

ค ำน ำ

เมื่อผูเ้รยีนกา้วขา้มระดบัพืน้ฐานและระดบักลางของการเขยีนโปรแกรมมาแลว้ การพฒันาทกัษะ
ในระดบัสงูยอ่มเป็นเป้าหมายต่อไปทีส่ าคญัอยา่งยิง่ โดยเฉพาะในภาษา C++ ซึ่งเป็นภาษาที่มพีลงัและ
ยดืหยุน่สงูในเชงิโครงสรา้ง หนงัสอืเล่มนี้จดัท าขึน้เพื่อเป็นคู่มอืในการเรยีนรูแ้นวคดิและเทคนิคระดบัสูง
ทีจ่ าเป็นต่อการพฒันาโปรแกรมทีม่คีวามซบัซอ้น มปีระสทิธภิาพ และสามารถดแูลรกัษาไดใ้นระยะยาว

เริ่มต้นด้วย แนวคิดเชิงวตัถ ุ(Object-Oriented Programming) ซึ่งเป็นพื้นฐานในการ
ออกแบบซอฟต์แวร์สมยัใหม่ โดยผู้เรยีนจะได้ศกึษาการสร้าง class และ object การใช้งาน access
modifiers เพื่อควบคุมการเขา้ถึงขอ้มูล การเขยีน constructor และ destructor รวมถึงการใช้ this
pointer เพื่ออ้างองิวตัถุภายใน class ของตนเอง ก่อนจะต่อยอดไปยงั OOP ขัน้สูง ซึ่งประกอบด้วย
แนวคดิการสบืทอด (Inheritance), พหุนิยม (Polymorphism), ฟังกช์นัเสมอืน (Virtual Functions), และ
คลาสนามธรรม (Abstract Class) ตลอดจนการห่อหุม้ขอ้มลู (Encapsulation) และการซ่อนรายละเอยีด
การท างานภายในวตัถุ

เนื้อหาถดัไปคอื เทมเพลต (Template) ซึ่งเป็นเครื่องมอืส าคญัของ C++ ที่ช่วยให้เขยีนโค้ด
แบบทัว่ไป (Generic Programming) ได้อย่างมปีระสทิธภิาพ ไม่ว่าจะเป็น function templates หรอื
class templates ซึง่ช่วยให้สามารถน าโค้ดเดยีวกนัไปใช้ซ ้ากบัหลายชนิดขอ้มูลได้อย่างปลอดภยัและ
ยดืหยุ่น ตามด้วย กำรจดักำรข้อผิดพลำด (Exception Handling) ที่มบีทบาทส าคญัในการสร้าง
โปรแกรมที่เสถียร โดยผู้อ่านจะได้ฝึกใช้ try, catch, throw และการสร้าง exception class ของตนเอง
เพื่อรองรบัสถานการณ์ทีไ่ม่คาดคดิ

ท้ายที่สุด หนังสือเล่มนี้จะพาผู้อ่านสู่ Standard Template Library (STL) ซึ่งเป็นคลงั
โครงสรา้งขอ้มลูและอลักอรธิมึทีท่รงพลงัใน C++ ครอบคลุม container ประเภทต่าง ๆ เช่น vector, list,
map, set, stack และ queue พร้อมทัง้วธิใีช้ iterators และฟังก์ชนัส าเรจ็รูปอย่าง sort(), find() รวมถึง
การประยกุต ์lambda function กบั STL เพื่อเขยีนโคด้ทีก่ระชบั ทนัสมยั และมปีระสทิธภิาพสงู

ผูเ้ขยีนหวงัเป็นอยา่งยิง่วา่หนงัสอืเล่มนี้จะช่วยเสรมิสร้างความเขา้ใจเชงิลกึในแนวคดิระดบัสูง
ของภาษา C++ และเปิดประตสูู่การพฒันาโปรแกรมขนาดใหญ่ การท างานร่วมกบัทมี และการเขา้สู่โลก
ของซอฟตแ์วรใ์นระดบัมอือาชพีอยา่งมัน่ใจ

ดว้ยความปรารถนาด ี

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า

บทที ่11 การเขยีนโปรแกรมเชงิวตัถุ (Object-Oriented Programming) 1

 แนวคดิเชงิทฤษฎเีบือ้งตน้
 UML กบัการเขยีนโปรแกรมเชงิวตัถุ (OOP)
 ขยายเนื้อหา UML กบัการเขยีนโปรแกรมเชงิวตัถุ (OOP)
 การเขยีนโปรแกรมเชงิวตัถุ (OOP) ใน C++
 การเขยีนโปรแกรมเชงิวตัถุ (OOP) พรอ้มแสดงตวัอยา่ง UML
 การสรา้ง class และ object แบบละเอยีด พรอ้มเพิม่ UML Class Diagram
 การสรา้ง Class และ Object ในเชงิลกึ
 Access Modifiers ในการเขยีนโปรแกรมเชงิวตัถุ
 ขยายความเชงิลกึเรื่อง Access Modifiers ใน C++
 Constructor และ Destructor ในการเขยีนโปรแกรมเชงิวตัถุ
 อธบิายเชงิลกึเรื่อง Constructor และ Destructor ใน C++
 การใช ้this pointer ใน C++
 บรูณาการเนื้อหา การเขยีนโปรแกรมเชงิวตัถุ (OOP)

บทที ่12 OOP ขัน้สงู (OOP Advance) ... 87
 พืน้ฐาน OOP ขัน้สงู (Advanced Object-Oriented Programming)
 OOP ขัน้สงู (เชงิลกึ)
 Inheritance (การสบืทอด)
 Inheritance (การสบืทอด) – เชงิลกึ
 การประยกุตใ์ช ้Inheritance (การสบืทอด)
 Polymorphism (พอลมิอรฟิ์ซมึ)
 Polymorphism เชงิลกึ
 Virtual Function และ Abstract Class ใน C++
 Virtual Function และ Abstract Class ใน C++ เชงิลกึ
 Encapsulation และการซ่อนรายละเอยีด (Information Hiding)

 Encapsulation & Information Hiding: เจาะลกึเชงิลกึ
บทที ่13 เทมเพลต (Template) ... 99

 ความรูเ้บือ้งตน้เกีย่วกบัเทมเพลต (Template)
 C++ Template แบบเจาะลกึ
 Function Templates ใน C++ — อธบิายเชงิลกึ
 ตวัอยา่งแนวประยกุตใ์ชง้าน Function Templates ใน C++
 Template กบั Generic Programming
 Template กบั Generic Programming เชงิลกึ
 บรูณาการ Template กบั OOP โดยใช ้Class Template ร่วมกบั Inheritance
 แนวทางบรูณาการใชง้านเทมเพลต (Template Integration Approach)

บทที ่14 การจดัการขอ้ผดิพลาด (Exception Handling) .. 225
 การจดัการขอ้ผดิพลาด (Exception Handling) เบือ้งตน้
 การจดัการขอ้ผดิพลาด (Exception Handling) ใน C++ — เชงิลกึ
 การใชง้าน try, catch, throw ในภาษา C++
 การจดัการขอ้ผดิพลาด (Exception Handling) ใน C++ — เชงิลกึสุด
 การสรา้ง Exception Class เอง (Custom Exception Class)
 ขอ้มลูเชงิลกึ: การสรา้ง Exception Class เองใน C++
 แนวทางบรูณาการ Exception Handling เพื่อใชง้านจรงิ

บทที ่15 การใช ้Standard Template Library (STL).. 283
 พืน้ฐานการใช ้Standard Template Library (STL)
 Standard Template Library (STL) เชงิลกึ
 Containers ใน STL
 ตวัอยา่งบรูณาการ
 การใช ้iterators และ algorithms ใน C++ STL โดยละเอยีด
 ขยายเนื้อหาเกีย่วกบั Iterators และ Algorithms ใน STL เพิม่เตมิ
 การใช ้lambda function ร่วมกบั STL (Standard Template Library)
 ขยายความลกึของ การใช ้Lambda Function ร่วมกบั STL
 แนวทางประยกุตใ์ชง้านจรงิ ของหวัขอ้ การใช ้Standard Template Library (STL)

บรรณานุกรม ... 371

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 1

บทท่ี 11
การเขียนโปรแกรมเชิงวตัถ ุ

 (Object-Oriented Programming)

เน้ือหา

 แนวคดิเชงิทฤษฎเีบือ้งตน้
 UML กบัการเขยีนโปรแกรมเชงิวตัถุ (OOP)
 ขยายเนื้อหา UML กบัการเขยีนโปรแกรมเชงิวตัถุ (OOP)
 การเขยีนโปรแกรมเชงิวตัถุ (OOP) ใน C++
 การเขยีนโปรแกรมเชงิวตัถุ (OOP) พรอ้มแสดงตวัอยา่ง UML
 การสรา้ง class และ object แบบละเอยีด พรอ้มเพิม่ UML Class Diagram
 การสรา้ง Class และ Object ในเชงิลกึ
 Access Modifiers ในการเขยีนโปรแกรมเชงิวตัถุ
 ขยายความเชงิลกึเรื่อง Access Modifiers ใน C++
 Constructor และ Destructor ในการเขยีนโปรแกรมเชงิวตัถุ
 อธบิายเชงิลกึเรื่อง Constructor และ Destructor ใน C++
 การใช ้this pointer ใน C++
 บรูณาการเนื้อหา การเขยีนโปรแกรมเชงิวตัถุ (OOP)

บทน า
การเขยีนโปรแกรมเชงิวตัถุ (Object-Oriented Programming: OOP) เป็นแนวคดิที่ทรงพลงัในการ
ออกแบบและพฒันาซอฟต์แวร์ โดยเน้นการมองปัญหาและทางแก้ไขผ่าน “วตัถุ” ซึ่งมีคุณสมบัต ิ
(attributes) และพฤตกิรรม (behaviors) เป็นของตนเอง แนวคดินี้ช่วยให้โปรแกรมมโีครงสร้างชดัเจน
แยกส่วนได้ดี และง่ายต่อการบ ารุงร ักษา อีกทัง้ยงัสนับสนุนการ เขียนโค้ดแบบน ากลับมาใช้ซ ้า
(reusability) และการขยายระบบอยา่งมปีระสทิธภิาพ

การเริม่ตน้เรยีนรู ้OOP ในภาษา C++ มกัเริม่จากการสรา้ง class ซึง่เป็นแม่แบบของวตัถุ และ
การสร้าง object ซึ่งเป็นอนิสแตนซ์ของ class นัน้ ๆ โดย class จะก าหนดโครงสร้างของขอ้มูลและ
พฤตกิรรมที่เกี่ยวขอ้ง เช่น ฟังก์ชนัสมาชกิ (member functions) หรอืขอ้มูลภายใน (data members)
การใช ้class และ object เป็นจุดเริม่ตน้ส าคญัในการออกแบบโปรแกรมในเชงิวตัถุ

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 2

การควบคุมการเขา้ถึงขอ้มูลภายใน class เป็นอกีหวัใจส าคญัของ OOP ซึ่งสามารถจดัการได้
ผ่าน access modifiers ได้แก่ public, private, และ protected โดย public อนุญาตให้เขา้ถึงได้จาก
ภายนอก class ส่วน private จ ากดัการเขา้ถงึเฉพาะภายใน class และ protected ให้สทิธิก์บั class ลูก
ทีส่บืทอดมาเท่านัน้ การควบคุมนี้มบีทบาทในการซ่อนรายละเอยีด (information hiding) และสรา้งความ
ปลอดภยัใหก้บัขอ้มลู

การสรา้งและท าลาย object อยา่งเหมาะสมยงัเป็นอกีส่วนที่ส าคญั โดยมี constructor ส าหรบั
ก าหนดค่าเริม่ตน้เมื่อมกีารสรา้งวตัถุ และ destructor ส าหรบัท าความสะอาดเมื่อวตัถุหมดอายุการใช้
งาน การออกแบบ constructor หลายรูปแบบ (overloading) ช่วยให้การสร้าง object มคีวามยดืหยุ่น
และเหมาะสมกบัสถานการณ์ทีห่ลากหลาย

ทา้ยทีสุ่ด การใช ้this pointer ซึง่เป็นตวัชี้ไปยงั object ปัจจุบนัภายใน class ช่วยให้สามารถ
จดัการกบัขอ้มลูภายใน object ไดอ้ย่างชดัเจน โดยเฉพาะในกรณีที่ต้องการอ้างองิตวัแปรหรอืฟังก์ช ัน
ภายในตวัเอง บทนี้จะช่วยปพูืน้ฐานแนวคดิและการใชง้านองคป์ระกอบหลกัของ OOP เพื่อเตรยีมพร้อม
ส าหรบัการพฒันาโปรแกรมทีม่โีครงสรา้งด ีรองรบัการเตบิโต และน าไปสู่การเรยีนรูข้ ัน้สงูต่อไป

แนวคิดเชิงทฤษฎีเบื้องต้น

1. Encapsulation (การห่อหุ้ม)

 ช่วย ปกป้องข้อมลู ไม่ใหถู้กแกไ้ขโดยตรงจากภายนอก class เพื่อป้องกนัความผดิพลาดหรอื
การใชง้านผดิวธิ ี

 ส่งเสรมิการออกแบบ interface ทีช่ดัเจนผ่านเมธอด เช่น get และ set หรอื accessor/mutator
methods

 ตวัอย่างข้อดี:
o สามารถเปลีย่นแปลงโครงสรา้งขอ้มลูภายในไดโ้ดยไม่กระทบโคด้ทีใ่ชง้าน class นัน้
o ป้องกนัการเขา้ถงึขอ้มลูทีไ่ม่เหมาะสม เช่น หา้มตัง้ค่าค่าในช่วงทีไ่มถู่กตอ้ง

2. Abstraction (การซ่อนรายละเอียด)

 มุ่งเน้นให้ผู้ใช้โฟกสักบั “อะไร” มากกว่า “อย่างไร”
 ท าใหก้ารใชว้ตัถุเป็นเรื่องง่ายโดยไม่ตอ้งสนใจรายละเอยีดภายในซบัซอ้น
 เช่น ในภาษา C++ อาจใช ้abstract class หรอื interface เพื่อก าหนดฟังกช์นัทีต่อ้งใชโ้ดยไม่

ตอ้งระบุรายละเอยีดของการท างาน

3. Inheritance (การสืบทอด)

 ลดการเขยีนโคด้ซ ้า (code duplication) เพราะ subclass ไดร้บัทุกอยา่งจาก superclass

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 3

 สามารถเพิม่พฤตกิรรมใหม่ หรอื override พฤตกิรรมเดมิได ้(method overriding)
 ข้อควรระวงั:

o การสบืทอดทีไ่ม่เหมาะสมอาจท าใหโ้ครงสรา้งโปรแกรมซบัซอ้นและยากต่อการดแูล
รกัษา (Inheritance Hell)

o ควรออกแบบ class hierarchy อยา่งรอบคอบ

4. Polymorphism (พหรุปูร่าง)

 ช่วยใหโ้ปรแกรม “ยดืหยุน่” มากขึน้ เช่น ผ่าน virtual functions ใน C++ ท าใหส้ามารถ
เรยีกใชฟั้งกช์นัเดยีวกนัแต่มพีฤตกิรรมต่างกนัตาม object ทีเ่รยีก

 ม ี2 แบบหลกั
o Compile-time polymorphism (Function overloading, Operator overloading)
o Run-time polymorphism (Virtual functions, Abstract classes)

 ประโยชน์: สรา้งโคด้ทีเ่ขยีนในรปูแบบ generic มากขึน้ ลดการเขยีนโคด้ซ ้า

5. Constructor และ Destructor

 Constructor
o ฟังกช์นัพเิศษทีจ่ะถูกเรยีกโดยอตัโนมตัเิมื่อสรา้ง object
o ใชก้ าหนดค่าเริม่ตน้ หรอืเตรยีมตวั resource ต่าง ๆ ที ่object ตอ้งใช ้
o สามารถม ีconstructor หลายแบบ (overloading) เพื่อรองรบัการสรา้ง object ทีต่่างกนั

ได ้
 Destructor

o ฟังกช์นัพเิศษทีจ่ะถูกเรยีกเมื่อ object หมดอาย ุหรอืถูกลบ (เช่น ใช ้delete ใน C++)
o ใชส้ าหรบัคนื resource เช่น memory, file handles, database connections

6. this Pointer

 ตวัชีท้ ีช่ ีไ้ปยงั object ปัจจุบนัทีเ่รยีกใชง้าน method
 ใชเ้พื่อแกไ้ขความคลุมเครอื เช่น ในกรณีทีต่วัแปร parameter ชื่อซ ้ากบั attribute ของ class
 ช่วยให ้method สามารถเขา้ถงึ object ตวัเองไดอ้ยา่งชดัเจน

7. การออกแบบ Class ท่ีดี

 ควรม ีหน้าท่ีเดียว (Single Responsibility Principle)
 ขนาดของ class ไม่ควรใหญ่มากจนเกนิไป ควรแบ่ง class ใหม้หีน้าทีช่ดัเจน
 ใช ้Access Modifiers อยา่งเหมาะสมเพื่อควบคุมการเขา้ถงึขอ้มลูและพฤตกิรรม
 พจิารณาใช ้Composition แทนการสบืทอดเมื่อตอ้งการความยดืหยุน่มากกวา่

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 4

8. ตวัอย่างแนวคิด OOP ในชีวิตจริง

 Class: รถยนต ์(Car)
 Object: รถยนตค์นันี้ (Car object เช่น Honda Civic)
 Attributes: ส,ี ยีห่อ้, รุ่น, ปีผลติ
 Methods: ขบัเคลื่อน, เบรก, เปิดไฟหน้า

9. ประโยชน์ของ OOP ในงานพฒันาซอฟตแ์วร ์

 ง่ายต่อการท างานเป็นทมีเพราะแต่ละคนสามารถพฒันาคลาสต่าง ๆ ทีแ่ยกกนัได ้
 เพิม่ความน่าเชื่อถอืของโคด้เพราะ encapsulation ช่วยป้องกนัขอ้ผดิพลาดจากการแกไ้ขขอ้มลู

โดยตรง
 ง่ายต่อการแกไ้ขและเพิม่เตมิฟีเจอรใ์หม่ ๆ ในระบบทีม่คีวามซบัซอ้น

UML กบัการเขียนโปรแกรมเชิงวตัถ ุ(OOP)

1. UML คืออะไร?

 UML คอื ภาษามาตรฐานส าหรบัการวาดแบบจ าลอง (modeling language) เพื่อช่วยในการ
ออกแบบและวเิคราะหร์ะบบซอฟตแ์วร ์

 UML ถูกใชใ้นการแสดงภาพโครงสรา้งและพฤตกิรรมของระบบในรปูแบบกราฟิก ท าใหท้มี
พฒันาสามารถเขา้ใจภาพรวมของระบบไดง้่ายขึน้

 UML ไมไ่ดผ้กูกบัภาษาโปรแกรมใดภาษาหนึ่ง และช่วยใหก้ารสื่อสารระหวา่งนกัพฒันา
นกัวเิคราะห ์และผูเ้กีย่วขอ้งเป็นไปอยา่งมปีระสทิธภิาพ

2. ความสมัพนัธข์อง UML กบั OOP

 UML ถูกออกแบบมาเพื่อช่วยในการออกแบบ ระบบเชิงวตัถ ุ(Object-Oriented System)
 สามารถใช ้UML เพื่อสรา้งแบบจ าลองคลาส (class models) ซึง่แสดงถงึคลาสต่าง ๆ ทีม่ใีน

ระบบและความสมัพนัธร์ะหวา่งคลาส
 UML ยงัช่วยแสดงพฤตกิรรมของวตัถุผ่าน diagram ชนิดต่าง ๆ เช่น Use Case Diagram,

Sequence Diagram, Activity Diagram เป็นตน้

3. ประเภทของ UML Diagrams ท่ีใช้บ่อยใน OOP

ประเภท
Diagram

จดุประสงคห์ลกั ใช้ใน OOP อย่างไร

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 5

ประเภท
Diagram

จดุประสงคห์ลกั ใช้ใน OOP อย่างไร

Class Diagram
แสดงโครงสรา้งคลาสและ
ความสมัพนัธ ์

แสดงคลาส, attributes, methods และความสมัพนัธ ์
(inheritance, association)

Object
Diagram

แสดง snapshot ของ object ใน
เวลาหนึ่ง

แสดงวตัถุจรงิทีถู่กสรา้งขึน้จากคลาสในระบบ

Use Case
Diagram

แสดงความตอ้งการของระบบ
จากมุมมองผูใ้ช ้

ระบุบทบาท (actor) และฟังกช์นัทีร่ะบบตอ้งท า

Sequence
Diagram

แสดงล าดบัการสง่ขอ้ความ
ระหวา่ง object

แสดงการโตต้อบระหวา่งวตัถุในเวลาทีเ่กดิขึน้

Activity
Diagram

แสดงล าดบัของการท างานหรอื
กจิกรรม

แสดง flow ของการท างานในระบบ

4. องคป์ระกอบส าคญัใน UML Class Diagram

 Class: เป็นสญัลกัษณ์สีเ่หลีย่มทีแ่บ่งออกเป็น 3 ส่วน
1. ชื่อคลาส (Class Name)
2. คุณสมบตั ิ(Attributes) เช่น ตวัแปรของคลาส
3. เมธอด (Operations/Methods) เช่น ฟังกช์นัในคลาส

 Access Modifiers แสดงโดยสญัลกัษณ์ต่อหน้าชื่อ
o + = public
o - = private
o # = protected

 ความสมัพนัธร์ะหว่างคลาส เช่น
o Inheritance (Generalization) : ใชล้กูศรทศิทางจาก subclass ไป superclass
o Association : ความสมัพนัธป์กต ิ(เช่น คลาส A ใชง้านคลาส B)
o Aggregation : ความสมัพนัธแ์บบ "has-a" โดยวตัถุสามารถมอียูไ่ดเ้อง (empty

diamond)
o Composition : ความสมัพนัธแ์บบ "part-of" ทีส่่วนประกอบไม่มตีวัตนหากไม่มี

เจา้ของ (filled diamond)

5. ตวัอย่าง UML Class Diagram
+-----------------+

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 6

| Person |
+-----------------+
| - name: string |
| - age: int |
+-----------------+
| + getName(): string |
| + getAge(): int |
+-----------------+

 ^
 |
+-----------------+
| Student |
+-----------------+
| - studentID: int|
+-----------------+
| + getID(): int |
+-----------------+

 แสดงวา่คลาส Student สบืทอดจากคลาส Person
 - แสดงวา่ช่องขอ้มลูเป็น private
 + แสดงวา่ฟังกช์นัเป็น public

6. การใช้ UML ช่วยใน OOP อย่างไร?

 ช่วยใหอ้อกแบบโครงสรา้งคลาสไดอ้ยา่งชดัเจนก่อนลงมอืเขยีนโปรแกรม
 ช่วยตรวจสอบความสมัพนัธแ์ละหน้าทีข่องแต่ละคลาส (เช่น inheritance, association)
 ลดความซบัซอ้นของโปรแกรมโดยการแยกแยะหน้าทีข่องแต่ละคลาส
 ใชเ้ป็นเอกสารส าหรบัทมีพฒันาหรอืส าหรบัการบ ารุงรกัษาระบบในอนาคต

7. สรปุ

หวัข้อ สรปุ

UML คอื ภาษาส าหรบัการวาดแบบจ าลองระบบโดยเฉพาะระบบเชงิวตัถุ

ใชก้บั OOP แสดงโครงสรา้งคลาส ความสมัพนัธ ์และพฤตกิรรมของวตัถุในระบบ

ประโยชน์ ท าใหเ้ขา้ใจระบบง่ายขึน้ ออกแบบและวางแผนไดด้ ีลดขอ้ผดิพลาด

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 7

หวัข้อ สรปุ

ตวัอยา่งส าคญั Class Diagram, Use Case Diagram, Sequence Diagram

ขยายเน้ือหา UML กบัการเขียนโปรแกรมเชิงวตัถ ุ(OOP)

8. รายละเอียดเชิงลึกของ UML ใน OOP
8.1 Class Diagram - โครงสร้างคลาสอย่างละเอียด

 Attributes (คุณสมบตั)ิ ใน UML จะบอกชนิดขอ้มลูและ access modifier ตวัอยา่งเช่น
 - id: int
 - name: string
 Operations (เมธอด) จะบอกชื่อฟังกช์นั, พารามเิตอร์, และชนิดขอ้มลูผลลพัธ ์เชน่
 + setName(name: string): void
 + getId(): int
 การก าหนดความสมัพนัธ ์

o Association: ความสมัพนัธร์ะหวา่งคลาสสองตวั เช่น Person กบั Car ที ่Person อาจ
ม ีCar หลายคนั

o Multiplicity: จ านวนความสมัพนัธ ์เชน่ 1..*, 0..1 แสดงวา่ม ี1 หรอืมากกวา่, หรอืมไีด ้
0 หรอื 1 ตวั

o Navigability: ลกูศรบอกทศิทางของความสมัพนัธ ์วา่คลาสไหนสามารถเขา้ถงึอกีคลาส
ได ้

8.2 Use Case Diagram - มมุมองของผู้ใช้กบัระบบ

 ใชเ้พื่อแสดงฟังกช์นัหลกั ๆ ทีร่ะบบตอ้งรองรบั
 แสดง actor (ผูใ้ชง้าน เช่น ผูใ้ช ้ระบบอื่น)
 แสดง use case (ฟังกช์นัทีร่ะบบใหบ้รกิาร)
 ช่วยในการวางแผนและก าหนดขอบเขตของระบบ

8.3 Sequence Diagram - แสดงกระบวนการท างานเชิงล าดบั

 แสดงการสง่ขอ้ความ (method calls) ระหวา่งวตัถุแต่ละตวั
 ช่วยในการออกแบบ flow ของโปรแกรมโดยละเอยีด
 ตวัอยา่งเช่น แสดงล าดบัการ login ของผูใ้ชใ้นระบบ

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 8

8.4 Activity Diagram - แสดง flow ของกระบวนการ
 คลา้ย flowchart แสดงขัน้ตอนและทางเลอืกของระบบ
 ช่วยวางแผนการท างานโดยละเอยีด เช่น ข ัน้ตอนการสัง่ซือ้สนิคา้

9. ตวัอย่าง UML ในการออกแบบโปรแกรมเชิงวตัถ ุ
สมมตวิา่เราจะออกแบบระบบจดัการหอ้งสมุด โดยมคีลาสหลกั 3 ตวั คอื

 Book
 Member
 Loan

Class Diagram ตวัอย่าง
+------------+ +-------------+ +-----------+
| Book | | Member | | Loan |
+------------+ +-------------+ +-----------+
| - id: int | | - id: int | | - id: int |
| - title: string | | - name: string| | - date: Date |
+------------+ +-------------+ +-----------+
| + getTitle()| | + getName() | | + getDate()|
+------------+ +-------------+ +-----------+
 | | |
 | | |
 |------------------------|----------------------|
 Association: Member borrows Book through Loan

 Loan เป็นตวักลางเชื่อม Member กบั Book เพื่อเกบ็ขอ้มลูการยมื

10. ตวัอย่าง Use Case Diagram ส าหรบัระบบน้ี

 Actor: Librarian, Member
 Use cases: Borrow Book, Return Book, Search Book, Register Member

11. ข้อดีของการใช้ UML กบั OOP

ข้อดี อธิบาย

ช่วยวางแผน ท าใหเ้หน็ภาพรวมระบบก่อนเขยีนโคด้จรงิ

ลดขอ้ผดิพลาด วางแผนโครงสรา้งและความสมัพนัธไ์ดด้ ี

สื่อสารไดง้่าย ใหท้มีพฒันาและผูม้สี่วนเกีย่วขอ้งเขา้ใจตรงกนั

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 9

ข้อดี อธิบาย

รองรบัการขยาย UML ช่วยเตรยีมระบบส าหรบัการเพิม่ฟีเจอรใ์หม่

12. เครื่องมือวาด UML ท่ีนิยมใช้

 StarUML
 Visual Paradigm
 PlantUML (ใชภ้าษา text-based เขยีน UML แลว้แปลงเป็นภาพ)
 Microsoft Visio
 Lucidchart

การเขียนโปรแกรมเชิงวตัถ ุ(OOP) ใน C++

11. การเขียนโปรแกรมเชิงวตัถ ุ(Object-Oriented Programming)
1. การสร้าง Class และ Object

 Class คอืโครงสรา้งขอ้มลูทีป่ระกอบดว้ยสมาชกิขอ้มลู (Attributes) และฟังกช์นั (Methods)
เพื่อจดัการขอ้มลูนัน้ ๆ

 Object คอือนิสแตนซข์อง Class หรอืสิง่ทีส่รา้งขึน้จาก Class
ตวัอยา่งการประกาศ Class และสรา้ง Object:
#include <iostream>
using namespace std;

class Car {
public: // สมาชกิทีเ่ขา้ถงึไดจ้ากภายนอก
 string brand;
 int year;

 void showInfo() {
 cout << "Brand: " << brand << ", Year: " << year << endl;
 }
};

int main() {
 Car myCar; // สรา้ง object ชื่อ myCar จาก class Car

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 10

 myCar.brand = "Toyota";
 myCar.year = 2020;

 myCar.showInfo(); // เรยีกใชเ้มธอดแสดงขอ้มลู

 return 0;
}
ผลการรนั:
Brand: Toyota, Year: 2020

2. Access Modifiers: public, private, protected

 public : สมาชกิสามารถเขา้ถงึไดจ้ากภายนอก class
 private : สมาชกิสามารถเขา้ถงึไดเ้ฉพาะภายใน class เท่านัน้
 protected : สมาชกิสามารถเขา้ถงึไดใ้น class และ class ทีส่บืทอด (inheritance)

ตวัอยา่งการใช ้Access Modifiers:
#include <iostream>
using namespace std;

class BankAccount {
private:
 double balance; // private ไม่สามารถเขา้ถงึจากภายนอก

public:
 BankAccount() { // Constructor ก าหนดค่าเริม่ตน้
 balance = 0.0;
 }

 void deposit(double amount) {
 if (amount > 0)
 balance += amount;
 }

 double getBalance() {
 return balance;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 11

 }
};

int main() {
 BankAccount acc;
 acc.deposit(1500.50);
 // acc.balance = 1000; // ERROR! balance เป็น private

 cout << "Balance: " << acc.getBalance() << endl;

 return 0;
}
ผลการรนั:
Balance: 1500.5

3. Constructor และ Destructor

 Constructor คอืฟังกช์นัพเิศษทีช่ ื่อเหมอืน class ท างานเมื่อสรา้ง object เพื่อก าหนดค่า
เริม่ตน้

 Destructor คอืฟังกช์นัพเิศษทีช่ ื่อเป็น ~ClassName() เรยีกใชเ้มื่อลบ object เพื่อจดัการ
ทรพัยากร (เชน่ ปล่อยหน่วยความจ า)

ตวัอยา่ง:
#include <iostream>
using namespace std;

class Person {
private:
 string name;

public:
 // Constructor
 Person(string n) {
 name = n;
 cout << "Constructor: Created Person " << name << endl;
 }

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 12

 // Destructor
 ~Person() {
 cout << "Destructor: Destroying Person " << name << endl;
 }

 void sayHello() {
 cout << "Hello, I am " << name << endl;
 }
};

int main() {
 Person p1("Alice");
 p1.sayHello();

 {
 Person p2("Bob");
 p2.sayHello();
 } // p2 ถูกท าลายทีน่ี่ (Destructor เรยีก)

 cout << "End of main function\n";

 return 0;
}
ผลการรนั:
Constructor: Created Person Alice
Hello, I am Alice
Constructor: Created Person Bob
Hello, I am Bob
Destructor: Destroying Person Bob
End of main function
Destructor: Destroying Person Alice

4. การใช้ this Pointer

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 13

 this คอื pointer ภายใน class ทีช่ ีไ้ปยงั object ปัจจุบนั (instance)
 ใชเ้พื่อเขา้ถงึสมาชกิของ object ปัจจุบนั เชน่ แกไ้ขความสบัสนระหวา่งชื่อพารามเิตอรแ์ละ

สมาชกิ class
ตวัอยา่ง:
#include <iostream>
using namespace std;

class Rectangle {
private:
 int width, height;

public:
 // Constructor ใช ้this เพื่อแยกสมาชกิและพารามเิตอร ์
 Rectangle(int width, int height) {
 this->width = width;
 this->height = height;
 }

 int area() {
 return width * height;
 }

 void setWidth(int width) {
 this->width = width; // แกไ้ขสมาชกิ width ของ object
 }
};

int main() {
 Rectangle rect(10, 5);
 cout << "Area: " << rect.area() << endl;

 rect.setWidth(20);
 cout << "New area: " << rect.area() << endl;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 14

 return 0;
}
ผลการรนั:
Area: 50
New area: 100

การเขียนโปรแกรมเชิงวตัถ ุ(OOP) พร้อมแสดงตวัอย่าง UML

11. การเขียนโปรแกรมเชิงวตัถ ุ(OOP)

11.1 การสร้าง Class และ Object

 Class คอื แม่แบบ (template) ทีก่ าหนดโครงสรา้งขอ้มลู (attributes) และพฤตกิรรม (methods
หรอื functions) ของวตัถุ

 Object คอื อนิสแตนซ ์(instance) ของคลาสนัน้ ๆ ซึง่เกบ็ขอ้มลูจรงิและสามารถเรยีกใชเ้มธอด
ได ้

ตวัอย่าง UML Class Diagram ของ Car
+-------------------+
| Car |
+-------------------+
| - brand: string |
| - model: string |
| - year: int |
+-------------------+
| + Car() |
| + Car(brand, model, year) |
| + displayInfo() |
+-------------------+

 เครื่องหมาย - แปลวา่ private
 เครื่องหมาย + แปลวา่ public

โค้ด C++ ตวัอย่าง
#include <iostream>
using namespace std;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 15

class Car {
private:
 string brand; // private attribute
 string model;
 int year;

public:
 // Constructor แบบไม่มพีารามเิตอร ์
 Car() {
 brand = "Unknown";
 model = "Unknown";
 year = 0;
 }

 // Constructor แบบมพีารามเิตอร ์
 Car(string b, string m, int y) {
 brand = b;
 model = m;
 year = y;
 }

 // ฟังกช์นัแสดงขอ้มลู
 void displayInfo() {
 cout << "Brand: " << brand << ", Model: " << model << ", Year: " << year << endl;
 }
};

int main() {
 Car car1; // สรา้ง object โดยใช ้default constructor
 Car car2("Toyota", "Camry", 2022); // สรา้ง object โดยใช ้constructor แบบมพีารามเิตอร ์

 car1.displayInfo();
 car2.displayInfo();

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 16

 return 0;
}

11.2 Access Modifiers: public, private, protected

Modifier การเข้าถึง

private เขา้ถงึไดเ้ฉพาะในคลาสเท่านัน้ (ขอ้มลูส่วนตวั)

public เขา้ถงึไดจ้ากทุกที ่

protected เขา้ถงึไดใ้นคลาสและคลาสลกู (inheritance)

 ค่าเริม่ตน้ของ access modifier ใน class คอื private
 ใน struct ค่าเริม่ตน้เป็น public

11.3 Constructor และ Destructor

 Constructor คอืฟังกช์นัพเิศษทีถู่กเรยีกเมื่อสรา้ง object ใชส้ าหรบัก าหนดค่าเริม่ตน้
 Destructor คอืฟังกช์นัพเิศษทีถู่กเรยีกเมื่อ object ถูกท าลาย ใชส้ าหรบัจดัการหน่วยความจ า

หรอื resource อื่น ๆ
ตวัอย่างโค้ด Constructor และ Destructor
class Example {
public:
 Example() { // Constructor
 cout << "Constructor called" << endl;
 }
 ~Example() { // Destructor
 cout << "Destructor called" << endl;
 }
};

int main() {
 Example obj; // สรา้ง object --> Constructor ถูกเรยีก
 // เมื่อ main สิน้สุด obj จะถูกท าลาย --> Destructor ถูกเรยีก
 return 0;
}

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 17

11.4 การใช้ this pointer
 this คอื pointer ทีช่ ีไ้ปยงั object ปัจจุบนั
 ใชเ้พื่ออา้งถงึสมาชกิของ object ในเมธอด เช่น กรณทีีพ่ารามเิตอรช์ื่อเดยีวกบั attribute เพื่อแก้

ความสบัสน
ตวัอย่างการใช้ this
class Person {
private:
 string name;

public:
 void setName(string name) {
 this->name = name; // this->name คอื attribute, name คอืพารามเิตอร ์
 }
 void printName() {
 cout << "Name: " << name << endl;
 }
};

int main() {
 Person p;
 p.setName("John");
 p.printName();
 return 0;
}

สรปุ UML + OOP

Concept UML Symbol/Notation C++ Code Element

Class Rectangle with class name class ClassName { ... };

Attributes - name: type (private) private: string name;

Operations (Methods) + method(params): returnType (public) public: void method();

Constructor <> method ClassName() { ... }

Destructor <> method ~ClassName() { ... }

Access Modifiers -, +, # for private, public, protected private:, public:

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 18

Concept UML Symbol/Notation C++ Code Element

Association Line between classes Object references / members

การสร้าง class และ object แบบละเอียด พร้อมเพ่ิม UML Class Diagram

การสร้าง Class และ Object พร้อม UML

1. Class คืออะไร?

 Class คอืแบบแผน (template) หรอืแม่แบบทีก่ าหนดโครงสรา้งขอ้มลู (attributes) และ
พฤตกิรรม (methods) ของวตัถุ (object)

 เป็น "พมิพเ์ขยีว" ทีใ่ชส้รา้ง object หลายตวัทีม่ลีกัษณะและพฤตกิรรมเหมอืนกนั
2. Object คืออะไร?

 Object คอือนิสแตนซ ์(instance) ของ class
 เป็นตวัแทนขอ้มลูจรงิ ๆ ทีถู่กสรา้งขึน้จาก class
 แต่ละ object จะมขีอ้มลูของตวัเองและสามารถเรยีกใช ้method ของ class ได ้

3. UML Class Diagram
+---------------------+
| Person |
+---------------------+
| - name: string |
| - age: int |
+---------------------+
| + display(): void |
+---------------------+
ค าอธิบาย UML:

 ชื่อคลาส Person อยูบ่นสุด
 Attributes (ตวัแปรขอ้มลู) แสดงในช่องกลาง ไดแ้ก่ name (ชนิด string) และ age (ชนิด int)
 Methods (ฟังกช์นั) แสดงในช่องล่าง ไดแ้ก่ display() ซึง่ไม่มกีารคนืค่า (void)
 เครื่องหมาย + หมายถงึ public (เขา้ถงึไดจ้ากภายนอก)

4. ตวัอย่างโค้ด C++ พร้อมค าอธิบาย
#include <iostream>

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 19

using namespace std;

// ประกาศคลาส Person
class Person {
public: // ก าหนดใหส้มาชกิทีต่ามเป็น public เขา้ถงึไดจ้ากภายนอกคลาส
 string name; // attribute ชื่อ name ประเภท string
 int age; // attribute ชื่อ age ประเภท int

 // method แสดงขอ้มลูชื่อและอาย ุ
 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 Person p1; // สรา้ง object p1 จากคลาส Person
 p1.name = "Alice"; // ก าหนดชื่อให ้p1
 p1.age = 25; // ก าหนดอายใุห ้p1
 p1.display(); // เรยีกใช ้method display() ของ p1

 Person p2; // สรา้ง object p2 อกีตวั
 p2.name = "Bob"; // ก าหนดชื่อ
 p2.age = 30; // ก าหนดอาย ุ
 p2.display(); // เรยีก method display() ของ p2

 return 0;
}

ค าอธิบายโค้ดทีละบรรทดั

 class Person { ... }; — ประกาศคลาสชื่อ Person
 public: — ก าหนดสมาชกิทีต่ามเป็น public เพื่อใหส้ามารถเขา้ถงึไดจ้ากภายนอกคลาส
 string name; — ก าหนด attribute ชื่อ name ประเภท string
 int age; — ก าหนด attribute ชื่อ age ประเภท int
 void display() — เมธอดแสดงขอ้มลูของ object

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 20

 ใน main() — สรา้ง object p1 และ p2 จาก class Person
 ก าหนดค่า attribute ของแต่ละ object (name, age)
 เรยีกใชเ้มธอด display() เพื่อแสดงขอ้มลูแต่ละ object

ผลลพัธท่ี์ได้จากโปรแกรม
Name: Alice, Age: 25
Name: Bob, Age: 30

สรปุ

 Class คอืแบบแผนของวตัถุทีก่ าหนด attribute และ method
 Object คอือนิสแตนซข์อง class ทีม่ขีอ้มลูและพฤตกิรรมของตวัเอง
 การสรา้ง object ใน C++ ใชช้ื่อ class ตามดว้ยชื่อตวัแปร
 UML ช่วยแสดงภาพโครงสรา้งของ class ไดช้ดัเจน

การสร้าง Class และ Object ในเชิงลึก

1. การซ่อนข้อมลู (Encapsulation)

 หลกัการส าคญัของ OOP คอื Encapsulation คอืการปกปิดขอ้มลู (data hiding)
 ท าไดโ้ดยก าหนด access modifiers เช่น

o private: สมาชกิของคลาสทีไ่ม่อนุญาตใหเ้ขา้ถงึจากภายนอก คลาสอื่น ๆ หรอืแมแ้ต่
object

o public: สมาชกิทีอ่นุญาตใหเ้ขา้ถงึไดจ้ากทุกที ่
o protected: สมาชกิทีอ่นุญาตใหเ้ขา้ถงึไดเ้ฉพาะภายในคลาสและคลาสทีส่บืทอด

(inheritance)
เหตผุล:
ช่วยป้องกนัการแกไ้ขขอ้มลูโดยตรงจากภายนอก คลาสควบคุมการเขา้ถงึและการแกไ้ขขอ้มลูผ่าน
method (getter/setter)

2. Constructor และ Destructor

 Constructor คอื ฟังกช์นัพเิศษในคลาสทีถู่กเรยีกใชเ้มือ่สรา้ง object เพื่อก าหนดค่าเริม่ตน้
o มชีื่อเดยีวกบัคลาส
o ไม่มชีนิดผลลพัธ ์(void, int ฯลฯ)
o สามารถม ีparameter เพื่อรบัค่าเริม่ตน้ได ้

 Destructor คอื ฟังกช์นัพเิศษทีถู่กเรยีกใชเ้มื่อ object ถกูท าลาย (เช่น เมื่อออกจาก scope)

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 21

o ชื่อเหมอืนคลาสแต่มเีครื่องหมาย ~ ขา้งหน้า
o ใชเ้พื่อจดัการทรพัยากร เช่น ปล่อยหน่วยความจ า

3. การใช้ this pointer

 ภายใน method ของ class เราสามารถใช ้pointer ชื่อ this เพื่ออา้งถงึ object ปัจจุบนั
 ประโยชน์ เช่น เมื่อตอ้งการแยกความแตกต่างระหวา่งพารามเิตอรก์บั attribute ทีช่ ื่อเดยีวกนั

4. การประกาศและก าหนดค่า Attribute

 Attribute ในคลาสสามารถก าหนดค่าเริม่ตน้ได ้(ตัง้แต่ C++11 ขึน้ไป)
 การเขา้ถงึ attribute โดยตรงควรระมดัระวงั ควรใช ้setter/getter เพื่อควบคุม

5. การสร้าง Object

 Object สรา้งได ้2 แบบหลกั
o แบบ stack:

Person p1;
สรา้ง object ที ่stack memory, ถูกท าลายเมื่อออกจาก scope

o แบบ heap (dynamic allocation):
Person* p2 = new Person();
สรา้ง object บน heap, ตอ้งลบดว้ย delete p2; เพื่อป้องกนั memory leak

6. การออกแบบ Class ท่ีดี

 แยกส่วนรบัผดิชอบ (Single Responsibility Principle)
 ใช ้access modifiers ควบคุมขอ้มลู
 เขยีน constructor และ destructor ใหเ้หมาะสม
 ใช ้getter/setter เพื่อควบคุมการเขา้ถงึ attribute
 พยายามท า class ใหม้ ีinterface ทีช่ดัเจนและใชง้านง่าย

ตวัอย่างโค้ดเชิงลึกท่ีแสดง constructor, destructor, this pointer และ encapsulation
#include <iostream>
using namespace std;

class Person {
private:
 string name; // ซ่อนขอ้มลูไม่ใหเ้ขา้ถงึโดยตรง

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 22

 int age;

public:
 // Constructor
 Person(string name, int age) {
 this->name = name; // ใช ้this เพื่อแยก attribute กบั parameter
 this->age = age;
 cout << "Constructor called for " << name << endl;
 }

 // Destructor
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 // Getter และ Setter
 void setName(string name) {
 this->name = name;
 }
 string getName() {
 return name;
 }

 void setAge(int age) {
 if (age >= 0) this->age = age; // ป้องกนัค่าทีไ่ม่สมเหตุสมผล
 }
 int getAge() {
 return age;
 }

 // Method แสดงขอ้มลู
 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 23

};

int main() {
 Person p1("Alice", 25);
 p1.display();

 // เปลีย่นค่าโดยใช ้setter
 p1.setAge(26);
 p1.display();

 // สรา้ง object แบบ dynamic
 Person* p2 = new Person("Bob", 30);
 p2->display();

 delete p2; // ตอ้งลบ object ทีส่รา้งแบบ dynamic เพื่อป้องกนั memory leak

 return 0;
}

ผลการรนัตวัอย่างน้ี
Constructor called for Alice
Name: Alice, Age: 25
Name: Alice, Age: 26
Constructor called for Bob
Name: Bob, Age: 30
Destructor called for Bob
Destructor called for Alice

สรปุเพ่ิม

 private ช่วยซ่อนขอ้มลู ป้องกนัแกไ้ขโดยตรงจากภายนอก
 constructor ช่วยก าหนดค่าเริม่ตน้เมื่อสรา้ง object
 destructor ช่วยจดัการทรพัยากรเมื่อ object ถูกท าลาย
 this pointer ใชเ้พื่ออา้งถงึ object ปัจจุบนัใน method
 การสรา้ง object แบบ dynamic ตอ้งลบ (delete) เพื่อป้องกนั memory leak

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 24

ตวัอยา่งโปรแกรม Class Person ทีม่กีารใช ้

 การสรา้ง class และ object
 Access modifiers (private, public)
 Constructor และ Destructor
 การใช ้this pointer

พรอ้มกบั แผนภาพ UML Class Diagram และ ผลการรนัโปรแกรม ใหค้รบถ้วน

1. UML Class Diagram ของ Person
+---------------------+
| Person |
+---------------------+
| - name: string | // private attribute
| - age: int | // private attribute
+---------------------+
| + Person(name, age) | // constructor (public)
| + ~Person() | // destructor (public)
| + setName(name) | // public method
| + getName(): string |
| + setAge(age) |
| + getAge(): int |
| + display() |
+---------------------+

 - หมายถงึ private
 + หมายถงึ public

2. ตวัอย่างโค้ด C++ พร้อมคอมเมนต ์
#include <iostream>
using namespace std;

class Person {
private:
 string name; // ซ่อนขอ้มลู ไมใ่หเ้ขา้ถงึโดยตรงจากภายนอก
 int age;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 25

public:
 // Constructor: รบัค่าชื่อและอายมุาเริม่ตน้ attribute
 Person(string name, int age) {
 this->name = name; // ใช ้this เพื่อแยก attribute กบั parameter
 this->age = age;
 cout << "Constructor called for " << name << endl;
 }

 // Destructor: เรยีกใชเ้มื่อ object ถูกท าลาย
 ~Person() {
 cout << "Destructor called for " << name << endl;
 }

 // Setter ส าหรบั name
 void setName(string name) {
 this->name = name;
 }

 // Getter ส าหรบั name
 string getName() {
 return name;
 }

 // Setter ส าหรบั age พรอ้มตรวจสอบเงื่อนไขอายุ >=0
 void setAge(int age) {
 if (age >= 0) this->age = age;
 }

 // Getter ส าหรบั age
 int getAge() {
 return age;
 }

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 26

 // แสดงขอ้มลูของ Person
 void display() {
 cout << "Name: " << name << ", Age: " << age << endl;
 }
};

int main() {
 // สรา้ง object p1 โดยเรยีก constructor
 Person p1("Alice", 25);
 p1.display();

 // เปลีย่นอายโุดยใช ้setter แลว้แสดงใหม ่
 p1.setAge(26);
 p1.display();

 // สรา้ง object แบบ dynamic
 Person* p2 = new Person("Bob", 30);
 p2->display();

 // ลบ object dynamic เพื่อเรยีก destructor
 delete p2;

 return 0;
}

3. ผลการรนัโปรแกรม
Constructor called for Alice
Name: Alice, Age: 25
Name: Alice, Age: 26
Constructor called for Bob
Name: Bob, Age: 30
Destructor called for Bob
Destructor called for Alice

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 27

สรปุ
 การสรา้ง class Person ม ีattribute ซ่อนอยู ่(private)
 ใช ้constructor ก าหนดค่าเริม่ตน้ตอนสรา้ง object
 ใช ้this pointer ใน constructor และ setter เพื่ออา้งองิ attribute
 ม ีmethod getter/setter ส าหรบัเขา้ถงึขอ้มลูอยา่งปลอดภยั
 ม ีdestructor ทีท่ างานเมื่อลบ object หรอื object หมด scope
 สรา้ง object ทัง้แบบ stack (p1) และ heap (p2) พรอ้มลบ object แบบ dynamic

ตวัอยา่งโปรแกรม 3 ตวัอยา่ง พรอ้ม

 อธบิายรายละเอยีดการท างานของโคด้ทลีะบรรทดั
 แสดง UML Diagram แบบขอ้ความ
 แสดงผลการรนัตวัอยา่ง

ตวัอย่างท่ี 1: Class Car
UML Diagram
+---------------------+
| Car |
+---------------------+
| - brand: string |
| - year: int |
+---------------------+
| + Car(brand, year) |
| + ~Car() |
| + getBrand(): string |
| + getYear(): int |
| + setBrand(string) |
| + setYear(int) |
| + display(): void |
+---------------------+
โค้ด C++
#include <iostream>
using namespace std;

class Car {

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 28

private:
 string brand; // ยีห่อ้รถ
 int year; // ปีทีผ่ลติ

public:
 // Constructor: ก าหนดค่าเริม่ตน้ให ้brand และ year เมื่อสรา้ง object
 Car(string brand, int year) {
 this->brand = brand;
 this->year = year;
 cout << "Car created: " << brand << " (" << year << ")" << endl;
 }

 // Destructor: เรยีกเมื่อ object ถูกท าลาย
 ~Car() {
 cout << "Car destroyed: " << brand << endl;
 }

 // Getter ส าหรบั brand
 string getBrand() {
 return brand;
 }

 // Getter ส าหรบั year
 int getYear() {
 return year;
 }

 // Setter ส าหรบั brand
 void setBrand(string brand) {
 this->brand = brand;
 }

 // Setter ส าหรบั year (ตรวจสอบใหปี้มากกวา่ 1885 ก่อน)
 void setYear(int year) {

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 29

 if (year > 1885)
 this->year = year;
 }

 // แสดงขอ้มลูรถ
 void display() {
 cout << "Brand: " << brand << ", Year: " << year << endl;
 }
};

int main() {
 Car c1("Toyota", 2020); // สรา้ง object c1
 c1.display(); // แสดงขอ้มลู c1

 c1.setYear(2021); // เปลีย่นปีเป็น 2021
 c1.display(); // แสดงขอ้มลูใหม ่

 return 0;
}

อธิบายโค้ดทีละบรรทดั

 class Car { ... }; — ประกาศคลาสชื่อ Car
 private: — ระบุวา่ members ต่อไปนี้เป็นส่วนตวั (ไมส่ามารถเขา้ถงึจากภายนอก)
 string brand; และ int year; — ตวัแปรขอ้มลูของคลาส
 public: — members ต่อไปนี้สามารถเขา้ถงึไดจ้ากภายนอก
 Car(string brand, int year) — Constructor ใชก้ าหนดค่าเริม่ตน้ตอนสรา้ง object
 ~Car() — Destructor เรยีกเมื่อ object ถูกลบ
 string getBrand() และ int getYear() — ฟังกช์นั getter ส าหรบัดงึค่าตวัแปร
 void setBrand(string brand) และ void setYear(int year) — ฟังกช์นั setter ส าหรบัแกไ้ข

ค่าตวัแปร (setYear ตรวจสอบปีใหถู้กตอ้งก่อน)
 void display() — ฟังกช์นัแสดงขอ้มลูรถ
 ใน main(), สรา้ง object c1 จากคลาส Car และเรยีกใชฟั้งกช์นัต่าง ๆ

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 30

ผลการรนั
Car created: Toyota (2020)
Brand: Toyota, Year: 2020
Brand: Toyota, Year: 2021
Car destroyed: Toyota

ตวัอย่างท่ี 2: Class Rectangle
UML Diagram
+-----------------------+
| Rectangle |
+-----------------------+
| - width: double |
| - height: double |
+-----------------------+
| + Rectangle(w,h) |
| + ~Rectangle() |
| + setWidth(double) |
| + setHeight(double) |
| + getWidth(): double |
| + getHeight(): double |
| + area(): double |
| + display(): void |
+-----------------------+
โค้ด C++
#include <iostream>
using namespace std;

class Rectangle {
private:
 double width; // ความกวา้ง
 double height; // ความสงู

public:
 // Constructor ก าหนดค่าเริม่ตน้

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 31

 Rectangle(double width, double height) {
 this->width = width;
 this->height = height;
 }

 // Destructor
 ~Rectangle() {
 cout << "Rectangle object destroyed" << endl;
 }

 // Setter ก าหนดความกวา้ง (ถ้าค่ามากกวา่ 0)
 void setWidth(double width) {
 if (width > 0)
 this->width = width;
 }

 // Setter ก าหนดความสงู (ถ้าค่ามากกวา่ 0)
 void setHeight(double height) {
 if (height > 0)
 this->height = height;
 }

 // Getter ดงึค่าความกวา้ง
 double getWidth() {
 return width;
 }

 // Getter ดงึค่าความสงู
 double getHeight() {
 return height;
 }

 // ค านวณพืน้ที ่
 double area() {

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 32

 return width * height;
 }

 // แสดงขอ้มลู
 void display() {
 cout << "Width: " << width << ", Height: " << height
 << ", Area: " << area() << endl;
 }
};

int main() {
 Rectangle r1(5.0, 3.0); // สรา้ง object r1
 r1.display();

 r1.setWidth(7.5); // เปลีย่นความกวา้ง
 r1.setHeight(4.2); // เปลีย่นความสงู
 r1.display();

 return 0;
}

อธิบายโค้ดทีละบรรทดั

 ประกาศคลาส Rectangle พรอ้มตวัแปรส่วนตวั width, height
 Constructor รบัพารามเิตอรก์ าหนดค่าความกวา้งและสงู
 Destructor แจง้เมื่อ object ถูกท าลาย
 ฟังกช์นั setter และ getter ส าหรบัความกวา้งและสงู พรอ้มตรวจสอบค่าก่อนตัง้
 ฟังกช์นั area() ค านวณพืน้ที ่
 ฟังกช์นั display() แสดงขอ้มลูทัง้หมด
 ใน main() สรา้ง r1 และแสดงผลก่อนและหลงัเปลีย่นขนาด

ผลการรนั
Width: 5, Height: 3, Area: 15
Width: 7.5, Height: 4.2, Area: 31.5
Rectangle object destroyed

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Advance หนา้ 33

ตวัอย่างท่ี 3: Class Student
UML Diagram
+------------------------+
| Student |
+------------------------+
| - name: string |
| - id: int |
+------------------------+
| + Student(name, id) |
| + ~Student() |
| + setName(string) |
| + getName(): string |
| + setId(int) |
| + getId(): int |
| + display(): void |
+------------------------+
โค้ด C++
#include <iostream>
using namespace std;

class Student {
private:
 string name; // ชื่อนกัเรยีน
 int id; // รหสันกัเรยีน

public:
 // Constructor ก าหนดชื่อและรหสั
 Student(string name, int id) {
 this->name = name;
 this->id = id;
 }

 // Destructor

	FP
	0_คำนำ
	0_สารบัญ
	11_การเขียนโปรแกรมเชิงวัตถุ

