิ Reusability (ใชซ้ ้า) เพราะ Class เป็นแม่แบบใหน้ าไปสรา้ง Object กีต่วักไ็ด ้
� ปรบัแกแ้ละขยายโปรแกรมไดโ้ดย:

 ปรบัแก ้Class → Objects ทุกตวัอปัเดตอตัโนมตั ิ
 สรา้ง Class ใหม่โดยใชคุ้ณสมบตัขิอง Class เดมิ (Inheritance)

� ตวัอย่างแนวคิดภาพใหญ่
Class
Class: Animal
Attributes:
 - name
 - age
Methods:
 - eat()
 - sleep()
Objects
dog = Animal()
 name = "Rex"
 age = 3

cat = Animal()
 name = "Kitty"
 age = 2

� สรปุเป็นภาพ

 ⚡ Class = แม่แบบ, แนวคดิ
 � Object = สิง่จรงิ, มตีวัตน
 � Class ก าหนดวา่ Object “ตอ้งเป็นแบบไหน” แต่ Object เป็นผู ้“ใชจ้รงิ” และ “เกบ็ค่าต่าง

ๆ”

แนวคิดของ Object และ Class — ระดบัแก่น (Conceptual Depth)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 28

� 1. Class เป็นมากกว่า “พิมพเ์ขียว”
ในเชงิลกึ Class ไมไ่ดเ้ป็นเพยีง “พมิพเ์ขยีว” แต่เป็น หน่วยของ Abstraction (หน่วยของแนวคดิ)
� ในการออกแบบ OOP:

 เราจะ เลือกกลุ่มของคณุลกัษณะ (Attributes) และ พฤติกรรม (Methods) มารวมกนัเป็น
คลาสเดยีว

 เป้าหมายคอืเพื่ออธบิาย “สิง่” หรอื “แนวคดิ” หนึ่ง ๆ ในโดเมนปัญหาของโปรแกรม
ตวัอย่างเชิงลึก:
หากเราก าลงัเขยีนโปรแกรมบรหิารหอ้งสมุด

 เราเลอืกคลาส Book เพราะเป็น “แนวคดิ” ส าคญัในบรบิทนี้
 Book มที ัง้ Attributes (title, author, year) และ Methods (borrow(), returnBook())

� Class = “Concept” (แนวคดิ) + “Implementation” (การเขยีนโคด้)

� 2. Object เป็น Instantiation of a Concept
Object คอื ตวัตนจริง (Concrete Instance) ทีถู่ก “หลอ่” มาจากคลาส
� Object มลีกัษณะดงันี้:

 ม ีState (สถานะ) คอืค่าของ Attributes ในช่วงเวลาหนึ่ง
 ม ีBehavior (พฤตกิรรม) คอืความสามารถของเมธอด
 ม ีIdentity (อตัลกัษณ์) ของตวัเอง (เช่น book1 และ book2 แมเ้ป็น Book แต่เป็นคนละเล่ม)

ตวัอย่างเชิงลึก:
คลาส Book:
class Book {
public:
 std::string title;
 std::string author;

 void read() {
 std::cout << title << " is being read.\n";
 }
};
ออ็บเจกต ์Book:
Book book1;
book1.title = "1984";
book1.author = "George Orwell";

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 29

Book book2;
book2.title = "The Hobbit";
book2.author = "J.R.R. Tolkien";
⚡ book1 และ book2 เป็น Objects ของคลาส Book แต่ทัง้สองม ีstate (title, author) ต่างกนั

� 3. ความลึกของแนวคิด:
� a) Encapsulation (การห่อหุ้ม)
Object = Data + Methods

 แทนทีจ่ะให ้“ขอ้มลู” และ “ฟังกช์นั” กระจายตวัไปทัว่โปรแกรม
 เราเลอืกห่อทัง้สองสิง่ไวด้ว้ยกนัเป็น Unit of Abstraction (หน่วยของแนวคดิ)

� b) Abstraction (นามธรรม)
Class คอื โมเดล ของสิง่ใดสิง่หนึ่ง

 ไม่ตอ้งอธบิายทุกรายละเอยีด แต่เลอืกอธบิาย เฉพาะแก่นส าคญั ของสิง่นัน้
 เช่น Car ม ีspeed และ color แต่เราเลอืกอธบิายเฉพาะสิง่เหล่านี้ เพราะเป็นแกน่

� c) Identity (อตัลกัษณ์)
Object แต่ละตวัม ีต าแหน่งในหน่วยความจ า และม ีstate เฉพาะ

 แม ้Objects สองตวัจะม ีAttribute เหมอืนกนั แต่เป็นคนละอตัลกัษณ์ (เช่น book1 != book2)
� d) Polymorphism + Inheritance

 Class เป็นแม่แบบทีช่่วยใหน้ าแนวคดิมาต่อยอดเป็นคลาสใหม่ (Inheritance) และเลอืกให ้
Objects แต่ละตวัท างานแตกต่างกนัได ้(Polymorphism)

� 4. Class / Object กบัมมุมอง Software Architecture
� Class เป็นหน่วยเลก็สุดของ Architecture ใน OOP

 แต่ละ Class มหีน้าทีช่ดัเจน
 Objects เป็น “ผูใ้หบ้รกิาร” ของหน้าทีน่ัน้ ๆ

⚡ ตวัอยา่ง:
Class User จดัการเรื่องผูใ้ช ้(สมคัรสมาชกิ, เขา้สู่ระบบ)
Objects user1, user2 เป็นผูใ้ชจ้รงิ ๆ แต่ละคน

� 5. ผลลพัธ:์ Class + Objects น าไปสู่...

 � โครงสรา้งโปรแกรมทีเ่ป็น Modular
 � ป้องกนั Side-Effects เพราะ Objects แยก State ของตนเอง
 � รองรบัการขยาย ปรบัแก ้และทดสอบไดง้่าย
 � เปิดโอกาสใหเ้ลอืกใช ้Patterns เช่น:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 30

o Factory Pattern (ใชค้ลาสเป็นผูผ้ลติ Objects)
o Singleton Pattern (ม ีObjects ตวัเดยีวทัง้โปรแกรม)

⚡ บทสรปุสดุท้าย

 � Class = แนวคดิ + โครงสรา้ง + พฤตกิรรม
 � Object = สิง่จรงิ + State + Identity
 ⚡ ทัง้สองเป็นหวัใจของ OOP ทีช่่วยให:้

o จดัการโปรแกรมใหญ่ ๆ ได ้
o ป้องกนัขอ้ผดิพลาด
o น าไปสู่การคดิเป็นโมเดลใกลเ้คยีงโลกจรงิ
o ปรบัแกแ้ละขยายไดเ้ป็นระบบ

ท าไม OOP จึงส าคญัมาก ในการพฒันาโปรแกรมขนาดใหญ่?
� “OOP” เป็นมากกว่าการเขียนโปรแกรมด้วยคลาสและออ็บเจกต ์
แต่เป็น แนวคิดและสถาปัตยกรรม ทีช่่วยควบคุมและจดัการ โปรแกรมใหญ่ ๆ ให:้

 มโีครงสรา้งชดัเจน
 แกไ้ขและขยายไดง้่าย
 มคีุณภาพและลดขอ้ผดิพลาด

⚡ ⃣ จดัการ Complexity (ความซบัซ้อน) ด้วย Encapsulation

 ในโปรแกรมใหญ่ ฟังกช์นัและขอ้มลูมกักระจายอยูท่ ัว่ท ัง้โปรแกรม
 OOP รวมทัง้ขอ้มลูและพฤตกิรรมไวด้ว้ยกนัเป็น คลาส (Encapsulation) → แต่ละคลาสเป็น

“กล่อง” (black box) จดัการหน้าทีข่องตวัเอง
 � ผลลพัธ:์ โคด้เขา้ใจง่าย แต่ละคลาสมหีน้าทีช่ดัเจน

⚡ ⃣ รองรบั การขยายและแก้ไข (Maintainability)

 โปรแกรมใหญ่ตอ้งมกีารอปัเดตเป็นธรรมชาต ิ
 OOP ช่วยใหแ้กไ้ขและขยายโดย:

o ปรบัแก ้ภายในคลาส (implementation) โดยไม่กระทบคลาสหรอืโมดลูอื่น
o สรา้งคลาสใหม่โดย สืบทอด (Inheritance) จากคลาสเดมิ

 � ผลลพัธ:์ ประหยดัเวลา ป้องกนับัก๊ทีอ่าจเกดิจากแกต้รงกลาง

⚡ ⃣ Reusability (การใช้ซ า้) ด้วย Classes

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 31

 โปรแกรมใหญ่ตอ้งการโครงสรา้งชิน้เลก็ ๆ ทีใ่ชซ้ ้าได ้
 OOP มคีลาสเป็น Unit of Reusability:

o สรา้งคลาสใหม่เพื่อใชใ้นหลาย ๆ โครงการ
o จดัเป็นไลบราร ี(Library) / เฟรมเวริก์ (Framework)

 � ผลลพัธ:์ ประหยดัเวลา เพิม่คุณภาพ (Code Quality)

⚡ ⃣ รองรบั Team Development (การท างานเป็นทีม)

 โครงการใหญ่ตอ้งการใหน้กัพฒันา แบ่งหน้าท่ีและท างานขนานกนัได้
 OOP ช่วยโดย:

o แบ่งระบบเป็นคลาส / โมดลู
o แต่ละคนพฒันาและทดสอบคลาสของตวัเองไดโ้ดยอสิระ

 � ผลลพัธ:์ ประสทิธภิาพทมีสงูขึน้ ป้องกนัการชนกนัของโคด้

⚡ ⃣ สนับสนุน Polymorphism เพ่ือรองรบัการขยาย

 โปรแกรมใหญ่ตอ้งรองรบัการเพิม่ชนิดใหม่ ๆ
 Polymorphism ช่วยให:้

o เขยีนโคด้โดยอา้งองิคลาสแม่ แต่ใชง้านคลาสลกูได ้
o เช่น List<Shape> shapes รองรบัทัง้ Rectangle, Circle, Triangle

 � ผลลพัธ:์ เปิดกวา้งใหร้องรบั Requirement ใหม่โดยไม่ตอ้งแกโ้คด้เดมิ

⚡ ⃣ รองรบั Design Patterns / Architecture

 OOP เป็นพืน้ฐานของ Pattern เช่น:
o MVC, MVVM, MVP
o Observer, Strategy, Command, Decorator ฯลฯ

 � ผลลพัธ:์ โครงงานใหญ่ม ีPattern จดัระเบยีบ มคีุณภาพ และบ ารุงรกัษาง่าย

⚡ ⃣ ป้องกนั Code Duplication & Spaghetti Code

 โคด้ Procedural มกัเกดิปัญหาการท างานซ ้า ๆ จนควบคุมยาก
 OOP จดักลุ่มและใชก้ารสบืทอด เพื่อหลกีเลีย่งการเขยีนโคด้ซ ้า
 � ผลลพัธ:์ โคด้เป็นระบบ เขา้ใจง่าย มขีอ้ผดิพลาดน้อยลง

⚡ ⃣ เป็นมาตรฐานอตุสาหกรรม

 OOP เป็นหวัใจของภาษาและ Framework สมยัใหม่ เชน่:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 32

o Java, C#, C++, Kotlin, Swift, Dart
o Framework เช่น .NET, Spring Framework, Laravel

 � ผลลพัธ:์ รองรบังานจรงิ และจา้งงานไดจ้รงิ

� สรปุสัน้ ๆ
⚡ OOP ช่วยแกโ้จทยใ์หญ่ ๆ ของงาน Software Development:

 จดัการ Complexity
 รองรบั Maintainability & Scalability
 Enables Reusability & Teamwork
 Supports Polymorphism & Patterns
 เป็นรากฐานของ Architecture ในงานจรงิ

� ภาพใหญ่ของ OOP ในโปรแกรมใหญ่
โปรแกรมใหญ่ ๆ มคีลาสเป็นตกึเลก็ ๆ แต่ละตกึมหีน้าทีช่ดัเจน มผีูด้แูล มหีน้าต่าง มปีระต ูมกีารเขา้
ออก
→ จดัการได ้→ ปรบัแกไ้ด ้→ ขยายได ้
“ใหญ่ แต่เป็นระเบียบ”

ความส าคญัของ OOP ในการพฒันาโปรแกรมขนาดใหญ่

� ⃣ จดัการ Complexity ด้วย Encapsulation & Modularization
� โจทยใ์หญ่:
โปรแกรมขนาดใหญ่มโีคด้เป็นหมื่นเป็นแสนบรรทดั หากไม่มโีครงสรา้ง จะแกต้รงไหนกก็ระทบตรงนัน้
ตวัโปรแกรมจะคลา้ย “ชามสปาเกตตี” (Spaghetti Code)
� OOP แก้ด้วย Encapsulation:

 จดักลุ่มทัง้ ข้อมลู (Attributes) และ พฤติกรรม (Methods) เป็น คลาส
 แต่ละคลาสเป็น “กล่อง” มหีน้าทีช่ดัเจน (Single Responsibility)

⚡ ผลลพัธ:์
 โครงสรา้งเป็น Modular → หาตน้ตอและแกปั้ญหาง่าย
 คน 10–100 คนแกโ้คด้ไดโ้ดยไม่ชนกนั
 ป้องกนัการ “ลน้ขอบ” ของโคด้ (Code Spill)

 ⃣ ขยายโปรแกรมได้โดยไม่ต้องรือ้ท้ิงทัง้ระบบ

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 33

ในงานจรงิ ฟีเจอรใ์หม่ตอ้งถูกเพิม่ตลอดอายโุปรเจกต ์แต่ตอ้งท าโดย:
 “ไม่ต้องแก้ของเก่ามาก”
 “ลดความเส่ียง” ใน Production

� OOP สนับสนุนผ่าน:
 Inheritance (การสืบทอด):

คลาสใหม่สบืทอดคณุสมบตัเิดมิ แต่เลอืกเพิม่/แกไ้ขได ้
 Polymorphism:

โคด้เลอืกท างานตามคลาสจรงิ ณ Runtime
o ตวัอยา่ง:

List<Shape> shapes = [new Circle(), new Square()];
shapes.forEach(s -> s.draw());

o ขยายเป็น new Polygon() ไดโ้ดย “ไม่ต้องแก้ draw() ในคลาสอ่ืน”

 ⃣ จดัการและควบคมุ State ในระบบใหญ่
ในโปรแกรมใหญ่ แต่ละ “ออ็บเจกต”์ ม ีstate (สถานะ) ของตนเอง

 เช่น User ม ีusername, email, roles
 Product ม ีprice, category, quantity
 Order ม ีorderId, items, status

� OOP จดั state ของออ็บเจกตใ์ห้เป็นเอกเทศ
 ป้องกนั “state bleed” ทีจ่ะเกดิเมื่อใชต้วัแปร global
 แต่ละออ็บเจกตบ์รหิาร state ของตนเอง (Encapsulation) → ควบคมุได้, ทดสอบได้

⚡ ⃣ Reusability & Maintainability
� ในโปรแกรมใหญ่:

 มโีคด้ตอ้งใชซ้ ้าเป็น 100+ ครัง้
 แต่ตอ้งหลกีเลีย่ง Duplicate Logic (หายนะของ Maintenance)

� OOP ช่วยโดย:
 สรา้ง Base Class + ใช ้Inheritance
 จดักลุ่มเป็น Library / Framework ของตนเอง
 เช่น DatabaseHandler ตวัเดยีวใชไ้ดท้ ัง้โปรเจกต ์

⚡ ผลลพัธ:์
 โคด้ม ีSingle Source of Truth
 Maintenance น้อยลง

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 34

 เวลาแกบ้ัก๊ แกต้รงเดยีว มผีลทัง้ระบบ

� ⃣ รองรบัการท างานเป็น ทีมใหญ่ (Collaboration)
� ในโปรเจกตใ์หญ่ มโีปรแกรมเมอร ์10–100 คนตอ้งท างานร่วมกนั
� ถ้าไม่ม ีOOP: โคด้ชนกนัตลอดเวลา
� OOP จดัการโดย:

 จดัโครงโปรแกรมเป็น คลาสและแพก็เกจ
 แต่ละคลาสเป็น “สญัญา” (contract) ของหน้าที ่
 แต่ละทมีหรอืผูพ้ฒันาเลอืกท าหน้าทีใ่นคลาสนัน้ ๆ
 ม ีInterface / Abstract Class เป็น ข้อตกลงกลาง ในทมี

⚡ ผลลพัธ:์
 แต่ละทมีท างานไดแ้บบ เป็นอิสระ
 บ ารุงรกัษาไดโ้ดย “รู้หน้าท่ี” ไม่ตอ้งอ่านทัง้โปรเจกต ์
 ม ีCode Review / Testing ทีเ่จาะตรงคลาสได ้

� ⃣ เป็นรากฐานของ Architecture & Design Patterns
� OOP เป็นหวัใจของ Architecture:

 MVC / MVVM / MVP
 Domain-Driven Design
 Layers Architecture
 Pattern ต่าง ๆ เช่น Strategy, Observer, Command, Factory

⚡ ผลลพัธ:์
 โครงสรา้งโปรแกรมใหญ่เขา้ใจได ้
 ปรบัขยายไดต้รงตามโจทยใ์หม่ ๆ
 ม ีPattern ทีช่่วยแกปั้ญหาทีพ่บบ่อยโดยตรง

 ⃣ ผลลพัธส์ดุท้าย: Robustness, Scalability, Maintainability
� OOP ไม่ใช่ “ไวยากรณ์” แต่เป็น แนวคิดการออกแบบ
� ใหโ้ปรแกรมใหญ่เป็นระบบ
� ป้องกนัการเสยีหายเป็นวงกวา้ง
� รองรบัผูใ้ชเ้ป็นลา้น ๆ คน และผูพ้ฒันาเป็นรอ้ย ๆ คน

⚡ ตวัอย่างจริง

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 35

� Facebook / YouTube
 มผีูพ้ฒันาเป็นพนั ๆ คน
 ใช ้OOP + Patterns เพื่อควบคุม Complexity
 ม ีServices และ Objects เป็น Units จดัการอสิระ
 รองรบัผูใ้ชเ้ป็นพนัลา้นคนโดยโครงสรา้งตอ้งชดัเจน

� Banking System
 มคีลาสบญัชผีูใ้ช,้ บญัชธีุรกรรม, การแจง้เตอืน, การรกัษาความปลอดภยั
 แต่ละคลาสมหีน้าทีช่ดัเจนและอสิระ
 ปรบัปรุงอพัเกรดไดโ้ดย “แตะตอ้งคลาสทีเ่กีย่วขอ้ง” เท่านัน้

⚡ สรปุแก่น
� OOP มคี่าต่อโปรแกรมใหญ่เพราะ:

 จดัการ Complexity ดว้ย Encapsulation
 ขยายไดด้ว้ย Inheritance + Polymorphism
 จดัการ State ของ Objects แต่ละตวัเป็นอสิระ
 สนบัสนุน Reusability + Maintainability
 เปิดทางให ้Architecture / Patterns จดัการโปรแกรมใหญ่
 เป็นแกนกลางของการพฒันาเป็นทมีและต่อยอดระบบ

UML (Unified Modeling Language) คืออะไร และท าไมถึงเป็น “เครื่องมือ
ออกแบบ” ท่ีส าคญัของ OOP

� ⃣ UML คืออะไร

 UML = Unified Modeling Language
 เป็น ภาษาภาพมาตรฐาน (Visual Language) ทีใ่ชเ้ป็น “แบบพิมพเ์ขียว” (Blueprint) เพื่อ

อธบิาย:
o โครงสรา้งของโปรแกรม
o พฤตกิรรมของโปรแกรม
o ปฏสิมัพนัธข์ององคป์ระกอบ (Objects, Classes)

� คล้ายแบบแปลนตึก แต่เป็น แบบแปลนของโปรแกรม

⚡ ⃣ UML ส าคญัต่อ OOP เพราะ…

 OOP มแีนวคดิเป็น object, class, interaction

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 36

 UML เป็นเครื่องมอืทีช่่วย:
o สื่อสารแนวคดิ OOP ใหเ้ป็นภาพ
o ช่วยทัง้ผูพ้ฒันา, ผูอ้อกแบบ, ผูบ้รหิาร, และผูเ้กีย่วขอ้งเขา้ใจกนัตรงกนั

 เป็น สะพาน ระหวา่ง แนวคิด (concept) ➔ โค้ดจริง (implementation)

� ⃣ ประโยชน์ของ UML ในการพฒันาโปรแกรมขนาดใหญ่
� ช่วยให้เหน็ภาพใหญ่ (Big Picture):

 ชดัเจนวา่โปรแกรมมกีีค่ลาส แต่ละคลาสเกีย่วขอ้งกนัอยา่งไร
� ช่วยจดัโครงสร้างโปรแกรม:

 แยกหน้าที ่(Responsibilities) ของแต่ละคลาส
 จดัสรรผูพ้ฒันาใหร้บัผดิชอบตรงตามคลาส / โมดลู

� ลดข้อขดัแย้งในการท างานเป็นทีม:
 ทมีเหน็ตรงกนัเกีย่วกบัหน้าตาและหน้าทีข่องคลาส / โมดลู

� เป็นเอกสารอ้างอิง (Documentation):
 แมผู้พ้ฒันาเดมิจะยา้ยไป คนใหม่อ่าน UML กเ็ขา้ใจโครงสรา้งไดเ้รว็

� รองรบัการออกแบบเชิงสถาปัตยกรรม:
 เช่น MVC, Layer Architecture, Domain-Driven Design (DDD)

� ⃣ ประเภทของ UML Diagram

ประเภท UML ใช้ท าอะไร

⚡ Class Diagram แสดงคลาส, Attribute, Method และ Relationship ของคลาสต่าง ๆ

⚡ Object Diagram แสดง Objects จรงิ ๆ ณ ช่วงเวลาหนึ่ง

⚡ Use Case Diagram แสดงผูใ้ช ้(Actor) และ Use Cases ของระบบ

⚡ Sequence Diagram แสดงล าดบัการสื่อสาร (Message) ระหวา่ง Objects ใน Use Case

⚡ Activity Diagram แสดงล าดบักจิกรรม / ข ัน้ตอนใน Workflow

⚡ State Diagram แสดงสถานะและการเปลีย่นผ่านของ Objects

⚡ Component Diagram แสดงองคป์ระกอบเชงิโครงสรา้งของระบบ

⚡ Deployment Diagram แสดงการกระจายองคป์ระกอบของระบบไปยงั Hardware/Environment

 ⃣ ตวัอย่างจริง

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 37

⚡ Class Diagram
ตวัอยา่ง: ระบบหอ้งสมุด
Book

- title: String
- author: String
- ISBN: String

+ borrow()
+ return()
⚡ Use Case Diagram
ตวัอยา่ง:
ผูใ้ช ้→ [ยมืหนงัสอื], [คนืหนงัสอื]
⚡ Sequence Diagram
ตวัอยา่ง:
ผูใ้ช ้➔ BookController ➔ BookService ➔ BookRepository ➔ Database

⚡ ⃣ UML และ OOP ผสานกนัอย่างไร
� OOP ให:้ Objects, Classes, Methods, Attributes
� UML ให:้ Visual Representation ของสิง่เหล่านี้
� ผลลพัธ:์
OOP = แนวคดิและโครงสรา้ง
UML = “ภาพ” และ “แบบ” ของแนวคดิและโครงสรา้ง

⚡ ⃣ ข้อดีของ UML ในงานจริง

 � ลดข้อผิดพลาด: เขา้ใจก่อนเขยีนโคด้จรงิ
 � รองรบั Agile / Scrum: เป็นสื่อสารร่วมกนัในทมี
 � เป็นแบบเรียนรู้และอ้างอิงได้: แมผู้พ้ฒันาใหม่เขา้ร่วม
 � ช่วยเลือก Patterns: เช่น Observer, Strategy, Command

⚡ สรปุแก่น
⚡ UML = Visual Language for OOP
� ช่วยใหน้กัพฒันา “เหน็ภาพตรงกนั” ก่อนลงมอืเขยีนโคด้จรงิ

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 38

� จดัระบบการออกแบบและสื่อสารทัง้โครงสรา้งและพฤตกิรรมของโปรแกรม
� เป็นหวัใจของการพฒันาโปรแกรมขนาดใหญ่ (Enterprise Systems)

Class Diagram

⚡ Class Diagram คืออะไร?

 เป็น UML Diagram ประเภทหนึ่งทีใ่ชเ้พื่อ แสดงโครงสร้างของระบบแบบเชิงวตัถ ุ(Object-
Oriented)

 แสดงรายละเอยีดของ คลาส (Class) ในระบบ
 แสดง Attributes (ข้อมลู/คณุสมบติั) ของแต่ละคลาส
 แสดง Methods (ฟังกช์นั/พฤติกรรม) ทีค่ลาสนัน้ ๆ สามารถท าได ้
 แสดง ความสมัพนัธ ์(Relationships) ระหวา่งคลาสต่าง ๆ เช่น

o Association (การเช่ือมโยงทัว่ไป)
o Aggregation (ความเป็นส่วนประกอบแบบหลวม)
o Composition (ความเป็นส่วนประกอบแบบแขง็แรง)
o Inheritance (การสืบทอด)

� องคป์ระกอบหลกัของ Class Diagram

องคป์ระกอบ ค าอธิบาย ตวัอย่าง

Class กล่องสีเ่หลีย่มแบ่งเป็น 3 ส่วน Book

Attributes รายการคุณสมบตัขิองคลาส - title: String- author: String

Methods รายการฟังกช์นัของคลาส + borrow(): void+ return(): void

Relationships
การเชื่อมโยงระหวา่งคลาสต่าง
ๆ

Inheritance, Association, Aggregation,
Composition

� โครงสร้างของ Class ใน Diagram

| ClassName | <-- ชื่อคลาส

| - attributeName: Type | <-- Attributes (ขอ้มลู)
- ...

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 39

| + methodName(): ReturnType | <-- Methods (พฤตกิรรม)
+ ...

 เครื่องหมาย - แสดงวา่ private (ซ่อนขอ้มลู)
 เครื่องหมาย + แสดงวา่ public (เปิดเผยใหใ้ชง้านได)้

� ตวัอย่าง Class Diagram
สมมตริะบบหอ้งสมุดม ี3 คลาสหลกั:

Class Attributes Methods ความสมัพนัธ ์

Book
- title: String- author: String-
ISBN: String

+ borrow(): void+ return(): void
Association กบั
Member

Member - name: String- memberId: int
+ register(): void+
borrowBook(): void

Association กบั Book

Library - name: String- address: String
+ addBook(): void+
removeBook(): void

Aggregation ของ
Book

แสดงใน Class Diagram
+-------------------+ 1 * +-------------------+
| Member |------------------------| Book |
+-------------------+ +-------------------+
| - name: String | | - title: String |
| - memberId: int | | - author: String |
+-------------------+ +-------------------+
| + register() | | + borrow() |
| + borrowBook() | | + return() |
+-------------------+ +-------------------+

 1
 +---------------+
 | Library |
 +---------------+
 | - name:String |
 | - address:String|
 +---------------+

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 40

 | + addBook() |
 | + removeBook()|
 +---------------+
 *
 owns
 *
 |
 Book

 Member กบั Book มคีวามสมัพนัธแ์บบ Association (สมาชกิยมืหนงัสอืไดห้ลายเล่ม)
 Library กบั Book มคีวามสมัพนัธแ์บบ Aggregation (หอ้งสมุดมหีนงัสอืเป็นส่วนประกอบ แต่

หนงัสอืสามารถอยูไ่ดเ้องโดยไม่ขึน้กบัหอ้งสมุด)

� ความสมัพนัธใ์น Class Diagram แบบละเอียด

ชนิด
ความสมัพนัธ ์

สญัลกัษณ์ใน Diagram ความหมาย

Association เสน้ตรง การเชื่อมโยงทัว่ไป ระหวา่งคลาส 1 ตวักบัอกีตวั

Multiplicity ตวัเลขทีข่า้งเสน้ จ านวนของออ็บเจกตท์ีเ่กีย่วขอ้ง เช่น 1, 0.., 1..

Inheritance
ลกูศรปากกา (ลกูศรชีไ้ป
แม่แบบ)

การสบืทอดคุณสมบตัแิละพฤตกิรรมจากคลาสแม่
(Super Class)

Aggregation เสน้มขีา้วหลามตดักลวง
ส่วนประกอบแบบหลวม ออ็บเจกตท์ีเ่ป็นส่วนประกอบมี
ชวีติอสิระ

Composition เสน้มขีา้วหลามตดัทบึ
ส่วนประกอบแบบแขง็แรง ออ็บเจกตส์่วนประกอบมี
ชวีติร่วมกบัเจา้ของ

ตวัอย่าง Inheritance
+-------------------+ +---------------------+
| Vehicle |<|-------- | Car |
+-------------------+ +---------------------+
| - speed: int | | - numDoors: int |
+-------------------+ +---------------------+
| + move() | | + openDoor() |
+-------------------+ +---------------------+

 Car สบืทอด (extends) จาก Vehicle

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 41

สรปุ

ประเดน็ Class Diagram

แสดงอะไร โครงสรา้งคลาส, Attribute, Method, ความสมัพนัธ ์

ประโยชน์หลกั ท าใหเ้หน็ภาพรวมโปรแกรมและความเชื่อมโยง

เหมาะกบั ออกแบบระบบทีใ่ช ้OOP, วเิคราะหค์วามซบัซอ้น

ใชเ้มื่อ เริม่วางโครงสรา้งโปรแกรม, สื่อสารกบัทมี

Class Diagram เชิงลึกท่ีสุดใน UML

1. ความหมายและบทบาทของ Class Diagram

 Class Diagram เป็นหนึ่งในประเภทของ UML Diagram ทีส่ าคญัทีสุ่ด
 ใชแ้สดง โครงสร้างแบบคงท่ี (Static Structure) ของระบบเชงิวตัถุ
 บอกวา่ในระบบม ีClass อะไรบ้าง แต่ละคลาสมอีะไรบา้ง และมคีวามสมัพนัธแ์บบไหนกนั
 เป็นแผนภาพทีน่กัออกแบบและนกัพฒันาน ามาใชเ้พื่อ วางแผน พดูคยุ และส่ือสารโครงสร้าง

ระบบ ก่อนเริม่เขยีนโคด้

2. องคป์ระกอบหลกัของ Class Diagram
2.1 Class (คลาส)

 คลาสเป็น แบบแผน (Blueprint) ส าหรบัสรา้งออ็บเจกต ์
 แสดงเป็นสีเ่หลีย่ม 3 ช่อง (เรยีกวา่ “แพก็เกจ” หรอื “คอมปารต์เมนต์”)

โครงสรา้งคลาส:
+---------------------------+
| Class Name | ← ชื่อคลาส (ส าคญัทีส่ดุ)
+---------------------------+
| - attribute1: Type | ← คุณสมบตั ิ(Attributes) หรอื ขอ้มลูของคลาส
| - attribute2: Type |
+---------------------------+
| + method1(params): Return | ← ฟังกช์นัหรอืพฤตกิรรม (Operations/Methods)
| + method2(params): Return |
+---------------------------+

 ช่ือคลาส เขยีนใหอ้ยูบ่นสุด

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 42

 Attributes คอื ตวัแปรขอ้มลูทีค่ลาสนัน้เกบ็ไว ้
 Methods คอื ฟังกช์นัทีค่ลาสนัน้สามารถท าได ้

2.2 Visibility (การมองเหน็)
ก าหนดวา่ attribute หรอื method นัน้เขา้ถงึไดจ้ากทีใ่ดบา้ง โดยใชส้ญัลกัษณ์น าหน้า
สญัลกัษณ์ ความหมาย

+ Public (เปิดเผยทุกที)่

- Private (เฉพาะในคลาส)

Protected (เฉพาะคลาสและลกู)

~ Package (เฉพาะภายในแพก็เกจ)

2.3 Attributes (คณุสมบติั)

 แสดงชื่อและชนิดขอ้มลู เชน่ - age: int
 อาจก าหนดค่าเริม่ตน้ เช่น - name: String = "John"

2.4 Methods (พฤติกรรม)

 แสดงชื่อ, พารามเิตอร,์ และชนิดผลลพัธ ์เช่น
+ getName(): String
+ setAge(age: int): void

3. ความสมัพนัธร์ะหว่างคลาส (Relationships)
3.1 Association (ความสมัพนัธท์ัว่ไป)

 เสน้ตรงเชื่อมระหวา่งคลาส
 แสดงวา่คลาสสองตวัรูจ้กักนั หรอืมกีารตดิต่อกนั
 อาจมทีศิทาง (ลกูศร) หรอืไม่มทีศิทาง
 มกัก าหนด Multiplicity (จ านวนความสมัพนัธ)์

ตวัอย่าง:
 1 ฝ่ายหนึ่งสมัพนัธก์บั * อกีฝ่ายหนึ่ง (หนึ่งต่อหลาย)

3.2 Multiplicity (ความหลายหลาย)

 ก าหนดจ านวนของออ็บเจกตท์ีม่สี่วนร่วมในความสมัพนัธ์
 ใช ้notation เช่น

o 1 หมายถงึหนึ่งตวัเท่านัน้

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 43

o 0..1 หมายถงึศนูยห์รอืหนึ่งตวั
o * หมายถงึหลายตวั (0 หรอืมากกวา่)
o 1..* หมายถงึหนึ่งหรอืมากกวา่

3.3 Aggregation (การรวมแบบหลวม)

 เสน้ตรงมรีปูขา้วหลามตดั (empty diamond) ทีป่ลายดา้นเจา้ของ
 แสดงความสมัพนัธ ์“has-a” แบบส่วนประกอบทีม่ชีวีติแยกได ้
 ตวัอยา่ง: หอ้งสมุด มี หนงัสอื แต่หนงัสอืยงัสามารถอยูไ่ดเ้อง

3.4 Composition (การรวมแบบแน่น)

 เสน้ตรงมรีปูขา้วหลามตดัทบึ (filled diamond) ทีป่ลายเจา้ของ
 แสดงความสมัพนัธแ์บบส่วนประกอบทีช่วีติขึน้กบัเจา้ของ
 ตวัอยา่ง: หอ้ง มี หอ้งน ้า หอ้งน ้าไม่สามารถอยูไ่ดถ้้าไม่มหีอ้ง

3.5 Inheritance / Generalization (การสืบทอด)

 ลกูศรทีม่หีวัแบบกลวง (open arrowhead) ชีจ้ากคลาสลกูไปยงัคลาสแม ่
 บอกวา่คลาสลกู สืบทอดคณุสมบติัและพฤติกรรม จากคลาสแม ่
 สนบัสนุน Polymorphism และ Reuse

3.6 Dependency (การพ่ึงพิง)

 เสน้ประทีม่ลีกูศรชี ้
 บอกวา่คลาสหนึ่งใชห้รอืขึน้กบัอกีคลาสหนึ่งชัว่คราว
 เช่น method ในคลาส A ใช ้parameter หรอืคนืค่าจากคลาส B

3.7 Realization (การท าสญัญา)

 ใชใ้นกรณ ีInterface กบัคลาสที ่implements
 เสน้ประทีม่ลีกูศรกลวงชีไ้ปยงั Interface

4. ตวัอย่าง Class Diagram แบบสมบรูณ์ (Library System)
+---------------------+ +----------------------+
| Library |<>---------| Book |
+---------------------+ +----------------------+
| - name: String | | - title: String |
| - address: String | | - author: String |

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 44

+---------------------+ +----------------------+
| + addBook() | | + borrow() |
| + removeBook() | | + return() |
+---------------------+ +----------------------+

 1 0..*
+--------------------+ +--------------------+
| Member |--------------| Book |
+--------------------+ borrows +--------------------+
| - memberId: int | | - isbn: String |
| - name: String | +--------------------+
+--------------------+ | + borrow() |
| + register() | | + return() |
| + borrowBook() | +--------------------+
+--------------------+

 Library Aggregation หนงัสอืหลายเล่ม
 Member กบั Book ม ีAssociation แบบยมืหนงัสอืกนั

5. การใช้ Class Diagram จริงในโปรเจกต ์

 ใชใ้นขัน้ตอน ออกแบบระบบ (Design Phase)
 ช่วยใหท้มีเหน็ภาพรวมของขอ้มลูและพฤตกิรรม
 ใชเ้ป็น เอกสารประกอบการพฒันาและบ ารงุรกัษา
 ใชช้่วยวางแผนการเขยีนโคด้ทีส่อดคลอ้งตามแบบแผน

6. เครื่องมือสร้าง Class Diagram ยอดนิยม

 StarUML
 Visual Paradigm
 Enterprise Architect
 PlantUML (เขยีนเป็นโคด้แลว้ generate ภาพ)
 IBM Rational Rose
 Microsoft Visio

7. เคลด็ลบัออกแบบ Class Diagram ให้ดี

 รกัษา Single Responsibility Principle (SRP): คลาสหนึ่งควรมหีน้าทีเ่ดยีว

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 45

 อยา่ท าคลาสใหญ่มาก (God Class)
 ใช ้Inheritance เฉพาะเมื่อมคีวามสมัพนัธ ์“is-a” ชดัเจน
 ใช ้Aggregation และ Composition เพื่อแสดงความเป็นเจา้ของและส่วนประกอบ
 ใส ่Multiplicity เพื่อชีช้ดัจ านวนออ็บเจกต ์
 สื่อสารใหท้มีเขา้ใจง่ายดว้ย Naming ท่ีชดัเจน

สรปุ

ประเดน็ส าคญั Class Diagram

หน้าทีห่ลกั แสดงโครงสรา้งคลาสและความสมัพนัธ ์

องคป์ระกอบหลกั Class, Attribute, Method, Relationships

ความสมัพนัธ ์ Association, Aggregation, Composition, Inheritance, Dependency

ประโยชน์ วางแผนระบบ, สื่อสารทมี, เอกสารประกอบการพฒันา

ใชเ้มื่อ ออกแบบระบบ, วางโครงสรา้ง OOP, วเิคราะหค์วามซบัซอ้น

สรปุ
บทนี้ เป็นจุดเริ่มต้นส าคัญของการเรียนรู้แนวคิดพื้นฐานของ OOP (Object-Oriented

Programming) โดยอธิบายถึงความแตกต่างระหว่างการเขยีนโปรแกรมแบบ Procedural และ
Object-Oriented เพื่อให้ผู้เรียนเขา้ใจถึงขอ้ดขีอง OOP ในการรวมขอ้มูลและหน้าที่เป็นหน่วยเดยีว
จดัการและบ ารุงรกัษาโคด้ได้เป็นระบบและรองรบัโปรแกรมขนาดใหญ่ได้อย่างมปีระสทิธภิาพ เนื้อหา
ครอบคลุมทัง้แนวคดิของ Object และ Class ทีเ่ป็นหวัใจของ OOP ตลอดจนความส าคญัของ OOP ใน
การพฒันาโปรแกรมขนาดใหญ่ และการใช้ UML (Unified Modeling Language) เป็นเครื่องมอืช่วย
ออกแบบและสื่อสารโครงสรา้งของโปรแกรม เพื่อปพูืน้ฐานไปสู่การเป็นโปรแกรมเมอร ์C++ OOP ระดบั
มอือาชพีต่อไป

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 46

บทท่ี 3
การสรา้งคลาสและวตัถ ุ
(Class and Object)

เน้ือหา

 พืน้ฐานการสรา้งคลาสและวตัถุใน C++
 การสรา้งคลาสและวตัถุใน C++ โดยละเอยีด พรอ้ม ตวัอยา่ง UML Class Diagram
 การประกาศและใชง้าน class และ object ใน C++
 การประกาศและใชง้าน class และ object ใน C++ แบบเจาะลกึ
 ตวัอยา่งโปรแกรม: ระบบจดัการบุคคล (Person Management)
 Constructor และ Destructor ใน C++
 Constructor และ Destructor ใน C++ แบบเชงิลกึ
 Access Specifier ใน C++: public, private, protected
 Access Specifier ใน C++ — รายละเอยีดเชงิลกึ พรอ้ม UML
 Getter / Setter (Encapsulation)
 Getter / Setter (Encapsulation) — เชงิลกึ

บทน า
การสร้างคลาสและออ็บเจกต์ (Class and Object) เป็นหวัใจส าคญัของการเขยีนโปรแกรมเชงิวตัถุ
(Object-Oriented Programming) ใน C++ เพราะเป็นจุดเริม่ตน้ของการออกแบบและพฒันาโปรแกรมที่
สอดคลอ้งกบัแนวคดิ OOP แทจ้รงิ โดยผูเ้รยีนจะไดเ้รยีนรู้ว่า Class เป็นเสมอืนแม่แบบหรอืพมิพ์เขยีว
ของสิง่ที่ต้องการสร้าง ในขณะที่ Object เป็นชิ้นงานจรงิที่ถูกผลติขึน้มาด้วยพมิพ์เขยีวนัน้ การเขา้ใจ
กระบวนการประกาศและใชง้าน Class และ Object จงึเป็นกา้วแรกของผูพ้ฒันาโปรแกรม C++ OOP

สิง่ส าคญัอกีขอ้คอื Constructor และ Destructor ทีเ่ป็นฟังก์ชนัพเิศษของคลาส มหีน้าที่ช่วย
ผูพ้ฒันาในการควบคุมอายขุองออ็บเจกต ์ตัง้แต่ตอนเริม่ตน้จนถงึตอนสิ้นสุด Constructor ใช้เพื่อเตรยีม
ค่าหรอืทรพัยากรเริม่ตน้ของออ็บเจกต ์ในขณะที ่Destructor ใชเ้พื่อเกบ็กวาดและคนืทรพัยากรเมื่อออ็บ
เจกตห์มดอาย ุสิง่เหล่านี้ช่วยใหโ้ปรแกรมบรหิารจดัการหน่วยความจ าและทรพัยากรไดเ้ป็นระบบและลด
ขอ้ผดิพลาดทีอ่าจเกดิขึน้

ผู้เรยีนจะได้ท าความรู้จกัและเขา้ใจกบั Access Specifier ได้แก่ public, private และ
protected ที่ช่วยควบคุมการเขา้ถึงและแก้ไขขอ้มูลภายในคลาส การเลอืกใช้ Access Specifier ที่

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 47

ถูกตอ้งเป็นหวัใจของ Encapsulation เพื่อป้องกนัขอ้มูลและควบคุมสทิธิก์ารเขา้ถึงจากภายนอกคลาส
ผู้เรยีนจะเขา้ใจว่า Access Specifier แต่ละแบบมหีน้าที่และลกัษณะการใช้งานแตกต่างกนั และเลอืก
ใชไ้ดอ้ยา่งเหมาะสม

หวัขอ้ถดัไปคอื Getter และ Setter เป็นแนวคดิและวธิกีารทีช่่วยใหผู้เ้รยีนออกแบบและควบคุม
การเขา้ถึงขอ้มูลภายในคลาสได้เป็นระบบ โดยใช้เมธอด Getter เพื่ออ่านค่าของตวัแปรภายในคลาส
และเมธอด Setter เพื่ออพัเดตค่าของตวัแปรโดยมตีรรกะควบคุมสทิธิแ์ละตรวจสอบค่าก่อนแก้ไขจรงิ ๆ
หลกัการเหล่านี้ช่วยใหโ้ปรแกรมมคีวามปลอดภยั มโีครงสร้างที่ชดัเจน และแก้ไขได้ง่ายเมื่อต้องขยาย
หรอืปรบัปรุง

สุดทา้ย บทนี้จะเป็นรากฐานของการเขยีนโปรแกรมเชงิออ็บเจกตด์ว้ย C++ ในระดบัสงูขึน้ ไม่วา่
จะเป็น Inheritance, Polymorphism หรอืต่อยอดไปถึง Design Patterns และ Architecture ของ
โปรแกรมจรงิ ผู้เรยีนจะเขา้ใจทัง้ทฤษฎีและแนวคดิปฏบิตัิของการออกแบบคลาสและออ็บเจกต์ และ
สามารถน าไปใชแ้กโ้จทยปั์ญหาหรอืพฒันาโปรแกรม C++ OOP ไดอ้ยา่งเป็นระบบ มปีระสทิธภิาพ และ
ตรงตามมาตรฐานของการเขยีนโปรแกรมมอือาชพี.

พื้นฐานการสร้างคลาสและวตัถใุน C++

3.1 การประกาศและใช้งาน Class และ Object
Class คืออะไร?

 เป็นแบบแผน (Blueprint) ทีก่ าหนดวา่ออ็บเจกต ์(วตัถุ) จะมขีอ้มลูอะไร (Attributes) และท างาน
อะไรไดบ้า้ง (Methods)

 คลาสไมใ่ช่วตัถุจรงิ แต่คอืแม่แบบใหส้รา้งวตัถุ
Object คืออะไร?

 เป็น instance หรอืวตัถุจรงิทีส่รา้งจากคลาส
 แต่ละออ็บเจกตม์สีถานะขอ้มลูเป็นของตวัเอง

ตวัอย่างการประกาศ Class และสร้าง Object
#include <iostream>
using namespace std;

class Person {
public:
 string name; // attribute
 int age; // attribute

 void sayHello() { // method

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 48

 cout << "Hello, my name is " << name << " and I'm " << age << " years old.\n";
 }
};

int main() {
 Person p1; // สรา้ง Object p1 จาก Class Person
 p1.name = "Alice"; // ก าหนดค่า Attribute
 p1.age = 30;
 p1.sayHello(); // เรยีกใช ้Method

 return 0;
}
ผลลพัธ:์
Hello, my name is Alice and I'm 30 years old.

3.2 Constructor และ Destructor
Constructor (ตวัสร้าง)

 เป็นฟังกช์นัพเิศษชื่อเหมอืนกบัชื่อคลาส
 ถูกเรยีกโดยอตัโนมตัเิมื่อสรา้งออ็บเจกต์
 ใชส้ าหรบั ก าหนดค่าเร่ิมต้น ใหก้บัออ็บเจกต ์
 สามารถมหีลายแบบ (Overloading) ได ้

Destructor (ตวัท าลาย)
 เป็นฟังกช์นัพเิศษชื่อเหมอืนคลาสแต่ม ี~ น าหน้า
 ถูกเรยีกโดยอตัโนมตัเิมื่อออ็บเจกตถ์ูกท าลาย
 ใชส้ าหรบั เคลียรท์รพัยากร เช่น memory หรอืไฟล ์

ตวัอย่าง Constructor และ Destructor
#include <iostream>
using namespace std;

class Person {
public:
 string name;
 int age;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 49

 // Constructor
 Person(string n, int a) {
 name = n;
 age = a;
 cout << "Constructor called for " << name << endl;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 void sayHello() {
 cout << "Hello, my name is " << name << ", age " << age << endl;
 }
};

int main() {
 Person p1("Bob", 25);
 p1.sayHello();

 return 0;
}
ผลลพัธ:์
Constructor called for Bob
Hello, my name is Bob, age 25
Destructor called for Bob

3.3 Access Specifier: public, private, protected

Access Specifier ความหมาย เข้าถึงได้จากท่ีไหน

public เขา้ถงึไดจ้ากทุกที ่ ท ัง้ภายในและภายนอกคลาส

private เขา้ถงึไดเ้ฉพาะภายในคลาสเท่านัน้ ไม่สามารถเขา้ถงึจากภายนอกคลาส

protected เขา้ถงึไดภ้ายในคลาสและคลาสลกู เหมาะส าหรบั inheritance

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 50

ตวัอย่างการใช้งาน Access Specifier
#include <iostream>
using namespace std;

class Person {
private:
 string name; // private attribute

public:
 int age; // public attribute

 void setName(string n) { // public setter method
 name = n;
 }

 string getName() { // public getter method
 return name;
 }
};

int main() {
 Person p;
 // p.name = "Alice"; // ERROR! name เป็น private ไม่สามารถเขา้ถงึไดต้รง ๆ

 p.setName("Alice"); // ตอ้งใช ้setter แทน
 p.age = 30; // age เป็น public สามารถเขา้ถงึไดต้รง ๆ

 cout << "Name: " << p.getName() << ", Age: " << p.age << endl;

 return 0;
}

3.4 Getter / Setter (Encapsulation)

 Encapsulation คอืการปกป้องขอ้มลูภายในคลาสไมใ่หถู้กเขา้ถงึโดยตรง

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 51

 ใช ้private กบัขอ้มลู และเปิดใหเ้ขา้ถงึขอ้มลูผ่าน getter และ setter
 ช่วยควบคุมการแกไ้ขและตรวจสอบขอ้มลูก่อนก าหนดคา่

ตวัอย่าง Getter / Setter
#include <iostream>
using namespace std;

class Person {
private:
 string name;
 int age;

public:
 void setName(string n) {
 if (n.length() > 0) {
 name = n;
 }
 }

 string getName() {
 return name;
 }

 void setAge(int a) {
 if (a >= 0) {
 age = a;
 }
 }

 int getAge() {
 return age;
 }
};

int main() {

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 52

 Person p;
 p.setName("Charlie");
 p.setAge(28);

 cout << "Name: " << p.getName() << ", Age: " << p.getAge() << endl;

 return 0;
}

สรปุ

หวัข้อ ค าอธิบายสัน้ ๆ

Class แบบแผนส าหรบัสรา้ง Object

Object ออ็บเจกตท์ีส่รา้งจาก Class

Constructor ฟังกช์นัพเิศษสรา้ง Object และก าหนดค่าเริม่ตน้

Destructor ฟังกช์นัพเิศษท าลาย Object และเคลยีรท์รพัยากร

Access Specifier ก าหนดการเขา้ถงึสมาชกิ class (public/private/protected)

Getter/Setter วธิเีขา้ถงึและแกไ้ขขอ้มลูแบบปลอดภยั (Encapsulation)

การสร้างคลาสและวตัถใุน C++ โดยละเอียด พร้อม ตวัอย่าง UML Class
Diagram

3. การสร้างคลาสและวตัถใุน C++ พร้อม UML

3.1 การประกาศและใช้งาน Class และ Object

 Class คอื แบบแผน (Blueprint) ทีบ่อกวา่ออ็บเจกตจ์ะมขีอ้มลู (Attributes) และพฤตกิรรม
(Methods) อะไรบา้ง

 Object คอื ออ็บเจกตจ์รงิทีส่รา้งจากคลาส (Instance)
ตวัอย่างโค้ด C++
class Person {
public:
 string name;
 int age;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 53

 void sayHello() {
 cout << "Hello, I'm " << name << ", " << age << " years old." << endl;
 }
};

int main() {
 Person p1; // สรา้ง Object p1
 p1.name = "Alice";
 p1.age = 30;
 p1.sayHello();

 return 0;
}

UML Class Diagram (เบือ้งต้นของ Person)
+----------------------+
| Person |
+----------------------+
| - name: string |
| - age: int |
+----------------------+
| + sayHello(): void |
+----------------------+

 - = private (ถ้าไม่ระบุใน C++ จะเป็น private โดยค่าเริม่ตน้ถ้าใช ้struct จะเป็น public)
 + = public

3.2 Constructor และ Destructor

 Constructor: ฟังกช์นัพเิศษชื่อเดยีวกบัคลาส เรยีกตอนสรา้ง Object เพื่อก าหนดค่าเริม่ตน้
 Destructor: ฟังกช์นัพเิศษชื่อเดยีวกบัคลาสแต่ม ี~ หน้า เรยีกตอน Object ถูกท าลาย (ปล่อย

ทรพัยากร)
ตวัอย่างโค้ด
class Person {
private:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 54

 string name;
 int age;

public:
 // Constructor
 Person(string n, int a) {
 name = n;
 age = a;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 void sayHello() {
 cout << "Hello, I'm " << name << ", " << age << " years old." << endl;
 }
};

UML Class Diagram (Person กบั Constructor/Destructor)
+-----------------------------+
| Person |
+-----------------------------+
| - name: string |
| - age: int |
+-----------------------------+
| + Person(n: string, a: int) | <<constructor>>
| + ~Person() | <<destructor>>
| + sayHello(): void |
+-----------------------------+

3.3 Access Specifier: public, private, protected

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 55

Access
Specifier

ความหมาย ตวัอย่างการใช้งาน

public เขา้ถงึไดทุ้กที ่
ตวัแปรและเมธอดทีต่อ้งการใหเ้รยีกใชไ้ดจ้ากภายนอก
คลาส

private เขา้ถงึไดเ้ฉพาะภายในคลาส
ตวัแปรและเมธอดทีต่อ้งการซ่อน ไมใ่หแ้กไ้ขโดยตรง
จากภายนอก

protected
เขา้ถงึไดภ้ายในคลาสและ
คลาสลกู

เหมาะส าหรบัการสบืทอด (inheritance)

ตวัอย่างโค้ด
class Person {
private:
 string name; // ซ่อนขอ้มลู
public:
 int age;

 void setName(string n) {
 name = n;
 }

 string getName() {
 return name;
 }
};

UML Class Diagram ท่ีแสดง Access Specifier
+------------------------+
| Person |
+------------------------+
| - name: string |
| + age: int |
+------------------------+
| + setName(n: string) |
| + getName(): string |

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 56

+------------------------+

3.4 Getter / Setter (Encapsulation)

 ใช ้ซ่อนข้อมลู (private) และเปิดช่องทางเขา้ถงึผ่าน getter/setter
 ป้องกนัการแกไ้ขขอ้มลูโดยตรง เพื่อใหค้วบคุมค่าทีถู่กตอ้ง เช่น เชค็ค่าก่อนก าหนด

ตวัอย่างโค้ด
class Person {
private:
 string name;
 int age;

public:
 void setName(string n) {
 if (n.length() > 0) name = n;
 }

 string getName() {
 return name;
 }

 void setAge(int a) {
 if (a >= 0) age = a;
 }

 int getAge() {
 return age;
 }
};

UML Class Diagram พร้อม Getter/Setter
+----------------------------+
| Person |
+----------------------------+
| - name: string |

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 57

| - age: int |
+----------------------------+
| + setName(n: string) |
| + getName(): string |
| + setAge(a: int) |
| + getAge(): int |
+----------------------------+

สรปุภาพรวมใน UML Class Diagram

องคป์ระกอบ รายละเอียด ตวัอย่าง

Class Name ชื่อคลาส Person

Attributes
ตวัแปรขอ้มลูพรอ้มชนิดและระดบัการ
เขา้ถงึ

- name: string (private) + age: int
(public)

Methods ฟังกช์นัทีเ่ปิดเผยหรอืซ่อน + setName(), + getName()

Constructor/Destructor
ฟังกช์นัพเิศษส าหรบัสรา้งและท าลาย
Object

+ Person(), + ~Person()

Access Specifier public, private, protected ใช ้+, -, # แทนใน UML

การประกาศและใช้งาน class และ object ใน C++

การประกาศและใช้งาน Class และ Object ใน C++

1. การประกาศ Class

 Class คอื โครงสรา้งทีใ่ชเ้ป็นแบบแผนในการสรา้งออ็บเจกต์
 ประกอบดว้ย Attributes (ขอ้มลู) และ Methods (ฟังกช์นัหรอืพฤตกิรรม)
 Syntax พืน้ฐาน:

class ClassName {
 // access specifiers and members
};

 ในคลาส เราจะประกาศตวัแปร (attributes) และฟังกช์นั (methods) ภายใน
 โดยค่าปรยิาย ถ้าไม่ระบุ access specifier จะเป็น private

ตวัอย่างการประกาศ Class

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 58

class Person {
public: // ก าหนดใหส้มาชกินี้เขา้ถงึไดจ้ากภายนอก
 string name; // attribute
 int age;

 void sayHello() { // method
 cout << "Hello, my name is " << name << endl;
 }
};

2. การสร้าง Object (Instantiation)

 Object คอื instance ทีส่รา้งจาก class
 สรา้ง object โดยใชช้ื่อคลาสเป็นชนิดขอ้มลู เช่น

Person p1; // สรา้งออ็บเจกตช์ื่อ p1 จาก class Person
 แต่ละ object มคี่าของ attribute เป็นของตวัเองแยกจาก object อื่น ๆ

3. การใช้งาน Object

 สามารถเขา้ถงึ attribute และ method ผ่าน dot operator (.)
 เช่น

p1.name = "Alice"; // ก าหนดค่า attribute name
p1.age = 25; // ก าหนดค่า attribute age
p1.sayHello(); // เรยีก method sayHello()

4. ตวัอย่างโปรแกรมเตม็
#include <iostream>
using namespace std;

class Person {
public:
 string name;
 int age;

 void sayHello() {
 cout << "Hello, my name is " << name << " and I am " << age << " years old." << endl;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 59

 }
};

int main() {
 Person p1; // สรา้ง object p1
 p1.name = "Alice"; // ก าหนดค่า attribute
 p1.age = 25;
 p1.sayHello(); // เรยีก method

 Person p2; // สรา้ง object p2
 p2.name = "Bob";
 p2.age = 30;
 p2.sayHello();

 return 0;
}
ผลลพัธ:์
Hello, my name is Alice and I am 25 years old.
Hello, my name is Bob and I am 30 years old.

สรปุ

ขัน้ตอน ค าอธิบาย

ประกาศ Class ก าหนดโครงสรา้งขอ้มลูและฟังกช์นัในคลาส

สรา้ง Object ใชช้ื่อคลาสเป็นชนิดขอ้มลู ประกาศตวัแปร object

ก าหนดค่า Attribute ใช ้dot operator เขา้ถงึและก าหนดค่า attribute

เรยีกใชง้าน Method ใช ้dot operator เรยีกฟังกช์นัภายใน object

การประกาศและใช้งาน class และ object ใน C++ แบบเจาะลึก

การประกาศและใช้งาน Class และ Object ใน C++ (เชิงลึก) พร้อม UML

1. แนวคิดเบือ้งต้น: Class และ Object

 Class คอื แบบแผน (Blueprint) ส าหรบัสรา้งออ็บเจกต ์(Object)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 60

 ก าหนดขอ้มลู (Attributes) และพฤตกิรรม (Methods) ทีอ่อ็บเจกตจ์ะม ี
 Object คอื instance ของ class ทีม่สีถานะขอ้มลูและพฤตกิรรมของตวัเอง

เปรยีบเสมอืน แม่พิมพ ์(Class) กบั สินค้าท่ีถกูผลิต (Object)

2. การประกาศ Class ใน C++
Syntax
class ClassName {
 access_specifier:
 // Attributes (ตวัแปร)
 // Methods (ฟังกช์นั)
};

 access_specifier: ระบุระดบัการเขา้ถงึของสมาชกิ (เชน่ public, private)
 ถ้าไม่ระบุ default จะเป็น private
 สมาชกิ (attributes/methods) ทีเ่ป็น public จะสามารถถกูเรยีกจากภายนอกได ้

ตวัอย่างประกาศ Class Person
class Person {
public: // เปิดใหเ้ขา้ถงึไดทุ้กที ่
 string name; // Attribute ชื่อ name
 int age; // Attribute ชื่อ age

 void sayHello() { // Method พดูทกัทาย
 cout << "Hello, my name is " << name << ", age " << age << endl;
 }
};

3. การสร้าง Object จาก Class

 ใชช้ื่อ class เป็นชนิดขอ้มลู แลว้ประกาศตวัแปร object
 ทุก object มขีอ้มลู attribute ของตวัเองแยกจาก object อื่น ๆ

ตวัอย่าง
Person p1; // สรา้ง object p1
Person p2; // สรา้ง object p2

4. การใช้งาน Object

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 61

 ใช ้dot operator (.) เพื่อเขา้ถงึ attributes และ methods
 แต่ละ object สามารถเกบ็ขอ้มลูแตกต่างกนัได ้

ตวัอย่าง
p1.name = "Alice";
p1.age = 30;
p1.sayHello();

p2.name = "Bob";
p2.age = 25;
p2.sayHello();

5. ตวัอย่างโปรแกรมเตม็
#include <iostream>
using namespace std;

class Person {
public:
 string name;
 int age;

 void sayHello() {
 cout << "Hello, my name is " << name << ", age " << age << endl;
 }
};

int main() {
 Person p1;
 p1.name = "Alice";
 p1.age = 30;
 p1.sayHello();

 Person p2;
 p2.name = "Bob";
 p2.age = 25;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 62

 p2.sayHello();

 return 0;
}

6. UML Class Diagram ของ Person
+-------------------------+
| Person |
+-------------------------+
| + name: string |
| + age: int |
+-------------------------+
| + sayHello(): void |
+-------------------------+

 + หมายถงึ public
 แสดง attributes และ methods ที ่class ม ี

7. ความเข้าใจเชิงลึกเพ่ิมเติม

ประเดน็ รายละเอียด

Class เป็นแบบ
แผน

Class เพยีงแค่เป็นแม่แบบ ไม่มหีน่วยความจ าถูกจดัสรรจนกวา่จะสรา้ง Object

Object เป็น
Instance

Object คอืหน่วยความจ าทีถู่กจดัสรรตามแบบของ class มสีถานะขอ้มลู
(attributes) ของตวัเอง

Dot operator (.) ใชเ้ขา้ถงึสมาชกิ (attributes/methods) ของ object

หลาย Object
เราสามารถสรา้ง object หลายตวัจาก class เดยีว แต่ละตวัเกบ็สถานะขอ้มลู
ต่างกนั

Encapsulation
ควรซ่อนขอ้มลู (private) และเขา้ถงึผ่าน public methods (getter/setter) เพื่อ
ควบคุมความปลอดภยั

8. การขยายความ: Access Specifier
class Person {
private:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 63

 string name; // ซ่อนจากภายนอก
public:
 int age;

 void setName(string n) { name = n; }
 string getName() { return name; }
};

 name เป็น private ไม่สามารถเขา้ถงึโดยตรงจาก object ได ้
 ตอ้งใช ้method public ในการอ่าน/เขยีนขอ้มลูแทน

9. UML Class Diagram พร้อม Access Specifier
+----------------------------+
| Person |
+----------------------------+
| - name: string |
| + age: int |
+----------------------------+
| + setName(n: string) |
| + getName(): string |
| + sayHello(): void |
+----------------------------+

สรปุ

ขัน้ตอน สาระส าคญั

ประกาศ Class ก าหนดแบบแผน ม ีAttributes และ Methods

สรา้ง Object ประกาศตวัแปรชนิด class เพื่อสรา้ง instance ใหม ่

ก าหนดค่า Attribute ใช ้dot operator ก าหนดค่า attribute ของ object

เรยีก Method ใช ้dot operator เรยีก method ที ่class ก าหนด

ใช ้Access Specifier ควบคุมการเขา้ถงึขอ้มลูภายใน class (public/private)

ตวัอย่างโปรแกรม: ระบบจดัการบุคคล (Person Management)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 64

1. โจทย ์
สรา้งโปรแกรมจดัการขอ้มลูบุคคลโดยใชค้ลาส Person โดยขอ้มลูแต่ละคนม ี

 ชื่อ (name)
 อาย ุ(age)

โปรแกรมตอ้งสามารถ
 ก าหนดชื่อและอายใุหก้บับุคคล
 แสดงขอ้มลูบุคคลออกทางหน้าจอ

2. UML Class Diagram
+----------------------------+
| Person |
+----------------------------+
| - name: string | // ขอ้มลูส่วนตวัเกบ็แบบ private
| - age: int |
+----------------------------+
| + setName(n: string) | // ก าหนดชื่อ
| + getName(): string | // อ่านชื่อ
| + setAge(a: int) | // ก าหนดอายุ
| + getAge(): int | // อ่านอายุ
| + displayInfo(): void | // แสดงขอ้มลู
+----------------------------+

3. โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Person {
private:
 string name; // เกบ็ชื่อ (private ซ่อนขอ้มลู)
 int age; // เกบ็อายุ

public:
 // Setter ส าหรบัชื่อ
 void setName(string n) {

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 65

 name = n;
 }

 // Getter ส าหรบัชื่อ
 string getName() {
 return name;
 }

 // Setter ส าหรบัอาย ุ
 void setAge(int a) {
 if(a >= 0) { // ตรวจสอบใหค้่ามคีวามถูกตอ้ง
 age = a;
 }
 }

 // Getter ส าหรบัอาย ุ
 int getAge() {
 return age;
 }

 // แสดงขอ้มลูบุคคล
 void displayInfo() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 Person p1; // สรา้ง Object p1 จากคลาส Person
 p1.setName("Alice"); // ก าหนดชื่อผ่าน setter
 p1.setAge(28); // ก าหนดอายผุ่าน setter

 Person p2; // สรา้ง Object p2
 p2.setName("Bob");
 p2.setAge(35);

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 66

 // แสดงขอ้มลูบุคคลทัง้สองคน
 p1.displayInfo();
 p2.displayInfo();

 return 0;
}

4. ผลการรนัโปรแกรม
Name: Alice, Age: 28
Name: Bob, Age: 35

5. ค าอธิบายแทรก

 คลาส Person ก าหนดขอ้มลูส่วนตวั name และ age เป็น private เพื่อซ่อนขอ้มลูจากภายนอก
 สรา้งเมธอด setter และ getter เพื่อควบคุมการเขา้ถงึและป้องกนัขอ้มลูเสยีหาย

(Encapsulation)
 เมธอด displayInfo() ใชแ้สดงขอ้มลูทีเ่กบ็อยูใ่นออ็บเจกต ์
 ใน main() สรา้งออ็บเจกต ์2 ตวั (p1 กบั p2) แต่ละตวัเกบ็ขอ้มลูคนละชุด
 เรยีกใชเ้มธอดเพื่อก าหนดและแสดงขอ้มลูตามล าดบั

ตวัอยา่งโปรแกรม 5 ชุด แบบครบทัง้ โจทย ์+ UML + โคด้ C++ พรอ้มค าอธบิายแทรก + ผลการรนั

ตวัอย่างโปรแกรม 1 - ระบบจดัการบคุคล (Person Management)

โจทย ์
สรา้งคลาส Person เกบ็ชื่อและอาย ุพรอ้มแสดงขอ้มลูออกทางหน้าจอ

UML Class Diagram
+----------------------------+
| Person |
+----------------------------+
| - name: string |
| - age: int |
+----------------------------+

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 67

| + setName(n: string) |
| + getName(): string |
| + setAge(a: int) |
| + getAge(): int |
| + displayInfo(): void |
+----------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Person {
private:
 string name;
 int age;

public:
 void setName(string n) { name = n; }
 string getName() { return name; }
 void setAge(int a) { if(a >= 0) age = a; }
 int getAge() { return age; }
 void displayInfo() { cout << "Name: " << name << ", Age: " << age << endl; }
};

int main() {
 Person p1;
 p1.setName("Alice");
 p1.setAge(28);

 Person p2;
 p2.setName("Bob");
 p2.setAge(35);

 p1.displayInfo();

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 68

 p2.displayInfo();

 return 0;
}

ผลการรนั
Name: Alice, Age: 28
Name: Bob, Age: 35

ตวัอย่างโปรแกรม 2 - ระบบบญัชีธนาคาร (Bank Account)

โจทย ์
สรา้งคลาส BankAccount มเีลขทีบ่ญัชแีละยอดเงนิ พรอ้มฝากและถอนเงนิได ้

UML Class Diagram
+------------------------------+
| BankAccount |
+------------------------------+
| - accountNumber: string |
| - balance: double |
+------------------------------+
| + deposit(amount: double) |
| + withdraw(amount: double) |
| + getBalance(): double |
| + setAccountNumber(acc: string) |
| + getAccountNumber(): string |
+------------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class BankAccount {
private:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 69

 string accountNumber;
 double balance;

public:
 BankAccount() { balance = 0; } // Constructor ก าหนดยอดเงนิเริม่ตน้เป็น 0

 void setAccountNumber(string acc) { accountNumber = acc; }
 string getAccountNumber() { return accountNumber; }

 void deposit(double amount) {
 if(amount > 0) balance += amount;
 }

 void withdraw(double amount) {
 if(amount > 0 && amount <= balance) balance -= amount;
 else cout << "Insufficient balance!" << endl;
 }

 double getBalance() { return balance; }
};

int main() {
 BankAccount acc1;
 acc1.setAccountNumber("123456789");
 acc1.deposit(1000);
 acc1.withdraw(300);
 cout << "Account " << acc1.getAccountNumber() << " balance: " << acc1.getBalance() <<
endl;

 acc1.withdraw(800); // เกนิยอดเงนิจะมขีอ้ความเตอืน

 return 0;
}

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 70

ผลการรนั
Account 123456789 balance: 700
Insufficient balance!

ตวัอย่างโปรแกรม 3 - ระบบรถยนต ์(Car)

โจทย ์
สรา้งคลาส Car มยีีห่อ้, รุ่น, และปีผลติ พรอ้มฟังกช์นัแสดงขอ้มลูรถ

UML Class Diagram
+--------------------------+
| Car |
+--------------------------+
| - brand: string |
| - model: string |
| - year: int |
+--------------------------+
| + setBrand(b: string) |
| + setModel(m: string) |
| + setYear(y: int) |
| + displayCarInfo(): void |
+--------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Car {
private:
 string brand;
 string model;
 int year;

public:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 71

 void setBrand(string b) { brand = b; }
 void setModel(string m) { model = m; }
 void setYear(int y) { year = y; }

 void displayCarInfo() {
 cout << "Car: " << brand << " " << model << " (" << year << ")" << endl;
 }
};

int main() {
 Car car1;
 car1.setBrand("Toyota");
 car1.setModel("Corolla");
 car1.setYear(2020);
 car1.displayCarInfo();

 Car car2;
 car2.setBrand("Honda");
 car2.setModel("Civic");
 car2.setYear(2018);
 car2.displayCarInfo();

 return 0;
}

ผลการรนั
Car: Toyota Corolla (2020)
Car: Honda Civic (2018)

ตวัอย่างโปรแกรม 4 - ระบบสินค้า (Product)

โจทย ์
สรา้งคลาส Product เกบ็รหสัสนิคา้, ชื่อสนิคา้, และราคาสนิคา้ พรอ้มแสดงขอ้มลูสนิคา้

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 72

UML Class Diagram
+------------------------------+
| Product |
+------------------------------+
| - productID: string |
| - productName: string |
| - price: double |
+------------------------------+
| + setProductID(id: string) |
| + setProductName(name: string) |
| + setPrice(p: double) |
| + displayProduct(): void |
+------------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Product {
private:
 string productID;
 string productName;
 double price;

public:
 void setProductID(string id) { productID = id; }
 void setProductName(string name) { productName = name; }
 void setPrice(double p) { if(p >= 0) price = p; }

 void displayProduct() {
 cout << "Product ID: " << productID << ", Name: " << productName << ", Price: $" <<
price << endl;
 }
};

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 73

int main() {
 Product prod;
 prod.setProductID("P1001");
 prod.setProductName("Laptop");
 prod.setPrice(1500.75);
 prod.displayProduct();

 return 0;
}

ผลการรนั
Product ID: P1001, Name: Laptop, Price: $1500.75

ตวัอย่างโปรแกรม 5 - ระบบนักเรียน (Student)

โจทย ์
สรา้งคลาส Student เกบ็รหสันกัเรยีน, ชื่อ, และเกรดเฉลีย่ พรอ้มฟังกช์นัแสดงผลและตรวจสอบสถานะ
ผ่าน/ไมผ่่าน

UML Class Diagram
+--------------------------------+
| Student |
+--------------------------------+
| - studentID: string |
| - name: string |
| - gpa: double |
+--------------------------------+
| + setStudentID(id: string) |
| + setName(n: string) |
| + setGPA(g: double) |
| + displayStudent(): void |
| + isPassed(): bool |
+--------------------------------+

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 74

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Student {
private:
 string studentID;
 string name;
 double gpa;

public:
 void setStudentID(string id) { studentID = id; }
 void setName(string n) { name = n; }
 void setGPA(double g) { if(g >= 0 && g <= 4.0) gpa = g; }

 void displayStudent() {
 cout << "Student ID: " << studentID << ", Name: " << name << ", GPA: " << gpa;
 if(isPassed())
 cout << " (Passed)" << endl;
 else
 cout << " (Failed)" << endl;
 }

 bool isPassed() {
 return gpa >= 2.0;
 }
};

int main() {
 Student s1;
 s1.setStudentID("S001");
 s1.setName("John");
 s1.setGPA(3.5);

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 75

 s1.displayStudent();

 Student s2;
 s2.setStudentID("S002");
 s2.setName("Mary");
 s2.setGPA(1.8);
 s2.displayStudent();

 return 0;
}

ผลการรนั
Student ID: S001, Name: John, GPA: 3.5 (Passed)
Student ID: S002, Name: Mary, GPA: 1.8 (Failed)

Constructor และ Destructor ใน C++

1. Constructor คืออะไร?

 เป็นฟังกช์นัพเิศษทีช่ ื่อเหมอืนกบัชื่อคลาส
 ถูกเรยีกโดยอตัโนมตั ิเม่ือมีการสร้าง (instantiate) object
 ใชส้ าหรบั ก าหนดค่าเร่ิมต้น ใหก้บั attributes ของ object
 สามารถม ีหลาย constructor (constructor overloading) ได ้โดยมพีารามเิตอรต่์างกนั
 ไม่มชีนิดขอ้มลูคนืค่า (ไม่ม ีvoid หรอืค่าอื่น)
 ถ้าไม่เขยีน constructor โปรแกรมจะสรา้ง constructor ปรยิาย (default constructor) ใหโ้ดย

อตัโนมตั ิ

2. Destructor คืออะไร?

 เป็นฟังกช์นัพเิศษทีช่ ื่อเหมอืนกบัชื่อคลาส แต่มเีครื่องหมาย ~ น าหน้า
 ถูกเรยีกโดยอตัโนมตั ิเม่ือ object ถกูท าลาย (destroyed) เช่น เมื่อออกจาก scope หรอืถูก

delete
 ใชส้ าหรบั เคลียรท์รพัยากรท่ี object ใช้ เช่น memory, file, connection
 ไม่มพีารามเิตอรแ์ละไม่มคี่าคนื
 มเีพยีงหนึ่ง destructor ต่อคลาสเท่านัน้ (ไมม่ ีoverloading)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 76

3. ตวัอย่างโค้ดประกอบ Constructor และ Destructor
#include <iostream>
using namespace std;

class Person {
private:
 string name;
 int age;

public:
 // Constructor แบบมพีารามเิตอร ์
 Person(string n, int a) {
 name = n;
 age = a;
 cout << "Constructor called for " << name << endl;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 Person p1("Alice", 30);
 p1.display();

 {
 Person p2("Bob", 25);
 p2.display();

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 77

 } // p2 ออกจาก scope ทีน่ี่ destructor จะถูกเรยีก

 cout << "End of main()" << endl;
 return 0;
}

4. ผลการรนัโปรแกรม
Constructor called for Alice
Name: Alice, Age: 30
Constructor called for Bob
Name: Bob, Age: 25
Destructor called for Bob
End of main()
Destructor called for Alice

5. ค าอธิบายแทรก

 ตอนสรา้ง p1 เรยีก constructor และก าหนดชื่อและอาย ุ
 p1.display() แสดงขอ้มลู
 ในบลอ็ก { ... } สรา้ง p2 และเรยีก constructor
 เมื่อบลอ็กจบ p2 ออกจาก scope จงึเรยีก destructor ของ p2
 เมื่อโปรแกรมจบ จะเรยีก destructor ของ p1 อตัโนมตั ิ
 Constructor ใชก้ าหนดค่าเริม่ตน้
 Destructor ใชป้ล่อยทรพัยากรหรอืจดัการงานท าความสะอาด

6. Constructor แบบ Default และ Overloading
class Person {
private:
 string name;
 int age;

public:
 // Default constructor
 Person() {
 name = "Unknown";

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 78

 age = 0;
 cout << "Default constructor called" << endl;
 }

 // Parameterized constructor (Overloading)
 Person(string n, int a) {
 name = n;
 age = a;
 cout << "Parameterized constructor called for " << name << endl;
 }

 ~Person() {
 cout << "Destructor called for " << name << endl;
 }
};

7. สรปุ

หวัข้อ รายละเอียด

Constructor ฟังกช์นัพเิศษเรยีกตอนสรา้ง object ใชก้ าหนดค่าเริม่ตน้ ไม่มคี่าคนื ชื่อเหมอืนคลาส

Destructor
ฟังกช์นัพเิศษเรยีกตอนท าลาย object ใชป้ล่อยทรพัยากร ชื่อเหมอืนคลาสแต่ม ี~ หน้า
ไม่มพีารามเิตอรแ์ละค่าคนื

Overloading Constructor สามารถมหีลายแบบได ้โดยต่างพารามเิตอร ์

Scope Destructor เรยีกตอน object ออกจาก scope หรอืถูก delete

Constructor และ Destructor ใน C++ แบบเชิงลึก

Constructor และ Destructor ใน C++ (เชิงลึก) พร้อม UML

1. Constructor (ตวัสร้าง)
1.1 ลกัษณะส าคญั

 ชื่อเหมอืนกบัชื่อคลาส
 ไม่มชีนิดขอ้มลูคนืค่า (ไม่ตอ้งใส่ void หรอือื่น ๆ)

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 79

 ถูกเรยีกโดยอตัโนมตัเิมื่อสรา้งออ็บเจกต ์(object instantiation)
 ใชส้ าหรบั ก าหนดค่าเร่ิมต้น ใหก้บัออ็บเจกต ์เช่น ก าหนดค่าเริม่ตน้ให ้attributes หรอืจอง

resource ทีจ่ าเป็น
 สามารถม ีหลาย constructor (constructor overloading) ดว้ยพารามเิตอรต่์างกนัเพื่อความ

ยดืหยุน่ในการสรา้งออ็บเจกต ์
1.2 รปูแบบ Constructor

ชนิด Constructor ค าอธิบาย ตวัอย่าง

Default Constructor
ไม่มพีารามเิตอร ์ใชส้รา้ง object แบบไม่มี
ขอ้มลูเริม่ตน้

Person()

Parameterized
Constructor

รบัพารามเิตอรเ์พื่อก าหนดค่าเริม่ตน้
Person(string name, int
age)

Copy Constructor
รบัออ็บเจกตต์วัอื่นมาเป็นพารามเิตอร ์เพื่อ
สรา้งส าเนา

Person(const Person &p)

1.3 ตวัอย่าง Constructor Overloading
class Person {
private:
 string name;
 int age;

public:
 Person() { // Default constructor
 name = "Unknown";
 age = 0;
 }

 Person(string n, int a) { // Parameterized constructor
 name = n;
 age = a;
 }

 Person(const Person &p) { // Copy constructor
 name = p.name;
 age = p.age;

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 80

 }
};

2. Destructor (ตวัท าลาย)
2.1 ลกัษณะส าคญั

 ชื่อเหมอืนชื่อคลาสแต่ม ี~ น าหน้า เช่น ~Person()
 ไม่มพีารามเิตอรแ์ละไม่มคี่าคนื
 เรยีกโดยอตัโนมตั ิเม่ือออ็บเจกตถ์กูท าลาย (เช่น เมื่อออกจาก scope, delete pointer)
 ใชส้ าหรบั ปล่อยทรพัยากร เช่น memory, ไฟล,์ หรอืการเชื่อมต่อทีเ่ปิดไว ้
 มเีพยีง 1 destructor ต่อคลาส (ไม่มกีาร overloading)

2.2 ท าไมต้องมี Destructor?
ถ้าใช ้dynamic memory (เช่น new), ตอ้งใช ้destructor เพื่อ delete ทรพัยากรนัน้ มฉิะนัน้จะเกดิ
memory leak (หน่วยความจ าร ัว่)

3. UML Class Diagram ตวัอย่าง
+------------------------------------+
| Person |
+------------------------------------+
| - name: string |
| - age: int |
+------------------------------------+
| + Person() | <<default constructor>>
| + Person(n: string, a: int) | <<parameterized constructor>>
| + Person(p: Person) | <<copy constructor>>
| + ~Person() | <<destructor>>
| + display(): void |
+------------------------------------+

4. ตวัอย่างโค้ดพร้อม Constructor และ Destructor
#include <iostream>
using namespace std;

class Person {
private:

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 81

 string name;
 int age;

public:
 // Default constructor
 Person() {
 name = "Unknown";
 age = 0;
 cout << "Default constructor called" << endl;
 }

 // Parameterized constructor
 Person(string n, int a) {
 name = n;
 age = a;
 cout << "Parameterized constructor called for " << name << endl;
 }

 // Copy constructor
 Person(const Person &p) {
 name = p.name;
 age = p.age;
 cout << "Copy constructor called for " << name << endl;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 82

int main() {
 Person p1; // เรยีก default constructor
 p1.display();

 Person p2("Alice", 30); // เรยีก parameterized constructor
 p2.display();

 Person p3 = p2; // เรยีก copy constructor
 p3.display();

 return 0;
}

5. ผลการรนัโปรแกรม (Output)
Default constructor called
Name: Unknown, Age: 0
Parameterized constructor called for Alice
Name: Alice, Age: 30
Copy constructor called for Alice
Name: Alice, Age: 30
Destructor called for Alice
Destructor called for Alice
Destructor called for Unknown

6. การท างานเชิงลึก

 Constructor จะช่วยใหเ้ราสรา้งออ็บเจกตไ์ดอ้ยา่งปลอดภยัและสะดวก เพราะก าหนดค่าเริม่ตน้
ทีเ่หมาะสมทนัท ี

 Copy constructor ส าคญัในการสรา้งส าเนาของ object แบบ deep copy (ถ้าตอ้งใช ้pointer
ภายใน class)

 Destructor เป็นจุดส าคญัในการจดัการ resource lifecycle โดยเฉพาะ resource ทีไ่มไ่ดถู้ก
จดัการอตัโนมตั ิ(เช่น memory)

 การเรยีก constructor และ destructor เป็นไปโดยอตัโนมตั ิจงึช่วยลดความผดิพลาดและความ
ยุง่ยากในการจดัการหน่วยความจ า

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 83

 C++ รองรบั constructor overloading เพื่อรองรบัสถานการณ์ต่าง ๆ ในการสรา้ง object

7. ข้อควรระวงั

 หาก class ม ีpointer ชีไ้ปยงั memory ที ่dynamic allocate จ าเป็นตอ้งเขยีน copy
constructor และ destructor เพื่อจดัการ memory อยา่งถูกตอ้ง

 ถ้าไม่เขยีน copy constructor เอง จะเกดิ shallow copy ทีอ่าจท าใหเ้กดิปัญหา double delete
หรอื memory corruption

 การใช ้smart pointer (เช่น std::unique_ptr) ช่วยลดภาระการเขยีน destructor เอง

นี่คอืตวัอยา่งโปรแกรมทีใ่ช ้Constructor และ Destructor โดยแสดงครบทัง้

 โจทย ์
 UML Class Diagram
 โคด้ C++ พรอ้มค าอธบิายแทรก
 ผลการรนั

ตวัอย่างโปรแกรม: คลาส Person ใช้ Constructor และ Destructor

1. โจทย ์
สรา้งคลาส Person ที ่

 มขีอ้มลูชื่อ (name) และอาย ุ(age)
 ใช ้Constructor เพื่อก าหนดค่าเริม่ตน้ตอนสรา้ง object
 ใช ้Destructor เพื่อแสดงขอ้ความเมื่อ object ถูกท าลาย
 มฟัีงกช์นัแสดงขอ้มลูชื่อและอาย ุ

2. UML Class Diagram
+----------------------------+
| Person |
+----------------------------+
| - name: string |
| - age: int |
+----------------------------+
| + Person() | <<Default Constructor>>
| + Person(n: string, a: int)| <<Parameterized Constructor>>
| + ~Person() | <<Destructor>>

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 84

| + display(): void |
+----------------------------+

3. โค้ด C++ พร้อมค าอธิบายแทรก
#include <iostream>
using namespace std;

class Person {
private:
 string name;
 int age;

public:
 // Default constructor
 Person() {
 name = "Unknown";
 age = 0;
 cout << "Default constructor called" << endl;
 }

 // Parameterized constructor
 Person(string n, int a) {
 name = n;
 age = a;
 cout << "Parameterized constructor called for " << name << endl;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 // ฟังกช์นัแสดงขอ้มลู
 void display() {

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 85

 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 Person p1; // เรยีก Default constructor
 p1.display();

 Person p2("Alice", 30); // เรยีก Parameterized constructor
 p2.display();

 {
 Person p3("Bob", 25); // สรา้ง object ใน scope ยอ่ย
 p3.display();
 } // p3 ออกจาก scope => destructor ถูกเรยีก

 cout << "End of main()" << endl;

 return 0;
}

4. ผลการรนัโปรแกรม
Default constructor called
Name: Unknown, Age: 0
Parameterized constructor called for Alice
Name: Alice, Age: 30
Parameterized constructor called for Bob
Name: Bob, Age: 25
Destructor called for Bob
End of main()
Destructor called for Alice
Destructor called for Unknown

5. ค าอธิบายแทรก

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 86

 เมื่อสรา้ง p1 ไม่มพีารามเิตอร ์จงึเรยีก Default constructor ก าหนดค่าเริม่ตน้ "Unknown"
และ 0

 เมื่อสรา้ง p2 ส่งพารามเิตอร ์"Alice" และ 30 จงึเรยีก Parameterized constructor
 ตวัแปร p3 สรา้งในบลอ็ก {...} พอจบบลอ็ก p3 จะถูกท าลายและเรยีก Destructor ทนัท ี
 เมื่อ main() จบ จะเรยีก Destructor ของ p1 และ p2 ตามล าดบัอตัโนมตั ิ
 การใช ้Constructor และ Destructor ช่วยจดัการค่าเริม่ตน้และการท าความสะอาดออ็บเจกตไ์ด้

อยา่งอตัโนมตัแิละปลอดภยั

ตวัอยา่งโปรแกรม 5 ชุด ทีใ่ช ้Constructor และ Destructor พรอ้ม

 โจทย ์
 UML Class Diagram
 โคด้ C++ พรอ้มอธบิายแทรก
 ผลการรนั

มาใหค้รบทุกโปรแกรม

โปรแกรมท่ี 1: คลาส Person (ใช้ Constructor และ Destructor)

โจทย ์
สรา้งคลาส Person ทีเ่กบ็ชื่อและอาย ุใช ้Constructor ก าหนดค่าเริม่ตน้ และ Destructor แสดงขอ้ความ
เมื่อ object ถูกท าลาย

UML Class Diagram
+----------------------------+
| Person |
+----------------------------+
| - name: string |
| - age: int |
+----------------------------+
| + Person() |
| + Person(n: string, a: int)|
| + ~Person() |
| + display(): void |
+----------------------------+

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 87

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Person {
private:
 string name;
 int age;

public:
 Person() { // Default constructor
 name = "Unknown";
 age = 0;
 cout << "Default constructor called" << endl;
 }
 Person(string n, int a) { // Parameterized constructor
 name = n;
 age = a;
 cout << "Parameterized constructor called for " << name << endl;
 }
 ~Person() { // Destructor
 cout << "Destructor called for " << name << endl;
 }
 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 Person p1;
 p1.display();

 Person p2("Alice", 30);
 p2.display();

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 88

 {
 Person p3("Bob", 25);
 p3.display();
 } // p3 ออกจาก scope destructor ถูกเรยีก

 cout << "End of main()" << endl;
 return 0;
}

ผลการรนั
Default constructor called
Name: Unknown, Age: 0
Parameterized constructor called for Alice
Name: Alice, Age: 30
Parameterized constructor called for Bob
Name: Bob, Age: 25
Destructor called for Bob
End of main()
Destructor called for Alice
Destructor called for Unknown

โปรแกรมท่ี 2: คลาส BankAccount

โจทย ์
สรา้งคลาส BankAccount ทีเ่กบ็เลขบญัชแีละยอดเงนิ ใช ้Constructor ก าหนดเลขบญัชแีละยอดเงนิ
เริม่ตน้ มฟัีงกช์นัฝากและถอนเงนิ และ Destructor แสดงขอ้ความเมื่อท าลาย object

UML Class Diagram
+------------------------------+
| BankAccount |
+------------------------------+
| - accountNumber: string |
| - balance: double |

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 89

+------------------------------+
| + BankAccount(acc: string, bal: double) |
| + deposit(amount: double) |
| + withdraw(amount: double) |
| + getBalance(): double |
| + ~BankAccount() |
+------------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class BankAccount {
private:
 string accountNumber;
 double balance;

public:
 BankAccount(string acc, double bal) {
 accountNumber = acc;
 balance = bal;
 cout << "BankAccount constructor for account " << accountNumber << endl;
 }

 void deposit(double amount) {
 if(amount > 0) balance += amount;
 }

 void withdraw(double amount) {
 if(amount > 0 && amount <= balance)
 balance -= amount;
 else
 cout << "Insufficient funds!" << endl;
 }

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 90

 double getBalance() {
 return balance;
 }

 ~BankAccount() {
 cout << "BankAccount destructor for account " << accountNumber << endl;
 }
};

int main() {
 BankAccount acc1("123456", 1000);
 acc1.deposit(500);
 acc1.withdraw(200);
 cout << "Balance: " << acc1.getBalance() << endl;

 return 0;
}

ผลการรนั
BankAccount constructor for account 123456
Balance: 1300
BankAccount destructor for account 123456

โปรแกรมท่ี 3: คลาส Car

โจทย ์
สรา้งคลาส Car เกบ็ยีห่อ้ รุ่น และปีผลติ ใช ้Constructor ก าหนดค่าเริม่ตน้ มฟัีงกช์นัแสดงขอ้มลูรถ และ
Destructor

UML Class Diagram
+---------------------------+
| Car |
+---------------------------+

ศูนยห์นงัสือราคานกัเรียน

C++ OOP Professional หนา้ 91

| - brand: string |
| - model: string |
| - year: int |
+---------------------------+
| + Car(b: string, m: string, y: int) |
| + display(): void |
| + ~Car() |
+---------------------------+

โค้ด C++ พร้อมอธิบายแทรก
#include <iostream>
using namespace std;

class Car {
private:
 string brand;
 string model;
 int year;

public:
 Car(string b, string m, int y) {
 brand = b;
 model = m;
 year = y;
 cout << "Car constructor called for " << brand << endl;
 }

 void display() {
 cout << "Car: " << brand << " " << model << " (" << year << ")" << endl;
 }

 ~Car() {
 cout << "Car destructor called for " << brand << endl;
 }

	FP
	0_คำนำ
	0_สารบัญ
	1_บทนำ
	2_แนวคิดพื้นฐานของ OOP
	3_การสร้างคลาสและวัตถุ

