

ค ำน ำ

การเรยีนรูก้ารเขยีนโปรแกรมในระดบักลาง (Intermediate Level) ถอืเป็นกา้วส าคญัทีน่ักพฒันา
ซอฟต์แวร์ทุกคนต้องก้าวผ่าน เพื่อเพิม่พูนความเข้าใจจากพื้นฐานสู่การสร้างโปรแกรมทีม่โีครงสร้าง
ซบัซ้อนมากขึน้ หนังสอืเล่มนี้จดัท าขึ้นเพื่อเสรมิสร้างความรู้และทกัษะในด้านทีเ่ป็นแกนหลักของการ
พฒันาโปรแกรมเชงิโครงสรา้งและการจดัการหน่วยความจ าในภาษา C++ ซึ่งเป็นภาษาทีท่รงพลังและ
ใชก้นัอย่างแพร่หลายในแวดวงวศิวกรรมซอฟต์แวร ์ ระบบฝังตวั และงานวจิยัคอมพวิเตอร์

เนื้อหาเริม่ต้นจากหวัข้อส าคญัอย่าง พอยน์เตอร์ (Pointers) ซึ่งเป็นแนวคดิพื้นฐานของการ
เขา้ถงึและจดัการหน่วยความจ าโดยตรง ผูอ้่านจะไดเ้รยีนรูก้ารประกาศและใช้งานพอยน์เตอร์ การใช้ตัว
ด าเนินการ & และ * ตลอดจนการประยุกต์ใช้ร่วมกับอาเรย์และฟังก์ชัน ต่อเนื่องด้วย อ้ำงอิง
(Reference) ซึง่เปรยีบเทยีบความแตกต่างระหว่าง pointer และ reference พร้อมน าเสนอเทคนิคการ
ส่งค่าผ่าน reference เพือ่เพิม่ประสทิธภิาพในการเขยีนฟังกช์นัและลดการคดัลอกขอ้มลู

ถัดมา หนังสอืจะพาผู้อ่านเข้าสู่หัวข้อ โครงสร้ำงข้อมูลเบื้องต้น (Structs) ซึ่งเป็นการรวม
ข้อมูลหลายประเภทให้เป็นชุดเดยีวกนั โดยมทีัง้การสร้าง struct ซ้อนกนั การจดัการ array of struct
และ pointer to struct เพื่อให้สามารถจดัการข้อมูลได้อย่างยดืหยุ่นและมรีะบบยิง่ข ึ้น หวัข้อถัดไปคอื
กำรจดักำรหน่วยควำมจ ำ (Memory Management) ซึ่งเน้นการใช้ new และ delete การสร้าง
dynamic array และการป้องกนัปัญหา memory leak ซึ่งเป็นหนึ่งในจุดอ่อนทีพ่บได้บ่อยในโปรแกรม
C++

ทา้ยทีสุ่ด หนังสอืได้น าเสนอเนื้อหาเกีย่วกบั กำรจดักำรไฟล์ (File I/O) ครอบคลุมทัง้การใช้
งานคลาส ifstream, ofstream และ fstream ส าหรบัการอ่านและเขยีนไฟล์ในรปูแบบขอ้ความและไบนาร ี
ซึง่เป็นทกัษะทีส่ าคญัส าหรบัการพฒันาโปรแกรมทีต่้องจดัเกบ็และดงึขอ้มลูจากภายนอก เช่น ฐานข้อมูล
หรอืไฟล์บนัทกึต่าง ๆ

ผู้เข ียนหวังว่าหนังสือเล่มนี้จะเป็นแนวทางที่ชัดเจนในการพัฒนาทักษะเขียนโปรแกรมใน
ระดบักลาง ช่วยใหผู้อ้่านเข้าใจหลักการส าคญัอย่างลึกซึ้ง และสามารถน าความรู้ไปประยุกต์ใช้ในการ
สรา้งโปรแกรมจรงิไดอ้ย่างมัน่ใจและมปีระสทิธภิาพ ทัง้ยงัเป็นรากฐานส าหรบัการต่อยอดสู่การเรยีนรู้
ระดบัสงูต่อไปในอนาคต

ศนูยห์นังสือรำคำนักเรียน

สารบญั

หน้า

บทที ่6 พอยน์เตอร ์(Pointers) ... 1

 ความรูเ้บือ้งต้นเกีย่วกบัพอยน์เตอร ์(Pointers)
 พอยน์เตอร ์(Pointers) ใน C++ เชงิลกึ
 พอยน์เตอรก์บัอาเรย ์(Pointers and Arrays)

 พอยน์เตอรก์บัฟังกช์นั (Pointers and Functions)
 พอยน์เตอร ์(Pointers) ใน C++ (Dev-C++) เพิม่เตมิ
 การประกาศและใช ้Pointer ใน C++
 ขอ้มลูเพิม่เตมิแบบเจาะลกึ
 การใช ้& (address-of) และ * (dereference) ใน C++
 รายละเอยีด Pointer กบัอาเรย ์(Array and Pointer)

 พอยน์เตอรก์บัอาเรย ์และฟังกช์นั
 ตวัอย่างบรูณาการและประยุกต์ใช ้

บทที ่7 อา้งองิ (Reference) .. 71

 ความรูเ้บือ้งต้นระหว่าง Pointer กบั Reference

 การอา้งองิ (Reference) ใน C++

 การส่งค่าผ่าน Reference ไปยงัฟังกช์นั (Pass by Reference)

 ความแตกต่างระหว่าง Pointer กบั Reference ใน C++

 ตวัอย่างบรูณาการ

 การส่งค่าผ่าน Reference ไปยงัฟังกช์นั (Passing by Reference) เพิม่เตมิ
การส่งค่าผ่าน Reference (Passing by Reference) — เชงิลกึ

บทที ่8 โครงสรา้ง (Struct) .. 108
 ความรูเ้บือ้งต้นของโครงสรา้งขอ้มลูเบือ้งต้น (Struct)

 การส่ง struct ไปยงัฟังก์ชนั
 โครงสรา้งขอ้มลูเบือ้งต้นเพิม่เตมิ
 การใช ้struct

 Array of struct และ Pointer to struct
 การใช ้struct ใน C++ แบบละเอยีด
 ตวัอย่างบรูณาการ Struct
 การสรา้ง struct ซ้อนกนั (Nested Struct)

 Array of Struct และ Pointer to Struct
 แนวทางการใชง้านในโปรแกรมจรงิ

บทที ่9 การจดัการหน่วยความจ า (Memory Management) ... 175
 ความรูเ้บือ้งต้น

 การจดัการหน่วยความจ าดว้ย new และ delete ใน Dev C++
 การจดัการหน่วยความจ าในเชงิลกึกบั new และ delete
 การใช ้Dynamic Array ใน C++
 ขอ้มลูเพิม่เตมิเกีย่วกบั Dynamic Array ใน C++
 Memory Leak (การรัว่ไหลของหน่วยความจ า)
 ขยายความเชงิลกึเกีย่วกบั Memory Leak

 ตวัอย่างบรูณาการ
บทที ่10 ไฟล์ (File I/O) ... 246

 ความรูเ้บือ้งต้นเกีย่วกบัไฟล์ (File I/O)

 การจดัการไฟล์ (File I/O) ใน C++ เชงิลกึ
 ปัญหาและขอ้ควรระวงั
 การเปิดและเขยีน/อ่านไฟล์ดว้ย fstream, ifstream, ofstream ใน C++
 การเปิดและเขยีน/อ่านไฟล์ดว้ย fstream, ifstream, ofstream เพิม่เตมิ
 ประยุกต์ใชก้ารจดัการไฟล์ (File I/O) ร่วมกบั struct และการจดัการขอ้มลูแบบไดนามกิ

(dynamic data)

 การจดัการไฟล์ขอ้ความ (Text File Handling) ในภาษา C++
 การจดัการไฟล์ขอ้ความ (Text File Handling) ใน C++ เชงิลกึ
 ตวัอย่างบรูณาการ

 การเขยีน/อ่านขอ้มลูไบนาร ี(Binary I/O) ใน C++
 การเขยีน/อ่านขอ้มลูไบนาร ี(Binary File I/O) - รายละเอยีดเชงิลกึ
 ตวัอย่างบรูณาการการเขยีนและอ่านไฟล์ไบนาร ี(Binary File I/O)

 การบรูณาการไฟล์ (File I/O) ใน C++
บรรณานุกรม .. 327

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 1

บทท่ี 6
พอยน์เตอร ์
(Pointers)

เน้ือหา

 ความรูเ้บือ้งต้นเกีย่วกบัพอยน์เตอร ์(Pointers)
 พอยน์เตอร ์(Pointers) ใน C++ เชงิลกึ
 พอยน์เตอรก์บัอาเรย ์(Pointers and Arrays)
 พอยน์เตอรก์บัฟังกช์นั (Pointers and Functions)

 พอยน์เตอร ์(Pointers) ใน C++ (Dev-C++) เพิม่เตมิ
 การประกาศและใช ้Pointer ใน C++
 ขอ้มลูเพิม่เตมิแบบเจาะลกึ
 การใช ้& (address-of) และ * (dereference) ใน C++
 รายละเอยีด Pointer กบัอาเรย ์(Array and Pointer)
 พอยน์เตอรก์บัอาเรย ์และฟังก์ชนั

 ตวัอย่างบรูณาการและประยุกต์ใช ้

บทน า
ในกระบวนการเขยีนโปรแกรมเชงิโครงสรา้งและระบบ การเขา้ถงึหน่วยความจ าและการจดัการข้อมูลใน
ระดบัต ่าถอืเป็นทกัษะทีส่ าคญัอย่างยิง่ โดยเฉพาะในภาษาโปรแกรมอย่าง C หรอื C++ แนวคดิเกีย่วกบั
“พอยน์เตอร์” (Pointers) จึงมบีทบาทส าคญัในฐานะเครื่องมอืทีช่่วยให้นักพฒันาสามารถเข้าถึง
ต าแหน่งหน่วยความจ าโดยตรง จดัการขอ้มลูแบบไดนามกิ และสรา้งโครงสรา้งขอ้มลูทีซ่บัซ้อนไดอ้ย่างมี
ประสทิธภิาพ

พอยน์เตอร ์คอื ตวัแปรชนิดพเิศษทีใ่ชใ้นการเกบ็ทีอ่ยู่ (address) ของตัวแปรอื่น ๆ ซึ่งแตกต่าง
จากตวัแปรทัว่ไปทีม่กัเกบ็เพยีงค่าขอ้มลูเท่านัน้ ในบทนี้จะอธบิายพืน้ฐานของการ ประกาศและใช้งาน
พอยน์เตอร์, ความเข้าใจในการใช้ เครื่องหมาย & (address-of) เพื่อเข้าถึงทีอ่ยู่ของตัวแปร และ
เครื่องหมาย * (dereference) เพือ่เขา้ถงึค่าทีอ่ยู่ในต าแหน่งหน่วยความจ านัน้

นอกจากนี้ย ังจะศึกษาการประยุกต์ใช้พอยน์เตอร์กับ อาเรย์ (Arrays) และ ฟังก์ชัน
(Functions) ซึง่เป็นแนวทางส าคญัในการท างานกบัข้อมูลแบบกลุ่ม และการส่งค่าผ่านหน่วยความจ า

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 2

แทนค่าจรงิ ซึง่ช่วยใหโ้ปรแกรมท างานไดม้ปีระสทิธภิาพมากขึน้ และสามารถพฒันาโครงสร้างข้อมูลขัน้
สงู เช่น linked list, tree หรอื graph ไดอ้ย่างยดืหยุ่น

ความเขา้ใจอย่างลกึซึ้งเกีย่วกบัพอยน์เตอรไ์ม่เพยีงแต่ช่วยใหผู้เ้รยีนสามารถเขยีนโปรแกรมทีม่ ี
ประสทิธภิาพเท่านัน้ แต่ยงัเป็นรากฐานส าคญัในการเรยีนรู้วชิาอื่น ๆ เช่น ระบบปฏบิตัิการ , โครงสร้าง
ขอ้มลู, และการพฒันาโปรแกรมระบบ (System Programming) ในระดบัสงูต่อไป

ความรู้เบือ้งต้นเก่ียวกบัพอยน์เตอร ์(Pointers)
� 1. การประกาศและใช้ Pointer
พอยน์เตอร์ (Pointer) คอื ตวัแปรทีเ่ก็บ "ทีอ่ยู่ของตวัแปรอืน่"
#include <iostream>
using namespace std;

int main() {
 int a = 10;
 int* p; // ประกาศ pointer ชนิด int
 p = &a; // ให ้p ชีไ้ปยงัตวัแปร a

 cout << "ค่าของ a: " << a << endl;
 cout << "ทีอ่ยู่ของ a: " << &a << endl;
 cout << "ค่าของ p (ทีอ่ยู่ทีม่นัชี)้: " << p << endl;
 cout << "ค่าที ่p ชีไ้ปหา (*p): " << *p << endl;

 return 0;
}
� ผลลพัธต์วัอยา่ง
ค่าของ a: 10
ทีอ่ยู่ของ a: 0x61ff08
ค่าของ p: 0x61ff08
ค่าที ่p ชีไ้ปหา (*p): 10

� 2. การใช้ & (address-of) และ * (dereference)

 &variable � ใชเ้พือ่ ดึงท่ีอยู่ของตวัแปร
 *pointer � ใชเ้พือ่ ดึงค่าจากต าแหน่งท่ี pointer ช้ี

#include <iostream>

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 3

using namespace std;

int main() {
 int b = 20;
 int* ptr = &b; // ptr ชีไ้ปยงั b

 cout << "ทีอ่ยู่ของ b: " << &b << endl;
 cout << "ค่าที ่ptr ชีไ้ปหา: " << *ptr << endl;

 *ptr = 99; // เปลีย่นค่าของ b ผ่าน pointer

 cout << "ค่าของ b หลงัเปลีย่นผ่าน ptr: " << b << endl;

 return 0;
}
� ผลลพัธ ์
ทีอ่ยู่ของ b: 0x...
ค่าที ่ptr ชีไ้ปหา: 20
ค่าของ b หลงัเปลีย่นผ่าน ptr: 99

� 3. Pointer กบัอาเรย ์(Array)
พอยน์เตอรส์ามารถใชก้บัอาเรยเ์พือ่เขา้ถงึสมาชกิไดแ้บบเดยีวกบั index
#include <iostream>
using namespace std;

int main() {
 int arr[5] = {10, 20, 30, 40, 50};
 int* p = arr; // พอยน์เตอรช์ีไ้ปยงั arr[0]

 for (int i = 0; i < 5; i++) {
 cout << "arr[" << i << "] = " << *(p + i) << endl;
 }

 return 0;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 4

}
� ผลลพัธ ์
arr[0] = 10
arr[1] = 20
arr[2] = 30
arr[3] = 40
arr[4] = 50

� 4. Pointer กบัฟังกช์นั
ใชพ้อยน์เตอรส์่งค่าระหว่างฟังกช์นัแบบ "อา้งองิ"
#include <iostream>
using namespace std;

void updateValue(int* x) {
 *x = *x + 100;
}

int main() {
 int num = 50;
 updateValue(&num); // ส่งทีอ่ยู่ของ num เขา้ไป
 cout << "ค่าหลงั update: " << num << endl;

 return 0;
}
� ผลลพัธ ์
ค่าหลงั update: 150

� สรปุ:

สญัลกัษณ์ ความหมาย

* การประกาศหรอืเขา้ถงึค่าจาก pointer (dereference)

& การหา address ของตวัแปร (address-of)

int* p ประกาศ pointer ทีเ่กบ็ address ของ int

*p = 20 ก าหนดค่าทีต่ าแหน่ง pointer ชีอ้ยู่ใหเ้ป็น 20

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 5

พอยน์เตอร ์(Pointers) ใน C++ เชิงลึก
พอยน์เตอร์ คอืตวัแปรชนิดหนึ่งทีไ่ม่ไดเ้ก็บค่าขอ้มลูโดยตรง แต่เกบ็ ท่ีอยูข่องหน่วยความจ า
(memory address) ของตวัแปรอืน่ ๆ พดูง่าย ๆ คอื มนัชีไ้ปยงัต าแหน่งทีข่อ้มลูจรงิถูกเกบ็ไว้
ท าไมต้องใช้พอยน์เตอร์?

1. การจดัการหน่วยความจ าแบบพลวตั (Dynamic Memory Allocation): สามารถจองและคนื
หน่วยความจ าในระหว่างทีโ่ปรแกรมก าลงัท างานได ้ซึง่จ าเป็นส าหรบัการจดัการขอ้มลูทีม่ขีนาดไม่
แน่นอน

2. การเขา้ถึงขอ้มูลอย่างมีประสิทธิภาพ: ในบางกรณ ีการใช้พอยน์เตอรส์ามารถท าใหโ้ปรแกรมท างาน
ไดเ้ร็วขึน้ โดยเฉพาะเมือ่ต้องจดัการกบัโครงสรา้งข้อมลูขนาดใหญ่ เช่น อาเรย ์หรอืออ็บเจกต์

3. การท างานกบัฟังกช์นั (Function Parameters): สามารถส่งผ่านตวัแปรไปยงัฟังกช์นัด้วย
"reference" ผ่านพอยน์เตอร ์ท าใหฟั้งกช์นัสามารถแกไ้ขค่าของตวัแปรต้นฉบบัได ้(pass by pointer)

4. โครงสร้างขอ้มูลท่ีซบัซ้อน: ใชส้รา้งโครงสรา้งขอ้มลูแบบ linked list, tree, graph ซึง่จ าเป็นต้องมกีาร
เชือ่มโยงขอ้มลูเขา้ดว้ยกนั

1. การประกาศและใช้งานพอยน์เตอร ์
การประกาศพอยน์เตอรจ์ะบอกคอมไพเลอร์ว่าตวัแปรนี้จะเกบ็ทีอ่ยู่ของหน่วยความจ า และทีอ่ยู่นัน้ชีไ้ป
ยงัขอ้มลูชนิดใด
C++
#include <iostream>

int main() {
 // 1.1 การประกาศตวัแปรปกต ิ(value variable)
 int score = 100;
 double price = 99.99;

 std::cout << "--- การประกาศและใช้งานพอยน์เตอร ์---" << std::endl;
 std::cout << "ค่าของ score: " << score << std::endl; // แสดงค่า 100
 std::cout << "ค่าของ price: " << price << std::endl; // แสดงค่า 99.99

 // 1.2 การประกาศพอยน์เตอร ์(pointer variable)
 // ชนิดขอ้มลูทีพ่อยน์เตอรช์ีไ้ป * ชือ่พอยน์เตอร์;
 int *ptrScore; // พอยน์เตอรช์ือ่ ptrScore ชีไ้ปยงั int
 double *ptrPrice; // พอยน์เตอรช์ือ่ ptrPrice ชีไ้ปยงั double

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 6

 char *ptrChar; // พอยน์เตอรช์ือ่ ptrChar ชีไ้ปยงั char

 std::cout << "\nพอยน์เตอรเ์มือ่ประกาศแล้ว (ยงัไม่ก าหนดค่า):" << std::endl;
 std::cout << "ptrScore (อาจเป็นค่าขยะ): " << ptrScore << std::endl; // แสดงทีอ่ยู่ขยะ หรอื
NULL (0x0)
 std::cout << "ptrPrice (อาจเป็นค่าขยะ): " << ptrPrice << std::endl; // แสดงทีอ่ยู่ขยะ หรอื NULL
(0x0)
 // การเขา้ถงึค่าทีพ่อยน์เตอรข์ยะชีไ้ปเป็นอนัตราย (dereferencing a wild pointer)

 // 1.3 การก าหนดค่าใหพ้อยน์เตอร์
 // พอยน์เตอรจ์ะเกบ็ทีอ่ยู่ของตวัแปรอืน่ โดยใชโ้อเปอเรเตอร์ & (address-of)
 ptrScore = &score; // ptrScore ชีไ้ปยงัทีอ่ยู่ของตวัแปร score
 ptrPrice = &price; // ptrPrice ชีไ้ปยงัทีอ่ยู่ของตวัแปร price

 std::cout << "\nหลงัก าหนดค่าใหพ้อยน์เตอร:์" << std::endl;
 std::cout << "ทีอ่ยู่ของ score (&score): " << &score << std::endl;
 std::cout << "ค่าที ่ptrScore เกบ็ (ptrScore): " << ptrScore << std::endl; // ควรเป็นค่าเดยีวกบั
&score

 std::cout << "ทีอ่ยู่ของ price (&price): " << &price << std::endl;
 std::cout << "ค่าที ่ptrPrice เกบ็ (ptrPrice): " << ptrPrice << std::endl; // ควรเป็นค่าเดยีวกบั
&price

 // 1.4 การใชพ้อยน์เตอรท์ีไ่ม่ไดช้ีไ้ปทีไ่หน (nullptr)
 // การก าหนดค่าเป็น nullptr (C++11) หรอื NULL (C++ เก่า) เพือ่ใหพ้อยน์เตอรไ์ม่ชี้ไปทีไ่หนเลย
 // เป็นการป้องกนัการเขา้ถงึหน่วยความจ าโดยไม่ตัง้ใจ (null pointer dereference)
 int *nullPtr = nullptr;
 std::cout << "\nค่าของ nullPtr: " << nullPtr << std::endl; // จะแสดง 0x0 หรอื 0 (หมายถงึไม่ชีไ้ป
ไหน)
 // if (nullPtr != nullptr) { ... } // ตรวจสอบก่อน dereference เสมอ

 return 0;
}
ผลลพัธ ์(ตวัอย่าง):

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 7

(ทีอ่ยู่หน่วยความจ าจะแตกต่างกนัไปในแต่ละครัง้ทีร่นัโปรแกรม)
--- การประกาศและใชง้านพอยน์เตอร ์---
ค่าของ score: 100
ค่าของ price: 99.99

พอยน์เตอรเ์มือ่ประกาศแล้ว (ยงัไม่ก าหนดค่า):
ptrScore (อาจเป็นค่าขยะ): 0x7ffe098319dc // ค่าขยะ
ptrPrice (อาจเป็นค่าขยะ): 0x7ffe098319e0 // ค่าขยะ

หลงัก าหนดค่าใหพ้อยน์เตอร:์
ทีอ่ยู่ของ score (&score): 0x7ffe098319d4
ค่าที ่ptrScore เกบ็ (ptrScore): 0x7ffe098319d4 // ชีไ้ปที ่score

ทีอ่ยู่ของ price (&price): 0x7ffe098319d8
ค่าที ่ptrPrice เกบ็ (ptrPrice): 0x7ffe098319d8 // ชีไ้ปที ่price

ค่าของ nullPtr: 0
ค าอธิบาย:

 int *ptrScore;: คอืการประกาศตวัแปร ptrScore ใหเ้ป็นพอยน์เตอรท์ีส่ามารถเกบ็ทีอ่ยู่ของตวัแปรชนิด
int ได ้

 ptrScore = &score;: เป็นการก าหนดให้ ptrScore เกบ็ ท่ีอยูข่องหน่วยความจ า ของตวัแปร score
โดยใชโ้อเปอเรเตอร์ & (address-of operator)

 ค่าของพอยน์เตอรเ์องคอื ท่ีอยูข่องหน่วยความจ า ซึง่มกัจะแสดงเป็นเลขฐานสบิหก (hexadecimal)
เช่น 0x7ffe098319d4

 การประกาศพอยน์เตอรแ์ล้วไม่ได้ก าหนดค่าให ้(หรอืก าหนดเป็นค่าขยะ) แล้วน าไปใชท้นัทเีป็นอนัตราย
มาก เพราะมนัอาจชีไ้ปยงัหน่วยความจ าทีไ่ม่ไดเ้ป็นของโปรแกรมเรา ซึง่จะท าใหเ้กดิขอ้ผดิพลาดรนัไทม ์
(runtime error)

2. การใช้ & (address-of) และ * (dereference)
สองโอเปอเรเตอรน์ี้เป็นหวัใจส าคญัในการท างานกบัพอยน์เตอร์

 & (Address-of Operator):
o ใชว้างหน้าชือ่ตวัแปรปกติ
o คนืค่า ท่ีอยูข่องหน่วยความจ า (address) ของตวัแปรนัน้ ๆ
o เช่น &score จะคนืค่าทีอ่ยู่ของตวัแปร score

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 8

 * (Dereference Operator หรือ Indirection Operator):
o ใชว้างหน้าชือ่พอยน์เตอร์
o ใชเ้พือ่ เขา้ถึงค่า (value) ทีเ่กบ็อยู่ในทีอ่ยู่หน่วยความจ าทีพ่อยน์เตอรน์ัน้ชีไ้ป
o เช่น *ptrScore จะคนืค่าทีถู่กเกบ็อยู่ทีต่ าแหน่งหน่วยความจ าที่ ptrScore ชีอ้ยู่

C++
#include <iostream>

int main() {
 int num = 42; // ตวัแปรปกติ
 int *ptr = # // พอยน์เตอร ์ptr ชีไ้ปที ่num

 std::cout << "--- การใช้ & (address-of) และ * (dereference) ---" << std::endl;

 // 2.1 ใช ้& (Address-of Operator) เพือ่หาทีอ่ยู่ของตวัแปร
 std::cout << "ค่าของ num: " << num << std::endl; // 42
 std::cout << "ทีอ่ยู่ของ num (&num): " << &num << std::endl; // เช่น 0x7ffc8f3a3dcc

 // 2.2 ค่าทีพ่อยน์เตอรเ์กบ็ (คอืทีอ่ยู่ของ num)
 std::cout << "ค่าที ่ptr เกบ็ (ptr): " << ptr << std::endl; // เหมอืนกบั &num

 // 2.3 ใช ้* (Dereference Operator) เพือ่เขา้ถงึค่าทีพ่อยน์เตอรช์ีไ้ป
 std::cout << "ค่าที ่ptr ชีไ้ป (*ptr): " << *ptr << std::endl; // 42 (ค่าของ num)

 // 2.4 การแกไ้ขค่าผ่านพอยน์เตอร ์(Dereferencing to modify)
 *ptr = 100; // เปลีย่นค่าที ่ptr ชีไ้ป (ซึง่กค็อื num) ใหเ้ป็น 100
 std::cout << "\nหลงัเปลีย่นค่าผ่าน *ptr = 100;" << std::endl;
 std::cout << "ค่าของ num: " << num << std::endl; // ตอนนี้ num เป็น 100
 std::cout << "ค่าที ่ptr ชีไ้ป (*ptr): " << *ptr << std::endl; // ตอนนี้ *ptr กเ็ป็น 100

 // ตวัอย่างการใชพ้อยน์เตอรก์บั string
 std::string message = "Hello";
 std::string *ptrMessage = &message;

 std::cout << "\n--- พอยน์เตอรก์บั std::string ---" << std::endl;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 9

 std::cout << "ค่าของ message: " << message << std::endl;
 std::cout << "ทีอ่ยู่ของ message (&message): " << &message << std::endl;
 std::cout << "ค่าที ่ptrMessage เกบ็ (ptrMessage): " << ptrMessage << std::endl;
 std::cout << "ค่าที ่ptrMessage ชีไ้ป (*ptrMessage): " << *ptrMessage << std::endl;

 *ptrMessage = "Goodbye"; // เปลีย่นค่าของ message ผ่านพอยน์เตอร ์
 std::cout << "ค่าของ message หลงัเปลีย่น: " << message << std::endl;

 return 0;
}
ผลลพัธ ์(ตวัอยา่ง):
--- การใช ้& (address-of) และ * (dereference) ---
ค่าของ num: 42
ทีอ่ยู่ของ num (&num): 0x7ffe6b3a2a4c
ค่าที ่ptr เกบ็ (ptr): 0x7ffe6b3a2a4c
ค่าที ่ptr ชีไ้ป (*ptr): 42

หลงัเปลีย่นค่าผ่าน *ptr = 100;
ค่าของ num: 100
ค่าที ่ptr ชีไ้ป (*ptr): 100

--- พอยน์เตอรก์บั std::string ---
ค่าของ message: Hello
ทีอ่ยู่ของ message (&message): 0x7ffe6b3a2a50
ค่าที ่ptrMessage เกบ็ (ptrMessage): 0x7ffe6b3a2a50
ค่าที ่ptrMessage ชีไ้ป (*ptrMessage): Hello
ค่าของ message หลงัเปลีย่น: Goodbye
ค าอธิบาย:

 int *ptr = # ตรงน้ี * เป็นส่วนหน่ึงของการประกาศชนิดขอ้มูล หมายถงึ ptr เป็นพอยน์เตอรช์ี้
ไปที ่int

 *ptr = 100; ตรงน้ี * เป็นโอเปอเรเตอร ์Dereference หมายถงึ "ไปทีต่ าแหน่งที ่ptr ชีอ้ยู่แล้วเปลีย่น
ค่าในนัน้เป็น 100"

พอยน์เตอรก์บัอาเรย ์(Pointers and Arrays)

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 10

ใน C++ ชือ่ของอาเรย ์(เมือ่ใชอ้ย่างเดยีวโดยไม่มดีชันี) มกัจะถูกตคีวามว่าเป็น พอยน์เตอรไ์ปยงั
สมาชิกตวัแรกของอาเรย ์นี่เป็นความสมัพนัธท์ีส่ าคญัมาก
C++
#include <iostream>

int main() {
 int numbers[] = {10, 20, 30, 40, 50}; // อาเรย ์5 ช่อง
 int size = sizeof(numbers) / sizeof(numbers[0]);

 std::cout << "--- พอยน์เตอรก์บัอาเรย ์---" << std::endl;

 // 3.1 ชือ่อาเรยค์อืพอยน์เตอรไ์ปยงัสมาชกิตวัแรก
 std::cout << "ทีอ่ยู่ของ numbers[0] (&numbers[0]): " << &numbers[0] << std::endl;
 std::cout << "ชือ่อาเรย ์(numbers): " << numbers << std::endl; // จะแสดงทีอ่ยู่เดยีวกบั
&numbers[0]

 // 3.2 การสรา้งพอยน์เตอรใ์หช้ีไ้ปทีอ่าเรย์
 int *ptrArray = numbers; // ptrArray ชีไ้ปที ่numbers[0]
 std::cout << "ค่าของ ptrArray: " << ptrArray << std::endl;

 // 3.3 การเขา้ถงึสมาชกิอาเรยโ์ดยใชพ้อยน์เตอร์ (Pointer Arithmetic)
 // การเพิม่/ลดพอยน์เตอรจ์ะเลื่อนไปตามขนาดของชนิดขอ้มลูทีช่ ี้
 std::cout << "\nเขา้ถงึสมาชกิโดยใชพ้อยน์เตอรแ์ละ Pointer Arithmetic:" << std::endl;
 std::cout << "numbers[0] หรอื *ptrArray: " << *ptrArray << std::endl; // 10
 std::cout << "numbers[1] หรอื *(ptrArray + 1): " << *(ptrArray + 1) << std::endl; // 20
 std::cout << "numbers[2] หรอื *(ptrArray + 2): " << *(ptrArray + 2) << std::endl; // 30

 // 3.4 การวนลูปผ่านอาเรยโ์ดยใชพ้อยน์เตอร์
 std::cout << "\nวนลูปผ่านอาเรยด์ว้ยพอยน์เตอร:์" << std::endl;
 for (int i = 0; i < size; ++i) {
 // สามารถใช ้numbers[i] หรอื *(numbers + i) หรอื *(ptrArray + i)
 std::cout << "Element " << i << ": " << *(numbers + i) << std::endl;
 }

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 11

 // อกีวธิใีนการวนลูป: เลื่อนพอยน์เตอรไ์ปขา้งหน้า
 std::cout << "\nวนลูปผ่านอาเรยด์ว้ยการเลื่อนพอยน์เตอร:์" << std::endl;
 for (int *p = numbers; p < (numbers + size); ++p) { // p ชีไ้ปแต่ละต าแหน่ง
 std::cout << "Value: " << *p << std::endl; // Dereference p เพือ่เขา้ถงึค่า
 }

 return 0;
}
ผลลพัธ ์(ตวัอยา่ง):
--- พอยน์เตอรก์บัอาเรย ์---
ทีอ่ยู่ของ numbers[0] (&numbers[0]): 0x7ffe098319a0
ชือ่อาเรย ์(numbers): 0x7ffe098319a0
ค่าของ ptrArray: 0x7ffe098319a0

เขา้ถงึสมาชกิโดยใชพ้อยน์เตอรแ์ละ Pointer Arithmetic:
numbers[0] หรอื *ptrArray: 10
numbers[1] หรอื *(ptrArray + 1): 20
numbers[2] หรอื *(ptrArray + 2): 30

วนลูปผ่านอาเรยด์ว้ยพอยน์เตอร:์
Element 0: 10
Element 1: 20
Element 2: 30
Element 3: 40
Element 4: 50

วนลูปผ่านอาเรยด์ว้ยการเลื่อนพอยน์เตอร:์
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
ค าอธิบาย:

 numbers (ชือ่อาเรยเ์ฉยๆ) จะมค่ีาเท่ากบั &numbers[0] เสมอ

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 12

 Pointer Arithmetic: เมือ่คุณเพิม่ 1 เขา้ไปในพอยน์เตอร ์(เช่น ptrArray + 1) พอยน์เตอรจ์ะเลื่อนไป
ขา้งหน้าตามขนาดของชนิดขอ้มลูทีช่ ี ้(เช่น ถ้า int ม ี4 ไบต์ ptrArray + 1 จะเลื่อนไป 4 ไบต์) สิง่นี้ท าให ้
*(ptrArray + i) เทยีบเท่ากบั ptrArray[i]

พอยน์เตอรก์บัฟังกช์นั (Pointers and Functions)
การใชพ้อยน์เตอรใ์นการส่งผ่านพารามเิตอรไ์ปยงัฟังกช์นั หรอืการส่งคนืพอยน์เตอรจ์ากฟังกช์นั มี
ประโยชน์มาก
4.1 Pass by Pointer (ส่งผา่นด้วยพอยน์เตอร)์
เมือ่ส่งพอยน์เตอรเ์ขา้ไปในฟังกช์นั ฟังก์ชนัจะได้รบั ส าเนาของท่ีอยู่หน่วยความจ า แต่ทีอ่ยู่เหล่านัน้
ยงัคงชีไ้ปยงัต าแหน่งหน่วยความจ าเดมิ ท าใหฟั้งกช์นัสามารถ แก้ไขค่าต้นฉบบั ของตวัแปรทีอ่ยู่
ภายนอกฟังกช์นัได้
C++
#include <iostream>

// ฟังกช์นัส าหรบัเพิม่ค่าตวัแปรผ่านพอยน์เตอร์
void increment(int *valuePtr) {
 std::cout << " ในฟังกช์นั increment:" << std::endl;
 std::cout << " ทีอ่ยู่ของ valuePtr ในฟังกช์นั: " << &valuePtr << std::endl; // ทีอ่ยู่ของพอยน์เตอร์
เอง (ต่างจากทีอ่ยู่ภายนอก)
 std::cout << " ค่าที ่valuePtr เกบ็ (ชีไ้ป): " << valuePtr << std::endl; // ทีอ่ยู่เดยีวกบั num
ภายนอก
 std::cout << " ค่าที ่valuePtr ชีไ้ป (*valuePtr) ก่อนเพิม่: " << *valuePtr << std::endl;

 (*valuePtr)++; // เพิม่ค่าทีพ่อยน์เตอรช์ีไ้ป
 // หรอื *valuePtr = *valuePtr + 1;

 std::cout << " ค่าที ่valuePtr ชีไ้ป (*valuePtr) หลงัเพิม่: " << *valuePtr << std::endl;
}

// ฟังกช์นัส าหรบัแลกเปลีย่นค่าของตวัแปรสองตวัผ่านพอยน์เตอร์
void swap(int *a, int *b) {
 int temp = *a; // เกบ็ค่าที ่a ชีไ้ปไวใ้น temp
 *a = *b; // เอาค่าที ่b ชีไ้ปมาใส่ในต าแหน่งที ่a ชีไ้ป
 *b = temp; // เอาค่าใน temp (คอืค่าเดมิของ a) มาใส่ในต าแหน่งที ่b ชีไ้ป

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 13

}

int main() {
 std::cout << "--- พอยน์เตอรก์บัฟังกช์นั (Pass by Pointer) ---" << std::endl;

 int num = 10;
 std::cout << "ก่อนเรยีก increment: num = " << num << std::endl;
 std::cout << "ทีอ่ยู่ของ num (&num): " << &num << std::endl;

 increment(&num); // ส่งทีอ่ยู่ของ num ไปยงัฟังกช์นั increment
 std::cout << "หลงัเรยีก increment: num = " << num << std::endl; // num จะเปลีย่นเป็น 11

 std::cout << "\n--- ตวัอย่าง Swap ดว้ยพอยน์เตอร ์---" << std::endl;
 int x = 5, y = 10;
 std::cout << "ก่อนเรยีก swap: x = " << x << ", y = " << y << std::endl;
 swap(&x, &y); // ส่งทีอ่ยู่ของ x และ y
 std::cout << "หลงัเรยีก swap: x = " << x << ", y = " << y << std::endl; // x และ y จะสลบัค่ากนั

 return 0;
}
ผลลพัธ ์(ตวัอยา่ง):
--- พอยน์เตอรก์บัฟังก์ชนั (Pass by Pointer) ---
ก่อนเรยีก increment: num = 10
ทีอ่ยู่ของ num (&num): 0x7ffe427b5e4c
 ในฟังกช์นั increment:
 ทีอ่ยู่ของ valuePtr ในฟังกช์นั: 0x7ffe427b5e38
 ค่าที ่valuePtr เกบ็ (ชีไ้ป): 0x7ffe427b5e4c
 ค่าที ่valuePtr ชีไ้ป (*valuePtr) ก่อนเพิม่: 10
 ค่าที ่valuePtr ชีไ้ป (*valuePtr) หลงัเพิม่: 11
หลงัเรยีก increment: num = 11

--- ตวัอย่าง Swap ดว้ยพอยน์เตอร ์---
ก่อนเรยีก swap: x = 5, y = 10
หลงัเรยีก swap: x = 10, y = 5

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 14

ค าอธิบาย:
 void increment(int *valuePtr): ฟังกช์นันี้รบัพอยน์เตอรช์นิด int เป็นพารามเิตอร ์
 increment(&num);: เมือ่เรยีกใช ้เราส่ง ท่ีอยู่ ของ num เขา้ไป
 (*valuePtr)++;: ภายในฟังกช์นั เราใช้ *valuePtr เพือ่เขา้ถงึค่าจรงิของ num และแกไ้ขมนั ซึง่จะส่งผล

กระทบต่อ num ทีอ่ยู่ใน main ดว้ย
4.2 พอยน์เตอรก์บัอาเรยใ์นฟังกช์นั
เมือ่ส่งอาเรยเ์ขา้ไปในฟังก์ชนั จรงิๆ แล้ว C++ จะท าการ ส่งท่ีอยูข่องสมาชิกตวัแรก ของอาเรยน์ัน้ไป
(decay to pointer) ซึง่หมายความว่าเราก าลงัท างานกบัพอยน์เตอร์
C++
#include <iostream>

// ฟังกช์นัส าหรบัแสดงผลสมาชกิของอาเรย์ โดยรบัพอยน์เตอร ์(ชือ่อาเรย)์ และขนาด
void printArray(int *arr, int size) {
 std::cout << " ในฟังกช์นั printArray:" << std::endl;
 std::cout << " ทีอ่ยู่ของ arr ทีร่บัมา: " << arr << std::endl; // ทีอ่ยู่เดยีวกบั numbers ภายนอก
 std::cout << " ขนาดของ arr ในฟังกช์นั (เป็นขนาดพอยน์เตอร)์: " << sizeof(arr) << " ไบต์" <<
std::endl;
 // หมายเหตุ: sizeof(arr) ในฟังกช์นัจะไม่ใหข้นาดอาเรยจ์รงิ แต่เป็นขนาดของพอยน์เตอร ์(เช่น 8
ไบต์บน 64-bit system)

 for (int i = 0; i < size; ++i) {
 std::cout << " Element " << i << ": " << arr[i] << std::endl; // ใช ้arr[i] ไดเ้หมอืนอาเรยป์กต ิ
 // หรอื std::cout << " Element " << i << ": " << *(arr + i) << std::endl;
 }
}

// ฟังกช์นัส าหรบัหาผลรวมของสมาชกิในอาเรย์
int sumArray(int *arr, int size) {
 int total = 0;
 for (int i = 0; i < size; ++i) {
 total += arr[i];
 }
 return total;
}

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 15

int main() {
 int data[] = {1, 2, 3, 4, 5};
 int dataSize = sizeof(data) / sizeof(data[0]);

 std::cout << "--- พอยน์เตอรก์บัอาเรยใ์นฟังกช์นั ---" << std::endl;
 std::cout << "ใน main: ทีอ่ยู่ของ data: " << data << std::endl;

 printArray(data, dataSize); // ส่งชือ่อาเรย ์(ซึง่คอืพอยน์เตอร)์ และขนาด

 int arraySum = sumArray(data, dataSize);
 std::cout << "ผลรวมของสมาชกิในอาเรย:์ " << arraySum << std::endl;

 return 0;
}
ผลลพัธ ์(ตวัอยา่ง):
--- พอยน์เตอรก์บัอาเรยใ์นฟังกช์นั ---
ใน main: ทีอ่ยู่ของ data: 0x7ffe427b5e50
 ในฟังกช์นั printArray:
 ทีอ่ยู่ของ arr ทีร่บัมา: 0x7ffe427b5e50
 ขนาดของ arr ในฟังกช์นั (เป็นขนาดพอยน์เตอร)์: 8 ไบต์
 Element 0: 1
 Element 1: 2
 Element 2: 3
 Element 3: 4
 Element 4: 5
ผลรวมของสมาชกิในอาเรย:์ 15
ค าอธิบาย:

 เมือ่คุณส่ง data (ชือ่อาเรย)์ ไปยงั printArray จรงิๆ แล้วคุณก าลงัส่ง &data[0] (ทีอ่ยู่ของสมาชกิตวัแรก)
ไป

 ดงันัน้ พารามเิตอร์ int *arr กค็อืพอยน์เตอรท์ีร่บัทีอ่ยู่นัน้มา
 แมจ้ะรบัเป็น int *arr แต่คุณยงัสามารถใชส้ญัลกัษณ์ arr[i] เพือ่เขา้ถงึสมาชกิไดต้ามปกต ิซึง่

คอมไพเลอรจ์ะแปลเป็น *(arr + i) โดยอตัโนมตั ิ

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 16

ขอ้ควรระวงัในการใช้พอยน์เตอร:์
 Null Pointer Dereference: การพยายามเขา้ถงึค่าจากพอยน์เตอรท์ีเ่ป็น nullptr (ชีไ้ปที ่0x0) จะท าให้

โปรแกรม crash ได ้ควรตรวจสอบเสมอว่าพอยน์เตอรไ์ม่เป็น nullptr ก่อนใชง้าน
 Dangling Pointer: พอยน์เตอรท์ีช่ ีไ้ปยงัหน่วยความจ าทีถู่กคนืไปแล้ว (deallocated) การพยายาม

เขา้ถงึหน่วยความจ านัน้เป็นอนัตราย
 Memory Leaks: การจองหน่วยความจ าแบบพลวตัดว้ย new แล้วลมื delete จะท าใหห้น่วยความจ านัน้

ไม่ถูกคนืกลบัสู่ระบบ ซึง่น าไปสู่การใชห้น่วยความจ าเกนิความจ าเป็น
 Wild Pointers: พอยน์เตอรท์ีย่งัไม่ไดถู้กก าหนดค่าใหช้ีไ้ปทีไ่หน การใชง้านพอยน์เตอรเ์หล่านี้เป็น

อนัตรายอย่างยิง่
พอยน์เตอรเ์ป็นหวัขอ้ทีต่้องฝึกฝนท าความเขา้ใจและระมดัระวงัในการใชง้าน แต่เมือ่เชีย่วชาญแล้ว มนั
จะช่วยใหคุ้ณควบคุมการท างานของโปรแกรมในระดบัต ่าไดอ้ย่างมปีระสทิธภิาพมากครบั
คุณมคี าถามเพิม่เตมิเกีย่วกบัพอยน์เตอร ์หรอือยากใหผ้มแสดงตวัอย่างในสถานการณ์อืน่อกีไหมครบั?
แน่นอนครบั! ต่อไปนี้คอืรายละเอยีดเพิม่เตมิแบบครบถ้วน เขา้ใจง่าย พรอ้ม ภาพจ าทางความคิด +
ตวัอยา่ง + ค าอธิบายลึกขึ้น ส าหรบัหวัขอ้:

พอยน์เตอร ์(Pointers) ใน C++ (Dev-C++) เพ่ิมเติม

� 1. พอยน์เตอรค์ืออะไร?
พอยน์เตอร ์(Pointer) คอื ตวัแปรชนิดพเิศษที ่"เกบ็ทีอ่ยู่ (Address)" ของตวัแปรอืน่ ไม่ใช่ค่าโดยตรง
� เปรยีบเทยีบใหเ้ขา้ใจง่าย:

ตวัแปรธรรมดา พอยน์เตอร์

เกบ็ "ค่า" เกบ็ "ทีอ่ยู่ของตวัแปรอืน่"

เช่น int a = 10; int *p = &a;

� ภาพจ า:
[a] ----> [10] (ตวัแปรทัว่ไป)
[p] ----> [ทีอ่ยู่ของ a] (พอยน์เตอร)์

� ตวัอยา่งท่ี 1: การประกาศและใช้งานพื้นฐาน
#include <iostream>
using namespace std;

int main() {
 int a = 10;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 17

 int* p = &a;

 cout << "ค่า a = " << a << endl;
 cout << "ทีอ่ยู่ของ a (&a) = " << &a << endl;
 cout << "ค่าของ p (ทีอ่ยู่ที ่p เกบ็) = " << p << endl;
 cout << "ค่าที ่*p ชีไ้ปหา = " << *p << endl;

 return 0;
}
� จุดสงัเกต:

 int* p � ประกาศ pointer ส าหรบั int
 p = &a � p ชีไ้ปยงัตวัแปร a
 *p � เขา้ถงึค่าทีอ่ยู่ใน a (เพราะ p ชีไ้ปที ่a)

� 2. การใช้ & และ * อยา่งลึกซ้ึง

สญัลกัษณ์ ช่ือ ความหมาย

&x Address-of operator คนืค่าทีอ่ยู่ของตวัแปร

*p Dereference operator เขา้ถงึค่าที ่pointer ชีอ้ยู่

� ตวัอย่างที ่2: ใชเ้ปลีย่นค่าผ่าน pointer
int b = 5;
int* pb = &b;

*pb = 99; // เปลีย่นค่าของ b ผ่าน pointer
� ตอนนี้ b จะเปลีย่นเป็น 99

� 3. Pointer กบัอาเรย ์(Array)
เมือ่คุณประกาศอาเรย ์เช่น:
int arr[3] = {10, 20, 30};
int* p = arr; // p = &arr[0]
คุณสามารถใช ้pointer p เดนิในอาเรยไ์ด ้
� ตวัอย่างที ่3: เดนิอาเรยด์ว้ย pointer
#include <iostream>
using namespace std;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 18

int main() {
 int arr[3] = {10, 20, 30};
 int* p = arr;

 for (int i = 0; i < 3; i++) {
 cout << "ค่าที ่*(p + " << i << ") = " << *(p + i) << endl;
 }

 return 0;
}
� ความเขา้ใจ: *(p + i) เทยีบเท่ากบั arr[i]

� 4. Pointer กบัฟังกช์นั
คุณสามารถส่งพอยน์เตอรเ์ขา้ไปในฟังก์ชนั เพือ่:

 รบัค่าจากหลายตวัแปร (เหมอืน return ได้หลายค่า)
 เปลีย่นค่าจากฟังกช์นัหลกั (main)

� ตวัอย่างที ่4: ส่ง pointer เพือ่เปลีย่นค่าจรงิ
#include <iostream>
using namespace std;

void square(int* num) {
 *num = (*num) * (*num);
}

int main() {
 int x = 5;
 square(&x);
 cout << "x^2 = " << x << endl;

 return 0;
}
� ผลลพัธ:์ x^2 = 25

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 19

� 5. Pointer กบั Pointer (Double Pointer)
int x = 10;
int* p = &x;
int** pp = &p; // พอยน์เตอรข์องพอยน์เตอร ์
� ใชง้าน:
cout << **pp; // ไดค่้า x = 10
� ภาพจ า:
[pp] ---> [p] ---> [x] = 10

การประกาศและใช้ Pointer ใน C++

� 1. ค าจ ากดัความ
Pointer คอื ตวัแปรชนิดพเิศษที ่เกบ็ท่ีอยู ่(memory address) ของตวัแปรอืน่
� 2. รปูแบบการประกาศ
type* pointerName;
หรอื
type *pointerName;
� ทัง้สองรปูแบบใชไ้ดเ้หมอืนกนั (นิยมแบบแรกเพือ่ความชดัเจน)
� 3. ตวัอยา่งการประกาศ
int a = 100;
int* ptr; // ประกาศ pointer ส าหรบัเกบ็ทีอ่ยู่ของตวัแปร int
ptr = &a; // ให ้ptr ชีไ้ปยงัตวัแปร a
� &a คอื address ของตวัแปร a
� *ptr คอืการเขา้ถงึค่าที ่pointer ptr ชีอ้ยู่ (ในทีน่ี้คอื a)

� ตวัอยา่งโปรแกรม: การประกาศและใช้ Pointer
#include <iostream>
using namespace std;

int main() {
 int a = 100;
 int* p = &a;

 cout << "ค่า a = " << a << endl;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 20

 cout << "ทีอ่ยู่ของ a (&a) = " << &a << endl;
 cout << "ค่าของ p (ทีอ่ยู่ทีม่นัชี)้ = " << p << endl;
 cout << "ค่าทีอ่ยู่ใน *p (ค่าที ่pointer ชีไ้ปหา) = " << *p << endl;

 return 0;
}

� ผลลพัธท่ี์ได้ (ตวัอยา่ง):
ค่า a = 100
ทีอ่ยู่ของ a (&a) = 0x61ff08
ค่าของ p (ทีอ่ยู่ทีม่นัชี)้ = 0x61ff08
ค่าทีอ่ยู่ใน *p (ค่าที ่pointer ชีไ้ปหา) = 100

� ค าอธิบายเพ่ิมเติม

ค าสัง่ ความหมาย

int* p ประกาศตัวแปร p เป็น pointer ทีเ่กบ็ address ของ int

p = &a ให ้p ชีไ้ปยงั a (เกบ็ address ของ a)

*p ดงึค่าทีอ่ยู่ใน address ที ่p ชีอ้ยู่

&a หาทีอ่ยู่ของตวัแปร a

� สรปุส าคญั:

สญัลกัษณ์ ความหมาย ตวัอยา่ง

* ใชป้ระกาศ pointer หรอืเขา้ถงึค่าที ่pointer ชีอ้ยู่ *p = 50;

& ใชด้งึทีอ่ยู่ของตวัแปร p = &a;

� ภาพจ า (Conceptual Diagram)
int a = 100;
int* p = &a;

[a] = 100 --> Address: 0x1234
[p] = 0x1234 --> ชีไ้ปยงัตวัแปร a

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 21

ข้อมลูเพ่ิมเติมแบบเจาะลึก
� “การประกาศและใช้ Pointer”
ครอบคลุมแนวคดิพืน้ฐาน → ขัน้กลาง → ขอ้ควรระวงั → แบบฝึกหดั พรอ้ม ภาพอธิบายจ าลอง

� 1. โครงสร้างหน่วยความจ าเบื้องต้น
int a = 10;
int* p = &a;
� หน่วยความจ าภายในจะเป็นแบบน้ี:

ตวัแปร ค่า ท่ีอยู ่(สมมุติ)

a 10 0x1000

p 0x1000 (ทีอ่ยู่ของ a) 0x2000

� ความสมัพนัธ:์
 a = 10
 p = &a = 0x1000
 *p = 10

 2. การใช้งานจริง: อ่านและเขียนค่าผ่าน pointer
#include <iostream>
using namespace std;

int main() {
 int a = 5;
 int* p = &a;

 cout << "ค่าเดมิของ a: " << a << endl;

 *p = 20; // เปลีย่นค่าของ a ผ่าน pointer

 cout << "ค่าของ a หลงัใช ้pointer เปลีย่น: " << a << endl;

 return 0;
}
� ผลลพัธ:์

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 22

ค่าเดมิของ a: 5
ค่าของ a หลงัใช ้pointer เปลีย่น: 20

� 3. การเปล่ียนค่าตวัแปรในฟังก์ชนั
� แบบไม่ใช้ pointer (ค่าไม่เปล่ียน)
void modify(int x) {
 x = 999;
}
� แบบใช้ pointer (ค่าเปล่ียนจริง)
void modify(int* x) {
 *x = 999;
}
� ตวัอยา่ง:
#include <iostream>
using namespace std;

void modify(int* ptr) {
 *ptr = 999;
}

int main() {
 int value = 10;
 modify(&value);
 cout << "ค่าหลงั modify: " << value << endl; // ได ้999
 return 0;
}

� 4. การอ่าน pointer ด้วย cout

Expression ความหมาย

p แสดงทีอ่ยู่ที ่pointer ชี ้

&p ทีอ่ยู่ของตวั pointer เอง

*p ค่าทีอ่ยู่ในต าแหน่งที ่pointer ชี ้

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 23

� 5. ขอ้ควรระวงัในการใช้ Pointer

กรณี ปัญหา

ลมืก าหนดค่าเริม่ต้นให ้pointer อาจชีไ้ปยงัทีอ่ยู่สุ่ม (Segmentation Fault)

ใช ้pointer หลงั delete Dangling Pointer

ใช ้pointer แบบ null โดยไม่ไดต้รวจ อาจ crash ได ้

� วธิป้ีองกนั:
int* p = nullptr; // ก าหนดค่าเริม่ต้นให ้pointer ปลอดภยั

 7. ภาพประกอบแนวคิด
int x = 50;
int* p = &x;

Memory:
+----------+-----------+
| Address | Value |
+----------+-----------+
| 0x1000 | 50 (x) |
| 0x2000 | 0x1000 (p)|
+----------+-----------+

*p => ไปที ่0x1000 => ไดค่้า 50

� สรปุภาพรวม

ค าสัง่ ความหมาย

int* p; ประกาศ pointer ทีเ่กบ็ทีอ่ยู่ของ int

p = &a; ให ้pointer ชีไ้ปยงัตวัแปร a

*p = 20; เปลีย่นค่าที ่pointer ชีอ้ยู่ใหเ้ป็น 20

&a หา address ของ a

แนวคิดส าคญั:

 ท่ีอยูห่น่วยความจ า (Address): ต าแหน่งเฉพาะใน RAM ทีข่อ้มลูถูกเกบ็ไว้
 ค่า (Value): ขอ้มลูทีถู่กเกบ็อยู่ทีท่ ีอ่ยู่หน่วยความจ านัน้

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 24

 & (Address-of Operator): ใชเ้พือ่ หาท่ีอยู่ ของตวัแปรปกติ
 * (Dereference Operator): ใชเ้พือ่ เขา้ถึงค่า ทีอ่ยู่ ณ ทีอ่ยู่หน่วยความจ าทีพ่อยน์เตอรช์ี้ไป

C++
#include <iostream> // ส าหรบั std::cout และ std::endl
#include <string> // ส าหรบั std::string

int main() {
 std::cout << "===== การประกาศและการใชง้านพอยน์เตอรเ์บือ้งต้น =====" << std::endl;

 // 1. ประกาศตวัแปรปกต ิ(Value Variables)
 // ตวัแปรเหล่านี้เกบ็ค่าโดยตรง
 int age = 25;
 double salary = 50000.75;
 std::string name = "Alice";

 std::cout << "\n--- ขอ้มลูของตวัแปรปกต ิ---" << std::endl;
 std::cout << "ชือ่ตวัแปร: age" << std::endl;
 std::cout << " ค่า: " << age << std::endl; // แสดงค่า 25
 std::cout << " ทีอ่ยู่ (&age): " << &age << std::endl; // แสดงทีอ่ยู่หน่วยความจ าของ age

 std::cout << "ชือ่ตวัแปร: salary" << std::endl;
 std::cout << " ค่า: " << salary << std::endl; // แสดงค่า 50000.75
 std::cout << " ทีอ่ยู่ (&salary): " << &salary << std::endl; // แสดงทีอ่ยู่หน่วยความจ าของ salary

 std::cout << "ชือ่ตวัแปร: name" << std::endl;
 std::cout << " ค่า: " << name << std::endl; // แสดงค่า "Alice"
 std::cout << " ทีอ่ยู่ (&name): " << &name << std::endl; // แสดงทีอ่ยู่หน่วยความจ าของ
name

 // 2. ประกาศพอยน์เตอร ์(Pointer Variables)
 // พอยน์เตอรจ์ะเกบ็ทีอ่ยู่หน่วยความจ าของตวัแปรอืน่
 // รปูแบบ: ชนิดขอ้มลู_ที_่พอยน์เตอร_์ชี_้ไป * ชือ่พอยน์เตอร์;
 int *ptrAge; // พอยน์เตอรท์ีช่ ีไ้ปยงั int
 double *ptrSalary; // พอยน์เตอรท์ีช่ ีไ้ปยงั double

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 25

 std::string *ptrName; // พอยน์เตอรท์ีช่ ีไ้ปยงั std::string

 std::cout << "\n--- พอยน์เตอรเ์มือ่ประกาศ (ยงัไม่ก าหนดค่า) ---" << std::endl;
 // พอยน์เตอรท์ีย่งัไม่ถูกก าหนดค่าจะเกบ็ "ค่าขยะ" (garbage value)
 // การพยายามเขา้ถงึค่าทีพ่อยน์เตอรเ์หล่านี้ชีไ้ปเป็นอนัตราย (undefined behavior)
 std::cout << "ptrAge (ยงัไม่ก าหนด): " << ptrAge << std::endl; // อาจแสดงค่าขยะ
 std::cout << "ptrSalary (ยงัไม่ก าหนด): " << ptrSalary << std::endl; // อาจแสดงค่าขยะ
 std::cout << "ptrName (ยงัไม่ก าหนด): " << ptrName << std::endl; // อาจแสดงค่าขยะ

 // 3. ก าหนดค่าใหพ้อยน์เตอร:์ ใหช้ีไ้ปยงัทีอ่ยู่ของตวัแปรปกติ
 // ใชโ้อเปอเรเตอร์ & (address-of) เพือ่รบัทีอ่ยู่ของตวัแปร
 ptrAge = &age; // ptrAge ชีไ้ปยงัทีอ่ยู่ของตวัแปร 'age'
 ptrSalary = &salary; // ptrSalary ชีไ้ปยงัทีอ่ยู่ของตวัแปร 'salary'
 ptrName = &name; // ptrName ชีไ้ปยงัทีอ่ยู่ของตวัแปร 'name'

 std::cout << "\n--- พอยน์เตอรห์ลงัก าหนดค่า (ชีไ้ปทีต่วัแปรปกต)ิ ---" << std::endl;
 std::cout << "ptrAge เกบ็ทีอ่ยู่: " << ptrAge << std::endl; // จะแสดงทีอ่ยู่เดยีวกบั &age
 std::cout << "ptrSalary เกบ็ทีอ่ยู่: " << ptrSalary << std::endl; // จะแสดงทีอ่ยู่เดยีวกบั &salary
 std::cout << "ptrName เกบ็ทีอ่ยู่: " << ptrName << std::endl; // จะแสดงทีอ่ยู่เดยีวกบั &name

 // 4. เขา้ถงึค่าทีพ่อยน์เตอรช์ีไ้ป: ใชโ้อเปอเรเตอร ์* (dereference)
 std::cout << "\n--- การเขา้ถงึค่าผ่านพอยน์เตอรด์ว้ย * ---" << std::endl;
 std::cout << "ค่าที ่ptrAge ชีไ้ป (*ptrAge): " << *ptrAge << std::endl; // จะไดค่้า 25
 std::cout << "ค่าที ่ptrSalary ชีไ้ป (*ptrSalary): " << *ptrSalary << std::endl; // จะไดค่้า
50000.75
 std::cout << "ค่าที ่ptrName ชีไ้ป (*ptrName): " << *ptrName << std::endl; // จะไดค่้า "Alice"

 // 5. เปลีย่นค่าของตวัแปรผ่านพอยน์เตอร ์
 // เราสามารถใช ้* เพือ่เขา้ถงึค่าและท าการแกไ้ขไดโ้ดยตรง
 *ptrAge = 26; // เปลีย่นค่าของ age เป็น 26 ผ่าน ptrAge
 *ptrSalary += 10000; // เพิม่ค่า salary อกี 10000 ผ่าน ptrSalary
 *ptrName = "Bob"; // เปลีย่นค่า name เป็น "Bob" ผ่าน ptrName

 std::cout << "\n--- ค่าของตวัแปรปกตหิลงัการแกไ้ขผ่านพอยน์เตอร์ ---" << std::endl;

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 26

 std::cout << "age (เปลีย่นผ่าน *ptrAge): " << age << std::endl; // แสดง 26
 std::cout << "salary (เปลีย่นผ่าน *ptrSalary): " << salary << std::endl; // แสดง 60000.75
 std::cout << "name (เปลีย่นผ่าน *ptrName): " << name << std::endl; // แสดง "Bob"

 std::cout << "\n--- ตรวจสอบค่าผ่านพอยน์เตอรอ์กีครัง้ ---" << std::endl;
 std::cout << "ค่าที ่*ptrAge ชีไ้ป: " << *ptrAge << std::endl; // แสดง 26
 std::cout << "ค่าที ่*ptrSalary ชีไ้ป: " << *ptrSalary << std::endl; // แสดง 60000.75
 std::cout << "ค่าที ่*ptrName ชีไ้ป: " << *ptrName << std::endl; // แสดง "Bob"

 // 6. ก าหนดใหพ้อยน์เตอรไ์ม่ชีไ้ปทีใ่ด (nullptr/NULL)
 // เป็นแนวทางปฏบิตัทิีด่เีพือ่ป้องกนัการใชพ้อยน์เตอรท์ีช่ ีไ้ปทีอ่ยู่ทีไ่ม่ถูกต้อง
 ptrAge = nullptr; // ใช ้nullptr ใน C++11 ขึน้ไป
 // หรอื ptrAge = NULL; // ส าหรบั C++ รุ่นเก่า

 std::cout << "\n--- พอยน์เตอรท์ีก่ าหนดเป็น nullptr ---" << std::endl;
 std::cout << "ptrAge (หลงัเป็น nullptr): " << ptrAge << std::endl; // มกัแสดง 0x0 หรอื 0

 // การพยายาม dereference พอยน์เตอรท์ีเ่ป็น nullptr จะท าใหโ้ปรแกรม crash
 // if (ptrAge != nullptr) {
 // std::cout << *ptrAge << std::endl; // บรรทดันี้จะท างานไดถ้้า ptrAge ไม่ใช่ nullptr
 // }

 return 0; // จบการท างาน
}
ผลลพัธ ์(Output):
(ทีอ่ยู่หน่วยความจ า 0x... จะแตกต่างกนัไปในแต่ละครัง้ทีร่นัโปรแกรม)
===== การประกาศและการใชง้านพอยน์เตอรเ์บือ้งต้น =====

--- ขอ้มลูของตวัแปรปกต ิ---
ชือ่ตวัแปร: age
 ค่า: 25
 ทีอ่ยู่ (&age): 0x7ffd1e83f3e4
ชือ่ตวัแปร: salary
 ค่า: 50000.75

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 27

 ทีอ่ยู่ (&salary): 0x7ffd1e83f3e8
ชือ่ตวัแคร: name
 ค่า: Alice
 ทีอ่ยู่ (&name): 0x7ffd1e83f3f0

--- พอยน์เตอรเ์มือ่ประกาศ (ยงัไม่ก าหนดค่า) ---
ptrAge (ยงัไม่ก าหนด): 0x7ffd1e83f3c4
ptrSalary (ยงัไม่ก าหนด): 0x7ffd1e83f3c8
ptrName (ยงัไม่ก าหนด): 0x7ffd1e83f3d0

--- พอยน์เตอรห์ลงัก าหนดค่า (ชีไ้ปทีต่วัแปรปกต)ิ ---
ptrAge เกบ็ทีอ่ยู่: 0x7ffd1e83f3e4
ptrSalary เกบ็ทีอ่ยู่: 0x7ffd1e83f3e8
ptrName เกบ็ทีอ่ยู่: 0x7ffd1e83f3f0

--- การเขา้ถงึค่าผ่านพอยน์เตอรด์ว้ย * ---
ค่าที ่ptrAge ชีไ้ป (*ptrAge): 25
ค่าที ่ptrSalary ชีไ้ป (*ptrSalary): 50000.75
ค่าที ่ptrName ชีไ้ป (*ptrName): Alice

--- ค่าของตวัแปรปกตหิลงัการแกไ้ขผ่านพอยน์เตอร์ ---
age (เปลีย่นผ่าน *ptrAge): 26
salary (เปลีย่นผ่าน *ptrSalary): 60000.75
name (เปลีย่นผ่าน *ptrName): Bob

--- ตรวจสอบค่าผ่านพอยน์เตอรอ์กีครัง้ ---
ค่าที ่*ptrAge ชีไ้ป: 26
ค่าที ่*ptrSalary ชีไ้ป: 60000.75
ค่าที ่*ptrName ชีไ้ป: Bob

--- พอยน์เตอรท์ีก่ าหนดเป็น nullptr ---
ptrAge (หลงัเป็น nullptr): 0x0

สรปุขัน้ตอนและหลกัการ:

ศูนยห์นงัสือราคานกัเรียน

Dev-C++ Programming : Intermediate Level หน้า 28

1. ประกาศตวัแปรปกติ: สรา้งตวัแปรทีเ่กบ็ค่าขอ้มลูโดยตรง
int age = 25;

2. ประกาศพอยน์เตอร:์ ระบุชนิดขอ้มลูทีพ่อยน์เตอรจ์ะชี้ไป ตามดว้ยเครือ่งหมายดอกจนั * และชือ่พอยน์
เตอร ์
int *ptrAge; // ptrAge สามารถเกบ็ทีอ่ยู่ของตวัแปร int ได้

3. ก าหนดค่าให้พอยน์เตอร:์ ใชโ้อเปอเรเตอร ์& (address-of) หน้าตวัแปรปกต ิเพือ่ "รบัทีอ่ยู่" ของตวั
แปรนัน้มาเกบ็ไวใ้นพอยน์เตอร์
ptrAge = &age; // ตอนนี้ ptrAge ชีไ้ปทีต่วัแปร age

4. เขา้ถึงค่าผา่นพอยน์เตอร:์ ใชโ้อเปอเรเตอร์ * (dereference) หน้าชือ่พอยน์เตอร ์เพือ่ "เขา้ถงึค่า" ที่
อยู่ในต าแหน่งหน่วยความจ าทีพ่อยน์เตอรน์ัน้ชีอ้ยู่
std::cout << *ptrAge; // จะแสดงค่า 25 (ค่าของ age)

5. แก้ไขค่าผ่านพอยน์เตอร:์ ใชโ้อเปอเรเตอร์ * เพือ่เขา้ถงึค่า แล้วก าหนดค่าใหม่ให้
*ptrAge = 26; // จะท าใหค่้าของ age เปลีย่นเป็น 26

6. nullptr (หรือ NULL): ใชเ้พือ่ก าหนดให้พอยน์เตอรไ์ม่ชี้ไปทีใ่ด ซึง่เป็นสิง่ส าคญัในการป้องกนัการ
เขา้ถงึหน่วยความจ าโดยไม่ตัง้ใจ (null pointer dereference)
การท าความเขา้ใจการประกาศและใชพ้อยน์เตอร ์รวมถงึความแตกต่างระหว่าง & และ * เป็นสิง่ส าคญั
มากในการเรยีนรู ้C++ ครบั หากมขีอ้สงสยัเพิม่เตมิ ถามไดเ้ลยนะครบั!
แน่นอนครบั! หวัขอ้นี้คอื หวัใจของการเข้าใจ Pointer ในภาษา C++
เราจะเจาะลกึค าสัง่ & และ * อย่างชดัเจน พรอ้มตวัอย่างและค าอธบิายภาพจ าแบบเขา้ใจง่าย ✅

การใช้ & (address-of) และ * (dereference) ใน C++

� & (Address-of Operator)
ใชเ้พือ่ ดึง “ท่ีอยูใ่นหน่วยความจ า” ของตวัแปร
� รปูแบบ:
int a = 10;
int* p = &a;

ค าสัง่ ความหมาย

&a ทีอ่ยู่ของตวัแปร a

p = &a ให ้pointer p ชีไ้ปยงัตวัแปร a

� * (Dereference Operator)
ใชเ้พือ่ เขา้ถึงค่าท่ีอยูใ่น address ท่ี pointer ช้ีไปหา

	FP
	0_คำนำ
	0_สารบัญ
	6_พอยน์เตอร์ (Pointers)

