

Fundamental of Transport Phenomena: Momentum, Heat and Mass Balance Approach

Fundamental of Transport Phenomena: Momentum, Heat and Mass Balance Approach

Publication of this textbook was funded by Thammasat University under the project of Academic Textbooks worthy of publishing and distributed as low-priced editions.

Photocopying instead of using books is destroying intellectual creativity.

Fundamental of Transport Phenomena: Momentum, Heat and Mass Balance Approach

Dr. Wanwipa Siriwatwechakul Assistant Professor

School of Bio-Chemical Engineering and Technology
Sirindhorn International Institute of Technology
Thammasat University

Wanwipa Siriwatwechakul.

Fundamental of transport phenomena: momentum, heat and mass balance approach.

1. Transport theory. 2. Momentum transfer. 3. Heat—Transmission. 4. Mass transfer.

TP156

ISBN 978-616-314-778-3

ISBN (E-BOOK) 978-616-314-779-0

Copyright by Assistant Professor Dr. Wanwipa Siriwatwechakul

All rights reserved

First edition, October 2021, 50 copies

e-book October 2021

Published and distributed by Thammasat University Press

Tha Prachan: The 60th Anniversary Thammasat Bldg, U1 Flr.,

Thammasat University

Prachan Road, Bangkok 10200, Thailand

Tel. 0-2223-9232

Rangsit Campus: Dome Administration Bldg, 317, 3rd Flr.,

Thammasat University, Paholyothin Road, Klong Nueng,

Klong Luang, Pathum Thani 12120, Thailand

Tel. 0-2564-2859-60 Fax 0-2564-2860

http://thammasatpress.tu.ac.th, e-mail: unipress@tu.ac.th

Printed by Thammasat Printing House

Cover picture: https://pxhere.com/en/photo/1203596

Contents

List of Tables	(10)
List of Figures	(11)
คำนำ	(14)
Preface	(16)
Section I: Momentum Transfer	
CHAPTER 1 MOMENT TRANSFER FLUX	3
1.1. Newton's Law of Viscosity	4
1.2. Non-Newtonian Fluids	7
1.3. Momentum Flux Tensor	9
CHAPTER 2 MOMENTUM BALANCE	13
2.1. Momentum Balance in the Cartesian Coordinate	13
Example 2.1. Newtonian Fluid Flow between Two Parallel Plates	14
Example 2.2. Newtonian Fluid Flow between Two Parallel Plates	
with External Pressure	19
Example 2.3. Liquid Flow down a Flat Plate	21
2.2. Momentum Balance in the Cylindrical Coordinate	25
Example 2.4. Poiseuille Flow	25
Example 2.5. Horizontal Flow in a Circular Tube	30
Case Study: 3D Printing	34
2.3. End of Chapter Exercise	37
CHAPER 3 EQUATION OF MOTION	41
3.1. Continuity Equation	41
3.2. Applications of Continuity Equation	43
3.3. Equation of Motion	44
3.4. Navier-Stokes Equation	47

CHAPER 4 APPLICATIONS OF NAVIER-STOKES EQUATION	50
4.1. Applications in the Cartesian Coordinate	51
Example 4.1. Revisit Newtonian Fluid Flow between Two Parallel	
Plates	51
4.2. Applications in the Cylindrical Coordinate	54
Example 4.2. Poiseuille Flow Revisit	54
Example 4.3. Couette flow	57
Case Study: Viscosity Measurement using Couette Viscometer	61
4.3. Applications in the Spherical Coordinate	62
Example 4.4. Rotating Sphere	62
Momentum Balance Project	65
4.4. End of Chapter Exercise	66
CHAPER 5 DIMENSIONLESS ANALYSIS	68
5.1. Non-dimensionalization and Characteristic Length Scales	68
Example 5.1. Dimensionless Analysis of Newtonian Fluid Flow	
between Two Parallel Plates	68
Example 5.2. Dimensionless Poiseuille Flow	72
5.2. End of Chapter Exercise	75
Section II: Energy Transfer	
CHAPTER 6 ENERGY TRANSFER	79
6.1. Three Modes of Heat Transfer	79
Heat Conduction	79
Example 6.1. Conduction in Solid Wall	82
Heat Convection	83
Heat Radiation	85
6.2. Energy Conservation	86
Example 6.2. Application of Energy Balance in Heat Transfer	87
6.3. End of Chapter Exercise	90

CHAPTER 7 HEAT CONDUCTION	92
7.1. Energy Balance and Boundary Conditions	93
7.2. Energy Balance in Cylindrical Geometry	96
Example 7.1. Heat Conduction in a Cylindrical Wire	96
7.3. Energy Balance in Spherical Geometry	100
Example 7.2. Heat Conduction with a Chemical Heat Source	100
Case Study: Urban Heat Island	105
7.4. End of Chapter Exercise	107
CHAPTER 8 HEAT DIFFUSION EQUATION	110
8.1. Heat Diffusion Equation in the Cartesian Coordinate	110
8.2. Heat Diffusion Equation in the Cylindrical Coordinate	113
8.3. Heat Diffusion Equation in the Spherical Coordinate	116
8.4. End of Chapter Exercise	119
CHAPTER 9 CONDUCTION IN COMPOSITE MATERIALS	123
9.1. Concept of Thermal Resistance	123
9.2. Composite Materials in Rectangular Geometry	125
Example 9.1. Thermal Resistance Connected in Parallel	127
9.3. Composite Materials in Cylindrical Geometry	128
9.4. End of Chapter Exercise	132
CHAPTER 10 TRANSIENT HEAT CONDUCTION	138
10.1. Lump Capacitance Method	138
10.2. End of Chapter Exercise	142
Section III: Mass Transfer	
CHAPTER 11 MECHANISMS OF MASS TRANSPORT	147
11.1. Introduction	147
11.2. Mixture Composition	149
11.3. Binary Mixture	150

11.4.	Fick's Law of Diffusion	150
11.5.	Absolute Mass Flux	154
CHAPTER	12 MOLECULAR MASS DIFFUSION	158
12.1.	Stationary Media Approximation	159
	Example 12.1. Gas Diffusion through Steel Wall	159
	Example 12.2. Gas Diffusion through Membrane	160
12.2.	Mass Diffusion Equation	164
	Example 12.3. Quasi-steady State Diffusion	167
12.3.	Equimolar Counter diffusion	170
	Example 12.4. Maintain Ammonia Pressure	172
12.4.	End of Chapter Exercise	176
CHAPTER	13 MASS BALANCE WITH NO CHEMICAL REACTION	180
13.1.	Introduction	180
13.2.	Stagnant Gas Film Assumption	181
	Example 13.1. Diffusion through Stagnant Gas Film	182
	Example 13.2. Revisit Constant z1 Assumption	186
	Example 13.3. Evaporation from Spherical Droplets	188
	Case Study: Cool Down by Sweating	192
13.3.	End of Chapter Exercise	195
CHAPTER	14 MASS DIFFUSION WITH CHEMICAL REACTIONS	197
14.1.	Heterogeneous Catalytic Chemical Reactions	198
14.2.	Homogeneous Catalytic Chemical Reactions	204
14.3.	End of Chapter Exercise	207
Symbols		211

Appendix A.	213
Table A.1. Newton's Law of Viscosity	213
Table A.2. Continuity Equation	214
Table A.3. Continuity Equation for Incompressible Fluids (ρ = constant) 215
Table A.4. The Equation of Motion in Terms of	215
Table A.5. The Equation of Motion for a Newtonian and	
Incompressible Fluid (constant μ and ρ)	217
Table A.6. Fourier's Law of Heat Conduction	218
Table A.7. Fick's Law of Binary Diffusion	219
Appendix B. Vector and Tensor Differential Operations	220
A. The gradient of a scalar field	221
B. The divergence of a vector field	221
C. The curl of a vector field	222
BIBLIOGRAPHY	223
INDEX	225

List of Tables

Table 1-1.	Viscosity of some gases and liquids at one atmospheric pressure	7
Table 1-2.	Summary of notation for momentum fluxes	12
Table 6-1.	Thermophysical properties of selected materials at	
	T = 300 K	81
Table 6-2.	Some convection heat transfer coefficients for different	
	processes	84
Table 7-1.	Thermophysical properties of common construction	
	materials	107
Table 11-1.	Binary diffusion coefficients (Diffusivity) at one	
	atmosphere	153
Table 0-1.	Summary of the differential operations in the rectangular	
	coordinate system	220

List of Figures

Figure	1.1.	Illustration of shear stress vs strain on a fluid element.	4
Figure	1.2.	Different shear behaviors of Newtonian and	
		non-Newtonian fluids.	8
Figure	1.3.	Convective momentum flux through x, y and z planes.	11
Figure	2.1.	Example 2.1. Newtonian fluid flow between two parallel plates.	15
Figure	2.2.	Control volume for Example 2.1.	15
Figure	2.3.	Momentum flux components relate to flow in x-direction.	16
Figure	2.4.	Velocity profile of the Newtonian fluid flow between two	
		parallel plates.	19
Figure	2.5.	Velocity profile for Example 2.2.	20
Figure	2.6.	A.) Liquid flow down an inclined flat plate. B.) Close-up look at	
		velocity distribution.	22
Figure	2.7.	Control volume and momentum flux components for	
		Example 2.3.	22
Figure	2.8.	Newtonian fluid flow in a circular tube.	26
Figure	2.9.	Momentum flux components on liquid control volume.	27
Figure	2.10.	Horizontal flow in a circular tube.	30
Figure	2.11.	Schematic of the printer head.	34
Figure	2.12.	An incline rectangular channel.	37
Figure	2.13.	Schematic of dip coating process.	38
Figure	2.14.	Liquid drainage from a side of the solid substrate.	38
Figure	2.15.	Viscosity measurement using a capillary device.	40
Figure	3.1.	Arbitrary liquid control volume in the Cartesian coordinate.	42
Figure	3.2.	Liquid control volume for momentum balance.	44
Figure	4.1.	Newtonian fluid flow between two parallel plates.	51
Figure	4.2.	Flow of Newtonian fluids in a circular tube.	54
Figure	4.3.	Schematic of Couette viscometer.	57

Figure 4.4.	Rotating sphere in a quiescent fluid.	62
Figure 4.5.	Two concentric, rotating cylinders.	66
Figure 5.1.	Example 5.1 Newtonian fluid flow between two plates.	69
Figure 5.2.	Plot of dimensionless velocity vs. dimensionless distance	71
Figure 5.3.	Plot of dimensionless velocity vs. dimensionless distance with	
	Non-trivial pressure gradient.	72
Figure 5.4.	Horizontal flow in a circular tube for dimensionless analysis	73
Figure 6.1.	One-dimension heat conduction.	80
Figure 6.2.	One-dimension heat conduction through furnace wall.	82
Figure 6.3.	Convection from a hot surface to a moving fluid.	83
Figure 6.4.	Radiation exchange between a surface and its surroundings.	85
Figure 6.5.	Arbitrary control volume for energy balance.	86
Figure 6.6.	Heat conduction through a brick wall.	87
Figure 6.7.	Energy balance at solid-air interface.	88
Figure 7.1.	Control volume defined to determine the temperature	
	distribution inside the brick wall.	94
Figure 7.2.	Control volume for Example 7.1.	97
Figure 7.3.	Schematic of spherical heat pack, coated with an insulator.	100
Figure 7.4.	Control volume for energy balance in Example 7.2.	101
Figure 8.1.	Solid rectangular control volume.	111
Figure 8.2.	Cylindrical control volume.	113
Figure 8.3.	Spherical control volume.	116
Figure 8.4.	Schematic of nuclear rod and the surrounding concrete block.	119
Figure 9.1.	Example to illustrate the concept of thermal resistance in	
	a rectangular geometry.	124
Figure 9.2.	Heat conduction through composite wall.	125
Figure 9.3.	Thermal resistance connected in series.	127
Figure 9.4.	Composite materials-thermal resistance in parallel.	127
Figure 9.5.	Cylindrical tube of composite materials.	129

Figure 10.1.	Quenching steel casting in oil.	139
Figure 11.1.	Binary gas diffusion.	148
Figure 11.2.	Diffusion of helium through a slab of fused silica	151
Figure 11.3.	Illustration of relative velocity.	155
Figure 12.1.	Diffusion of hydrogen through a steel wall.	159
Figure 12.2.	Gas diffuses through plastic membrane.	161
Figure 12.3.	Control volume for mass balance	162
Figure 12.4.	Rectangular control volume for mass balance	164
Figure 12.5.	Spherical container of fused silica (SiO_2)	168
Figure 12.6.	Equimolar counterdiffusion.	171
Figure 12.7.	Venting to maintain NH_3 pressure at 1 atm.	173
Figure 12.8.	Equimolar counterdiffusion of ammonia gas and air.	173
Figure 12.9.	Schematic of the vent with ammonia flowrate = 5 kg/hr .	175
Figure 12.10.	Schematic of a HFC vehicle.	177
Figure 13.1.	Evaporation in one dimension.	182
Figure 13.2.	Control volume used to determine the rate that the	
	liquid level (z_1) recedes.	186
Figure 13.3.	Spherical droplet.	188
Figure 13.4.	Mass control volume for spherical geometry.	189
Figure 13.5.	Schematic of evaporation process on your skin.	192
Figure 13.6.	Schematic of sweat (A) evaporating through air (B).	193
Figure 14.1.	Heterogeneous catalytic chemical reaction.	198
Figure 14.2.	Concentration distribution near the catalyst surface.	199
Figure 14.3.	Control volume for Example 14.1.	200
Figure 14.4.	Diffusion with homogeneous catalytic chemical reaction.	204
Figure 14.5.	Control volume for homogeneous chemical reaction analysis.	205

คำนำ

การทำความเข้าใจปรากฏการณ์ถ่ายโอนเป็นสิ่งที่สำคัญมากสำหรับนักศึกษาสาขาวิศวกรรม เคมี เนื่องจากเป็นเนื้อหาที่ต้องสังเคราะห์ความรู้จากหลายๆแขนงมาผนวกกัน โดยเนื้อหาจะครอบคลุม ตั้งแต่การถ่ายโอนของของเหลวโดยการไหล การถ่ายโอนพลังงาน และการถ่ายโอนมวลสาร โดย กระบวนการเหล่านี้มีทั้งความเหมือนและความแตกต่าง ความเข้าใจในรายละเอียดของปรากฏการณ์ เหล่านี้จะมีประโยชน์ในการทำความเข้าใจกระบวนการทางเคมีซึ่งนักศึกษาต้องเรียนรู้ต่อไปได้เป็นอย่าง ดี รวมทั้งเป็นพื้นฐานในการศึกษาต่อในระดับที่สูงขึ้น สถาบันจึงเล็งเห็นความสำคัญและบรรจุการเรียน วิชาปรากฏการณ์ถ่ายโอนไว้เป็นวิชาบังคับ

สำหรับผู้เขียนได้เริ่มทำการสอนวิชาปรากฏการณ์ถ่ายโอน ที่สถาบันเทคโนโลยีนานาชาติสิรินธร ตั้งแต่ปีการศึกษา 2552 จนถึงปัจจุบัน ในประสบการณ์การสอนที่ผ่านมากว่า 10 ปีพบว่า วิชา ปรากฏการณ์ถ่ายโอนเป็นวิชาที่ต้องสังเคราะห์ความรู้จากหลายๆ แขนง ดังนั้นจึงไม่ใช้หนังสือเล่ม เดียวในการเรียนการสอนได้ จำเป็นต้องใช้หนังสืออ้างอิงหลายเล่มเพื่อประกอบการเรียนการสอน นอกจากนี้วิชาปรากฏการณ์ถ่ายโอนเป็นวิชาที่ใช้คณิตศาสตร์ในการวิเคราะห์โจทย์ หนังสืออ้างอิง ส่วนมากไม่มีคำอธิบายที่ชัดเจน ทำให้นักศึกษาสับสนและไม่สามารถทำความเข้าใจกับเนื้อหาได้ทันที ดังนั้นผู้เขียนจึงมีความประสงค์ที่จะเขียนตำรา Fundamental of Transport Phenomena: Momentum, Heat and Mass Balance Approach ขึ้นมา โดยตำราดังกล่าวผู้เขียนได้นำมาใช้ ในการเรียนการสอนวิชา CHS456 Transport Phenomena (ปรากฏการณ์ถ่ายโอน) ที่สถาบัน เทคโนโลยีนานาชาติสิรินธร โดยมีความตั้งใจที่จะรวบรวมประเด็นที่สำคัญในปรากฏการณ์ถ่ายโอนของ ของเหลว การถ่ายโอนของพลังงาน และการถ่ายโอนมวลสาร มาอยู่ในตำราเล่มเดียว โดยผู้เขียน พยายามอธิบายหลักการต่างๆ อย่างมีระบบเพื่อแสดงให้เห็นถึงความเหมือนและความแตกต่างของ กระบวนเหล่านี้ โดยอาศัยหลักสมดุลโมเมนตัม สมดุลพลังงาน และสมดุลมวลสาร ซึ่งผู้เขียนหวังว่า ตำราเล่มนี้จะช่วยให้ผู้อ่านทำความเข้าใจในปรากฏการณ์เหล่านี้ได้ง่ายยิ่งขึ้น

ดังนั้นผู้เขียนจึงได้แบ่งตำราเล่มนี้ออกเป็น 3 ส่วน คือส่วนที่หนึ่งมี 5 บทโดยครอบคลุมเนื้อหา เกี่ยวกับปรากฏการณ์ถ่ายโอนของของเหลว ส่วนที่สอง มี 5 บทโดยครอบคลุมเนื้อหาเกี่ยวกับ ปรากฏการณ์ถ่ายโอนของพลังงาน และส่วนสุดท้ายมี 4 บทโดยครอบคลุมเนื้อหาเกี่ยวกับปรากฏการณ์ ถ่ายโอนของมวลสาร โดยการนำเสนอจะเป็นรูปแบบการเรียนรู้จากปัญหา (problem-based) ที่น่า สนใจและทันสมัย โดยมีการนำเสนอตัวอย่างและมีการวิเคราะห์ตัวอย่างเพื่อนำไปสู่การเรียนรู้และ กระตุ้นให้เกิดความคิดสร้างสรรค์

ในบทที่ 1 จะเป็นการปูพื้นฐานความเข้าใจในการไหลของของเหลว บทที่ 2-4 เป็นวิธีการ คำนวณความเร็วของการไหลของของเหลวโดยใช้หลักสมดุลโมเมนตัม และในบทที่ 5 เป็นการวิเคราะห์ แบบไร้มิติ (dimensionless analysis) ในส่วนที่สองโดยที่เนื้อหาครอบคลุมปรากฏการณ์ถ่ายโอนของ พลังงาน ในบทที่ 6 จะได้เรียนรู้การถ่ายโอนของพลังงานในรูปแบบต่างๆ และหลักการสมดุลพลังงาน เพื่อเป็นพื้นฐานในการเรียนรู้ประยุกต์ใช้หลักการสมดุลพลังงานในบทที่ 7-9 และในบทที่ 10 จะมี การประยุกต์ใช้หลักการสมดุลพลังงาน เพื่อคำนวณการถ่ายโอนของพลังงานที่เปลี่ยนแปลงตามเวลา อย่างง่ายๆ ในส่วนสุดท้ายปรากฏการณ์ถ่ายโอนของมวล โดยในบทที่ 11 มีการปูพื้นฐานความเข้าใจ เกี่ยวกับการถ่ายโอนมวล และบทที่ 12 จะเป็นการคำนวณปัญหาถ่ายโอนมวลอย่างง่าย และจะยาก ขึ้นไปจนถึงการถ่ายโอนมวลที่เกี่ยวพันกับปฏิกิริยาทางเคมีในบทที่ 14 ซึ่งเป็นเรื่องที่ยากที่สุดและ เป็นบทสุดท้าย

สุดท้ายนี้ ผู้เขียนหวังว่าตำราเล่มนี้จะช่วยให้นักศึกษาเข้าใจเนื้อหาของปรากฏการณ์ถ่ายโอน และผู้เขียนมีความตั้งใจที่เขียนตำราเป็นภาษาอังกฤษ โดยมิได้จำกัดแต่เพียงนักศึกษาในหลักสูตร นานาชาติเท่านั้น แต่ผู้เขียนยังหวังว่านักศึกษาในหลักสูตรอื่นจะได้เรียนรู้และทำความเข้าใจในเนื้อหา ได้ด้วย อย่างไรก็ตามหากตำราเล่มนี้มีข้อบกพร่องประการใด ผู้เขียนต้องขออภัยมา ณ ที่นี้ และหาก ผู้อ่านมีข้อเสนอแนะประการใด ขอความกรุณาส่งข้อเสนอแนะมาที่ wanwipa@siit.tu.ac.th เพื่อให้ ผู้เขียนได้มีโอกาสแก้ไขและปรับปรุงเนื้อหาในโอกาสต่อไป

ผศ.ดร.วรรณวิภา ศิริวัฒน์เวชกุล

Preface

Transport Phenomena is an important subject for chemical engineers. The subject incorporates fundamental knowledge from different fields starting from fluid dynamics, heat and mass transfers. These fields share some similarities and have some differences. Nonetheless, they are essential to the understanding of chemical engineering processes. As a result, understanding transport phenomena is valuable and it is a good fundamental for advance transport phenomena for students who consider further study. Thus, Sirindhorn International Institute of Technology (SIIT) designated Transport Phenomena to be a compulsory course.

The author has started teaching Transport Phenomena at SIIT since academic year 2009. The author has found that Transport Phenomena is a subject that cannot rely on one book because it incorporates fundamental knowledge from different fields. Therefore, it is necessary to use many textbooks as references. In addition, Transport Phenomena is a mathematically intensive subject. Most chemical engineering textbooks do not explain the mathematical analysis well, resulting in confusion among the students.

As such, the author would like to write this Fundamental of Transport Phenomena: Momentum, Heat and Mass Balance Approach to be used as a textbook for class CHS456 Transport Phenomena at SIIT, Thammasat University. The author aims to collect important aspects of momentum transfer, heat transfer and mass transfer in one textbook, and attempts to explain different principles systematically to highlight the similarities and the differences among these phenomena using momentum balance, heat balance and mass balance. The author hopes that the textbook could help simplify these concepts so the students can understand the transport phenomena better.

The author separated the textbook into 3 sections. Section I Momentum Transfer includes 5 chapters. Section II Energy Transfer includes 5 chapter, and the last section, Section III Mass Transfer include 4 chapters. Each chapter is presented with a problem-based approach by introducing current and interesting examples, and by analyzing the examples, the readers can learn to formulate the concepts.

Chapter 1 covers the basic understanding of fluids dynamics, and Chapter 2-4 cover different methods to determine fluid velocity using momentum balance. Chapter 5 covers dimensionless analysis. In Section II, Chapter 6 starts with the introduction of different modes of energy transfer and the concept of energy balance, which is the basis for its application in Chapter 7-9. Chapter 10 introduces simple transient conduction calculation using energy balance. In the last section, Section III, Chapter 11 introduces the fundamental of mass transfer, and Chapter 12 covers simple mass transfer problems. The mass transfer problems will get more complex in Chapter 13 and Chapter 14 where the mass transfer problems involve chemical reactions.

The author hopes that this textbook will help the students understand Transport Phenomena better. In addition, the textbook is written in English with the hope that students from non-international program can use it to fill in the gaps among current textbooks in the market. If you find faults in this textbook or if you have further suggestions, please send your comments to wanwipa@siit.tu.ac.th so the author can revise the content in the future.

Asst. Prof. Dr. Wanwipa Siriwatwechakul

Section I: Momentum Transfer

Chapter

MOMENT TRANSFER FLUX

The term momentum transfer often conjures a vision of one object hitting another object such as a car collision or a ball bouncing against the wall. The less obvious, but equally common is the motion of molecules colliding with one another, which occur continuously when fluid flows. In the random motion of fluid movement, the momentum is transferred from one part of the flow to another. In this process the total amount of momentum possesses by the fluid is conserved. Momentum is simply transferred from one object to another object. Thus the term momentum transfer in this context is often referred to momentum transfer of fluid, and related to the fluid flow. The ability of a fluid to transfer momentum is measured by the viscosity, whose definitions will be detailed in section 1.2.

However, to think of fluid flows as the momentum transfer individual molecules are highly complicated because the fluid domain contains large number of molecules. Thus, the mathematical description of fluids in motion in this book will use the continuum assumption, in which the fluid is modeled as a continuous domain, without microscopic structure. Thus the materials are differentiated by their macroscopic properties such as density, thermal conductivity or viscosity. With this fundamental understanding, we will embark on learning about the