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คาํนํา 

 
 

หนงัสือ พชีคณตินามธรรมเบือ้งต้น เล่มน้ี ผูเ้ขียนรวบรวมข้ึนเพื่อเป็นการแนะนาํพีชคณิต
นามธรรม (Abstract Algebra) ซ่ึงเป็นสาขาหน่ึงของคณิตศาสตร์ ซ่ึงเหมาะสาํหรับนกัศึกษาท่ีเรียน
วิชาเอกคณิตศาสตร์ และคณิตศาสตร์ประยุกต์ รวมถึงบุคคลทัว่ไปท่ีมีความสนใจและมีพื้นฐาน
เบ้ืองตน้เก่ียวกบัทฤษฎีจาํนวนและการพิสูจน ์ 

หนงัสือเล่มน้ีประกอบดว้ย 5 บท ซ่ึงแต่ละบทจะเป็นพื้นฐานในการศึกษาในบทต่อ ๆ ไป 
นอกจากน้ี ผูอ่้านสามารถศึกษาไดเ้ขา้ใจมากยิ่งข้ึนถา้ไดท้าํแบบฝึกหัดตอนทา้ยของแต่ละหัวขอ้ 
และแบบฝึกหดับางขอ้จะเป็นพื้นฐานหรือแนวทางในการทาํความเขา้ใจในหวัขอ้ต่อ ๆ ไป 

บทท่ี 1 ประกอบดว้ยความรู้พื้นฐานเก่ียวกบัเซต ความสัมพนัธ์สมมูล ฟังก์ชนั และการ
ดาํเนินการทวิภาค ซ่ึงเป็นส่วนสาํคญัในการศึกษาพีชคณิต  

บทท่ี 2 กล่าวถึงสมบติัของจาํนวนเตม็ท่ีน่าสนใจ อนัไดแ้ก่ หลกัการอุปนยัเชิงคณิตศาสตร์
ขั้นตอนวิธีการหาร ตวัหารร่วมมาก ทฤษฎีบทการแยกตวัประกอบไดอ้ยา่งเดียว และคอนกรูเอนซ์ 
ซ่ึงจะนาํไปใชป้ระกอบการศึกษาเร่ืองกรุปต่อไป 

บทท่ี 3 ไดใ้หบ้ทนิยามและสมบติัเบ้ืองตน้ของกรุป รวมถึงไดก้าํหนดนิยามของกรุปวฏัจกัร 
กรุปย่อย กรุปย่อยปรกติและกรุปผลหาร และในหัวขอ้ท่ี 3.6 ไดใ้ห้บทนิยามและศึกษาสมบติัท่ี
สําคญัของโฮโมมอร์ฟิซึมและไอโซมอร์ฟิซึมของกรุปซ่ึงเป็นความสัมพนัธ์ระหว่างกรุป 2 กรุป 
นอกจากน้ี ยงัมีการพิสูจนท์ฤษฎีบทลากรานจ ์และทฤษฎีบทเคยเ์ลย ์ซ่ึงถือว่าเป็นทฤษฎีบทท่ีสาํคญั
บทหน่ึง สาํหรับในหวัขอ้ท่ี 3.7 เราไดใ้หบ้ทนิยามของการเรียงสับเปล่ียนและกรุปสมมาตร ซ่ึงเป็น
ตวัอยา่งของกรุปตวัอยา่งหน่ึงท่ีน่าสนใจ 



บทท่ี 4 ได้กล่าวถึงระบบคณิตศาสตร์ท่ีประกอบด้วยเซต และการดําเนินการ 2 การ
ดาํเนินการท่ีสอดคลอ้งกบัสมบติัชุดหน่ึง นั่นคือเราได้ให้บทนิยามของริง และได้ศึกษาสมบติั
เบ้ืองตน้ของริง นอกจากน้ี ยงัไดศึ้กษาเก่ียวกบัไอดีล ริงผลหาร โฮโมมอร์ฟิซึมและไอโซมอร์ฟิซึม
ของริง และริงพหุนาม อีกดว้ย 

บทท่ี 5 ไดใ้หบ้ทนิยามของฟีลด ์และศึกษาสมบติัเบ้ืองตน้ของฟีลด ์ตลอดจนศึกษาสมบติั
ของฟีลดข์องผลหาร และการแยกตวัประกอบของพหุนามบนฟีลด ์ 

เน่ืองจากหนงัสือเล่มน้ีมีเน้ือหาเก่ียวกบัพีชคณิตนามธรรมเบ้ืองตน้เท่านั้น ดงันั้นเน้ือหา
อาจจะไม่ครอบคลุมเน้ือหาทั้งหมดของพีชคณิตนามธรรมทัว่ ๆ ไป อยา่งไรก็ตาม ผูเ้ขียนหวงัเป็น
อยา่งยิง่วา่หนงัสือเล่มน้ีจะเป็นประโยชนแ์ก่นิสิต นกัศึกษา และผูท่ี้สนใจ  

สุดทา้ยน้ี ผูเ้ขียนขอกราบขอบพระคุณบิดาและมารดาเป็นอย่างสูง สําหรับความรักและ
กาํลงัใจตลอดมา ขอขอบคุณอาจารยข์องผูเ้ขียนทุกท่านท่ีทาํใหผู้เ้ขียนรักและซาบซ้ึงในคณิตศาสตร์ 
ซ่ึงผูเ้ขียนมิอาจลืมพระคุณได ้ 
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บทที ่1 

ความรู้พืน้ฐาน 
( Basic Concepts ) 

 
 

ในบทน้ีไดร้วบรวมความรู้พื้นฐานเก่ียวกบัเซต ความสมัพนัธ์ ฟังกช์นั และการดาํเนินการ
ทวิภาค พอเป็นสงัเขป เพื่อเป็นพื้นฐานในการศึกษาเร่ืองท่ีเก่ียวขอ้งในบทต่อไป  
 
 
 
 
  

ลกัษณนามท่ีใชเ้รียกส่ิงท่ีเอามารวมกนัมีหลายคาํ เช่น ชุด ฝงู กลุ่ม พวก หมู่ โขลง คณะ 
เป็นตน้ แต่ในทางคณิตศาสตร์นั้นเราใชค้าํวา่  “ เซต ”  ซ่ึงเป็นคาํอนิยาม ( undefined term ) แทน
ลกัษณนามดงักล่าว ดงับทนิยามต่อไปน้ี 

 
 

 
 

 
 

         บทนิยามและสัญลกัษณ์ของเซต ( Definition and Notation of a Set ) 1.1 

 

บทนิยาม 1.1.1 เซต ( set ) เป็นคาํซ่ึงใชแ้ทนกลุ่มของส่ิงต่าง ๆ ท่ีมีคุณลกัษณะบางประการ
ร่วมกนั และส่ิงท่ีประกอบกนัเป็นเซตเรียกว่าสมาชิกของเซต ( element of a 
set ) 



2                                                                                                                                            บทที่ 1 ความรูพ้ืนฐาน 

 

โดยทั่วไปนิยมใชอักษรตวัพิมพใหญในภาษาอังกฤษแทนเซต และใชอักษรตัวพิมพเล็กใน
ภาษาอังกฤษแทนสมาชิกของเซต ในหนังสือเลมนี้จะใชสัญลักษณตาง ๆ ดังนี้  

  Z  แทนเซตของจาํนวนเต็ม 

  +Z  แทนเซตของจาํนวนเต็มบวก 
  −Z  แทนเซตของจาํนวนเต็มลบ 
  `  แทนเซตของจาํนวนธรรมชาติหรือเซตของจํานวนนับ 
  _  แทนเซตของจาํนวนตรรกยะ 
  +_  แทนเซตของจาํนวนตรรกยะบวก 
  \  แทนเซตของจาํนวนจริง 
  +\  แทนเซตของจาํนวนจริงบวก 
และ  ^  แทนเซตของจาํนวนเชิงซอน 
 

เพื่อความสะดวกในการเขยีนบรรยายเซตจึงมีการกําหนดสัญลักษณตาง ๆ ดังตอไปนี ้
สัญลักษณ  a =  b   หมายถึง   “ a  และ b  เปนสิ่งเดียวกัน ”  

 สัญลักษณ  a ≠  b  หมายถึง   “ นิเสธของ  a =  b ” 
 สัญลักษณ   ∈    แทนคําวา   “ เปนสมาชิกของ ” 
และ สัญลักษณ   ∉    แทนคําวา   “ ไมเปนสมาชิกของ ” 
นั่นคือ ถา A เปนเซตใด ๆ แลวจะไดวา 

สัญลักษณ a ∈ A หมายถึง  a  เปนสมาชิกของเซต A  
และ  สัญลักษณ a ∉ A หมายถึง  a  ไมเปนสมาชิกของเซต A   
 
ตัวอยางเชน  
ถาให A แทนเซตของจํานวนเต็มลบที่มากกวา 4−  แลวจะไดวา { 1, 2, 3}A = − − −  ดังนัน้ 1 A− ∈ , 

2 A− ∈ , 3 A− ∈  แต 4 A− ∉  เปนตน  จะเห็นวา เซตเปนคําแจมชดั ( well-defined ) กลาวคือ ถา A 
เปนเซตและ a เปนส่ิง ๆ หนึง่แลว a ∈ A หรือ a ∉ A อยางใดอยางหนึ่งเทานั้น 
 
สําหรับการเขียนเซตนัน้โดยทั่วไปที่นยิมกนัมี 2 แบบดังนี้ 
 

1. การเขียนเซตแบบแจกแจงสมาชิกของเซต  ( Tabular form ) คือการเขียนสมาชิกทกุ 
ตัวลงในวงเลบ็ปกกา “ {  } ”  และคั่นสมาชิกแตละตวัดวยเครื่องหมายจุลภาค  “ , ”  ตวัอยางเชน 
เซต { 1, 2, 15 }  หรือถาให  A  เปนเซตของสระทั้งหมดในภาษาอังกฤษ แลวจะเขียนเซต A แบบ
แจกแจงสมาชกิของเซตไดเปน { , , , , }A a e i o u=   เปนตน 



1.1 บทนิยามและสัญลักษณของเซต   3 

 

สําหรับในกรณีที่เซตนั้น ๆ มีจํานวนสมาชิกมากและเรยีงลําดับอยางเปนระบบ  สามารถ
เขียนสมาชิกเพียง  2 – 3 ตัวแรก แลวใชจุด  3  จุด  “ …  ” (เทานั้น) เพื่อเปนการละไวในฐานที่
เขาใจวาสมาชกิที่ตามมาประกอบดวยอะไรบาง  เชน เซต  +Z =  { 1, 2, 3, … } เปนตน   

ในกรณีที่ทราบสมาชิกตัวสุดทายของเซต สามารถเขียนสมาชิกตวัสุดทายไวในเซตดวย 
เชน ถาให X แทนเซตของจาํนวนเต็มบวกที่นอยกวา 30 แลว X {1,2,3, ,29}= …  ทําใหทราบวา

สมาชิกที่เวนไวคือ 4 ถึง 28  เปนตน   
 
2. การเขียนเซตแบบบอกเงื่อนไขของเซต ( set – builder form )    คือการเขียนคุณสมบัติ 

ของสมาชิกลงไปเพื่อใหทราบวาส่ิงใดเปนสมาชิกของเซตนั้น หรือกลาวไดวาเปนการเขียนเซตโดย
ใชตัวแปร ตามดวยเคร่ืองหมาย  “ | ”  แทนคําวา “ ซ่ึง ”  หรือ  “ โดยที่ ” แลวอธิบายคุณสมบัติของ
ตัวแปรดังกลาว 

เซตที่เขียนคุณสมบัติของสมาชิกลงไปนั้นจะใชสัญลักษณแทนดวย { x | P(x) } เมื่อ x เปน
สมาชิกของเซตนั้น ๆ และอานวา  “ เซตของสมาชิก x ท้ังหมดที่ทําให P(x) เปนจริง ”  เชน ถา B 
เปนเซตของจํานวนเต็มคูบวกที่นอยกวาหรือเทากับ 10 แลวจะเขียนเซต B แบบบอกเงื่อนไขของเซต
ไดเปน 

B  =   { x  |  x เปนจํานวนเต็มคูบวกที่นอยกวาหรือเทากับ 10 } 
                            =   { 2x  |  x =  1, 2, 3, 4, 5 } 
สัญลักษณ { x  |  P(x) } เรียกวา  “ set – builder notation ” 
 
ตัวอยางเชน 

(1) ถา X  แทนเซตของจํานวนเต็มที่สอดคลองกับสมการ 2 6 7 0x x− − =  แลวสามารถเขียน

เซต  X  ไดดังนี้ 
แบบแจกแจงสมาชิกของเซต :  X { 1,7}= −  

แบบบอกเงื่อนไขของเซต      :  X { |x x= ∈Z  และ 2 6 7 0x x− − = } 

(2) ถา Y  แทนเซตของจํานวนจริงที่อยูระหวาง 1−  กับ 1  แลวไมสามารถเขียนเซต Y  แบบ
แจกแจงสมาชกิของเซตได แตสามารถเขียนเซต Y  แบบบอกเงื่อนไขของเซตไดดังนี ้  

Y { |x x= ∈\  และ 1 1}x− < <  

 
พิจารณาตวัอยางขางตนที่ให B แทนเซตของจํานวนเต็มคูบวกที่นอยกวาหรือเทากับ 10 อีก

คร้ังหนึ่ง จะเหน็วา B =  { 2, 4, 6, 8, 10 } ซ่ึงถาเราจะเขยีนเซต B ใหมเปน 
    B =  { 4, 8, 10, 2, 6 } 
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                                         หรือ B =  { 6, 10, 8, 4, 2 } 
   หรือ B =  { 10, 8, 6, 4, 2 } 
การเขียนดังกลาวก็ยังส่ือความหมายเดียวกัน เพราะกย็ังใหความหมายแกเราวาจํานวนเต็มคูบวกที่
นอยกวาหรือเทากับ 10 มีอะไรอยูบางนัน่เอง สังเกตไดวาตําแหนงของสมาชิกในเซตนั้นไมสําคัญ 
จากเซต B ดังกลาวถาเราเขียนใหมเปน 
    B =  { 2, 2, 4, 4, 6, 6, 8, 8, 10, 10 } 
   หรือ B =  { 2, 2, 4, 6, 6, 6, 8, 10, 10, 10, 10 } 
   หรือ B =  { 2, 4, 6, 6, 6, 8, 8, 10, 10, 10, 10 } 
การเขียนดังกลาวก็ยังส่ือความหมายเดียวกัน เพราะไมวาจะเขียน 2 ซํ้ากี่คร้ังก็ตามก็ยังคงหมายถงึ 2 
เปนจํานวนเตม็คูบวกที่นอยกวาหรือเทากบั 10 ทํานองเดียวกับการเขยีน 4, 6, 8 และ 10 ไมวาจะ
เขียนซํ้ากี่คร้ังในเซตนี้กย็ังคงหมายถึง 4, 6, 8 และ 10 เปนจํานวนเต็มคูบวกที่นอยกวาหรือเทากับ 10 
ดังนั้นจึงไดขอสังเกตวาสมาชิกที่ซํ้ากันในเซตเดียวกนัถือวาเปนเพยีงตัวเดยีว 

 
 
 
 
 
 
 
 
 
 
 
 

 
ตัวอยางเชน 

(1)  ถา  A  =  { 1, 2, 3, 5, 7 }  และ B  =   { 2, 3, 5, 5, 7, 1 }   แลว  A =  B 

(2) ถา  A =  { x ∈Z  | 2 3 2 0x x− + =  }  และ B =  { x ∈Z  | 0 3x< <  } แลว  A =  B 

(3) { x ∈\  |  2 2x +  < 0 } =  ∅ 
(4) { x ∈Z  |  2 1x =  } =  ∅ 

 
 

 
 

บทนิยาม 1.1.2 เซต A เทากับเซต B  ( A is equal to B )  ก็ตอเมื่อ ทุกสมาชิกของ A เปน 
สมาชิกของ B และทุกสมาชกิของ B เปนสมาชิกของ A ( นั่นคือ A และ B มี
สมาชิกเหมือนกัน ) ซ่ึงเขยีนแทนดวยสัญลักษณ 

A =  B   
ถาเซต A และเซต B มีสมาชิกบางตัวแตกตางกัน เรากลาววาเซต A ไมเทากับ

เซต B ( A is not equal to B )  ในกรณีนี้เขียนแทนดวยสัญลักษณ 
     A ≠  B   
เซตที่ไมมีสมาชิกหรือจํานวนสมาชิกเทากบัศูนย เรียกวาเซตวาง ( empty set 
or null set or void set )  ซ่ึงเขียนแทนดวยสัญลักษณ  {  } หรือ ∅  และเรียก
เซตที่ไมเปนเซตวางวาเซตไมวาง ( non – empty set )  
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ตวัอยา่งเช่น  
ถา้ {0,1,2},A =  { 10, 20, 30}B = − − −  และ C { ,{ }}= ∅ ∅  แลว้จะไดว้า่ ~A B  แต่เซต A ไม่

เทียบเท่ากบัเซต C  
 

 
 
 
 
 
 
 
 
 
 
หมายเหตุ  เราเรียก B วา่เซตย่อยไม่แท้ ( improper subset ) ของ B 
 
ตวัอยา่งเช่น     

(1)  ถา้  S  =  { 1, 2, 3 } แลว้จะไดว้า่   S  มีทั้งหมด  8  เซตยอ่ย  ดงัน้ี ∅ , {1}, {2}, {3},  
{1, 2}, {1, 3}, {2, 3} และ {1, 2, 3} 
 (2)  ถา้ A =  { 10, 20, 30 }  และ  B =   { 10, 20, 30, 40, 50 }  แลว้ A  ⊂  B                       
         

เพ่ือความสะดวกเราจะให้ทุกเซตท่ีกล่าวถึงเป็นเซตยอ่ยของเซตใหญ่เซตหน่ึง ซ่ึงเรียกว่า 
เอกภพสัมพทัธ์ ( relative universe or universal set ) และเขียนแทนเอกภพสัมพทัธ์ดว้ย U  

กล่าวคือเอกภพสมัพทัธ์เป็นเซตท่ีกาํหนดข้ึน โดยมีขอ้ตกลงวา่ต่อไปจะกล่าวถึงแต่สมาชิกของเซตน้ี
เท่านั้น จะไม่มีการกล่าวถึงส่ิงใดท่ีไม่เป็นสมาชิกของเซตน้ี  

 

บทนิยาม 1.1.3 เซต A เทยีบเท่ากบัเซต B ( A is equivalence to B )  กต่็อเม่ือ สามารถจบัคู่ 
กนัแบบหน่ึงต่อหน่ึงทัว่ถึง ( one-to-one correspondence ) ระหวา่งสมาชิกของ
เซต A  และเซต B  พอดี ซ่ึงเขียนแทนดว้ยสญัลกัษณ์  

~A B  

 

บทนิยาม 1.1.4 เซต A เรียกวา่เป็นเซตย่อย  ( subset ) ของเซต B กต่็อเม่ือ ทุก ๆ สมาชิกของ 
 A เป็นสมาชิกของ B  ซ่ึงเขียนแทนดว้ยสญัลกัษณ์ 

A ⊆  B   หรือ  B⊇  A 
ถา้ A ⊆  B  และ A≠ B  แลว้เรียก A วา่เป็นเซตย่อยแท้ ( proper subset ) ของ 
B  ซ่ึงเขียนแทนดว้ยสญัลกัษณ์ 
     A⊂  B   
และถา้มีสมาชิกอยา่งนอ้ยหน่ึงตวัของ A ท่ีไม่เป็นสมาชิกของ B เรากล่าววา่ A 
ไม่เป็นเซตย่อยของ B ซ่ึงเขียนแทนดว้ยสญัลกัษณ์  

A ⊄ B 
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ตัวอยางเชน  
กําหนดให  K { |x= 22 1 0x x+ − = }  จะไดวา 

 1{ , 1}2K = −   เมื่อเอกภพสัมพัทธ U   แทนเซตของจํานวนตรรกยะ 

 K { 1}= −   เมื่อเอกภพสัมพัทธ U   แทนเซตของจํานวนเต็มลบ 

 K =∅    เมื่อเอกภพสัมพัทธ U   แทนเซตของจํานวนเต็มบวก 

และ 1{ }2K =   เมื่อเอกภพสัมพัทธ U   แทนเซตของจํานวนจริงบวก       เปนตน 

 
ทฤษฎีบทตอไปนี้เปนผลที่ไดจากบทนิยามที่เกี่ยวกับเซตดังที่ไดกลาวไปแลว 

 
 

 
 
 

 
 
 
 

จะเห็นไดวา เซตบางเซตสามารถนับจํานวนสมาชิกของเซตได แตบางเซตก็ไมสามารถนับ
จํานวนสมาชิกของเซตได ตัวอยางเชน เซต M = { |x∈Z 0 9}x≤ ≤ {0,1,2,3,4,5,6,7,8,9}=  มี

สมาชิกทั้งหมด 10 ตัว ในขณะที่เซต { |N x= ∈\ 0 9}x≤ ≤  ไมสามารถบอกไดวาสมาชิกของเซต 

N  มีอะไรบางและมีจํานวนสมาชิกเทาไร 
 

 
 
 
 
 
 
 
 

 

ทฤษฎีบท 1.1.1 กําหนดให A, B และ C เปนเซตยอยของเอกภพสัมพัทธ U   จะไดวา 
(1)   A  ⊆ A, ∅ ⊆ A  และ  A  ⊆ U 
(2)   A  ⊆ ∅   ก็ตอเมื่อ  A =  ∅ 
(3)   { }x   ⊆  A  ก็ตอเมื่อ  x ∈ A 
(4)   ถา  A  ⊆ B  และ  B ⊆ C  แลว A ⊆ C 
(5)   ถา  A =  B   ก็ตอเมื่อ  A  ⊆ B  และ B  ⊆ A 

 

บทนิยาม 1.1.5  เซตจํากัด ( finite set ) คือเซตที่มีจํานวนสมาชิกเทากับจํานวนนับจํานวนหนึ่ง 
นั่นคือเซต  A  เปนเซตจํากดั ก็ตอเมื่อ   

A 1 2{ , , , }ka a a= …   

โดยที่ k∈`  และจํานวนสมาชิกของเซต A เขียนแทนดวยสัญลักษณ  ( )n A  
นอกจากนี้ เราเรียกเซตวางวาเซตจํากดั และเรียกเซตทีไ่มใชเซตจํากดัวาเซต
อนันต ( infinite set ) 
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ตัวอยางเชน 
 (1)  { |A x x += ∈Z  และ 5 1 10}x + >  เปนเซตอนันต 

 (2)  { |B x x= ∈]  และ 5 1 10}x + = =∅ เปนเซตจํากัด 

 (3)  { |C x x= ∈\  และ 20 5 1 10}x> + >  เปนเซตอนันต 

 (4)  { |D x x= ∈Z  และ 20 5 1 10}x> + >  เปนเซตจํากัด 

 
 
แบบฝกหัดทายหัวขอ 1.1 

 
1. จงเขียนสมาชกิทั้งหมดของเซตตอไปนี้ 

1.1  { x ∈ \  |  2x  =   3 } 

1.2  { m ∈ Z  |  2m  =   3 } 
1.3  { m ∈ Z  |  mn  =   60 สําหรับบาง  n ∈Z } 

1.4  { m ∈ Z  |  2m m−  < 115 } 
1.5  { x ∈ +Z |  1 <  x  <  8 } 

1.6  { x ∈ Z  |  22 6x x+ −   =   0 } 
2. จงพิสูจนทฤษฎีบท 1.1.1 

3. จงพิสูจนวาทกุเซตยอยของเซตจํากัดเปนเซตจํากัด 

4. จงพิสูจนวาทกุเซตที่มีเซตยอยเปนเซตอนนัตจะเปนเซตอนันต 

5. ให  A  เปนเซตจํากัดที่มีสมาชิก  n  ตัว  จงพิสูจนวาเซตยอยของ   A   มีอยูทั้งหมด  2n  เซตยอย 

 
 
 
 
 
 
 

        ในหวัขอนี้จะกลาวถึงพีชคณิตของเซตหรือการดําเนินการระหวางเซต ( operation on sets )  
ถา A และ B  เปนเซตยอยของเอกภพสัมพัทธ U  แลวการดําเนินการระหวางเซต  A และ B  ซ่ึง

         พีชคณิตเบื้องตนของเซต ( Elementary Algebra of Sets ) 1.2 
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ประกอบดวย การดําเนินการยูเนยีน  อินเตอรเซกชัน ผลตาง  และสวนเติมเต็ม นัน้ ผลลัพธที่ไดจะ
เปนเซตใหมทีส่รางขึ้นจากเซต A และ B  ที่กําหนดใหดงักลาว ซ่ึงจะนยิามดังนี ้
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ตัวอยางเชน      
กําหนดให  A =  {2, 4, 6}   และ  B  =   {1, 2, 5, 7}  เมื่อเอกภพสัมพัทธ   U  =  {1, 2, 3, …, 10} 
จะไดวา         A  ∪ B   =   {1, 2, 4, 5, 6, 7}  
                     A  ∩ B  =   { 2 }                
                      A −  B  =   { 4, 6 }  
                    B −  A   =   { 1, 5, 7 } 
                               U −  A   =   A′ =   { 1, 3, 5, 7, 8, 9, 10 } 

     B′   =   { 3, 4, 6, 8, 9, 10 }                                                                       
และ               (A −  B)  ∩ ( B −  A)  =   ∅      
 

 

บทนิยาม 1.2.1 ยูเนียน ( union ) ของเซต A และเซต B  ซ่ึงเขียนแทนดวยสัญลักษณ  A ∪ B  
 คือเซตที่ประกอบดวยสมาชิกซ่ึงเปนสมาชิกของเซต A หรือเปนสมาชิกของ 

  เซต B นั่นคือ  
A  ∪ B  =  { x  |  x ∈ A  หรือ x ∈ B } 

  อินเตอรเซกชัน ( intersection ) ของเซต A และเซต B ซ่ึงเขียนแทนดวย 
  สัญลักษณ  A ∩ B  คือเซตที่ประกอบดวยสมาชิกที่อยูทัง้ในเซต A และเซต 

B  นั่นคือ   
A  ∩ B  =  { x  |  x ∈ A  และ  x ∈ B } 

ผลตาง ( difference )  ของเซต A และเซต B ซ่ึงเขียนแทนดวยสัญลักษณ   
A – B  คือเซตที่ประกอบดวยสมาชิกที่อยูในเซต A  แตไมอยูในเซต B นั่น 

  คือ   
A – B  =   { x  |  x ∈ A  และ  x ∉ B } 

เรียกผลตาง U −  A  วาสวนเตมิเต็ม  ( complement )  ของเซต A และเขียน
แทนดวยสัญลักษณ   

A′   หรือ  cA  
  ถา   A  ∩ B  =  φ   แลวเซต  A และเซต B เรียกวาเปนเซตไมมีสวนรวม 

 ( disjoint set ) 
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สัญลักษณ  ยูเนียน และอินเตอรเซกชันของเซตจํานวน  n  เซตคือ  1 2, , , nA A A…  เขียนแทนดวย

สัญลักษณ  
1

n

ii
A

=
∪ และ 

1

n

ii
A

=
∩ ตามลําดับ นั่นคือ   

1

n

ii
A

=
∪   =   1 2 nA A A∪ ∪ ∪"  

และ       
1

n

ii
A

=
∩  =   1 2 nA A A∩ ∩ ∩"  

 
จากบทนยิามของยูเนียน และอินเตอรเซกชัน จะไดทฤษฎีบทตอไปนี ้

 
 
 
 
 
 
 
 
 

  
 
 

 
 
การพิสูจน  

เราจะพิสูจนขอ (4) ที่วา A ∪ (B ∩ C) =  (A ∪B) ∩ (A ∪ C)    
( สําหรับขอที่เหลือจะเวนไวเปนแบบฝกหดั ) 

สมมติให  x ∈ A ∪ (B ∩ C)  ดังนั้น x ∈ A  หรือ x ∈ B ∩ C  

กรณีที่ 1  ถา  x ∈ A แลว x ∈ A ∪ B  และ  x ∈ A ∪ C    

นั่นคือ  x ∈ (A ∪ B) ∩ (A ∪ C) 

กรณีที่ 2  ถา x ∈ B ∩ C  แลว  x ∈ B  และ  x ∈C   

  จาก  x ∈B  จะได  x ∈ A ∪ B   และ 

  จาก x ∈C  จะได x ∈ A ∪ C 

  ดังนั้น x ∈ (A ∪ B) ∩ (A ∪ C) 

 

ทฤษฎีบท 1.2.1 กําหนดให A, B, C  และ D เปนเซตยอยของเอกภพสัมพทัธ U   จะไดวา 
(1)   A  ∪ A  =   A  =   A  ∩ A 
(2)   A  ∪ B  =   B  ∪ A   และ   A ∩ B  =   B ∩ A 
(3)   A  ∪ (B ∪ C) =  (A  ∪ B) ∪ C    และ 

A  ∩ (B ∩ C) =  (A  ∩ B) ∩ C 
(4)   A  ∪ (B ∩ C) =  (A  ∪ B) ∩ (A ∪ C)   และ 
    A  ∩ (B ∪ C) =  (A  ∩ B) ∪ (A ∩ C) 
(5)   A  ∪ ∅  =  A     และ    A  ∩ ∅   =   ∅ 
(6)   A  ∪U  =  U    และ    A ∩U  =  A 
(7)   A  ∩ B  ⊆   A  ⊆  A  ∪ B  
(8)   ถา  A  ⊆  C   และ  B  ⊆  D  แลว  A  ∪ B  ⊆  C  ∪ D    

และ  A ∩ B  ⊆  C ∩ D 
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จากทั้งสองกรณี จะไดวา  x ∈ (A ∪ B) ∩ (A ∪ C) 
นั่นคือ   A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C)    
ในทางกลับกนั สมมติให x ∈ (A ∪B) ∩ (A ∪ C)    
ดังนั้น x ∈ A ∪ B   และ x ∈ A ∪ C  

จาก x ∈ A ∪ B  จะได x ∈ A  หรือ x ∈B   และ 

จาก x ∈ A ∪ C จะได x ∈ A  หรือ x ∈C 
ดังนั้น x ∈ A  หรือ x ∈ B ∩ C  นั่นคือ  x ∈ A ∪ (B ∩ C) 
เพราะฉะนั้น (A ∪B) ∩ (A ∪ C) ⊆  A ∪ (B ∩ C) 
สรุปไดวา A ∪ (B ∩ C) =  (A ∪B) ∩ (A ∪ C)    

 

 
 
 
 
 
 
 
 
ตัวอยางเชน  
กําหนดให {2,4,6,8}A =  และ {0,2,4,6,8,10}B =   จะไดวา  A ⊆ B   นอกจากนี้ยังไดอีกวา  

A ∩ B {2,4,6,8} A= =   และ  A ∪ B {0,2,4,6,8,10} B= =  

 
ทฤษฎีบทตอไปนี้สามารถพิสูจนไดโดยอาศัยบทนิยามของยูเนยีน อินเตอรเซกชัน และสวนเติมเตม็ 

 
 
 
 
 
 
 
 
 

 

ทฤษฎีบท 1.2.2 กําหนดให A และ B  เปนเซตยอยของเอกภพสัมพัทธ  U   จะไดวาขอความ 
  ตอไปนี้สมมูลกัน 

(1)   A ⊆ B   
(2)   A =  A ∩ B 
(3)   B =  A ∪ B 

 

ทฤษฎีบท 1.2.3 กําหนดให A และ B  เปนเซตยอยของเอกภพสัมพัทธ  U   จะไดวา 
(1)   A  =   (A ∩ B)  ∪  (A −  B) 

(2)   (A ∪ B)′ =   A′ ∩ B′ 
(3)   (A ∩ B)′  =   A′ ∪ B′ 
(4)   ถา  A  ⊆ B  แลว  B′ ⊆  A′ 
(5)   (A′)′ =  A,  ∅ ′ =  U   และ  U  ′ =  ∅      

(6)   A ∪ A′ =  U   และ  A ∩ A′ =  ∅ 
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ในบางครั้งเราอาจจะพบเซตที่มีสมาชิกเปนเซต ซ่ึงจะเรยีกเซตดังกลาววาวงศของเซต ( family of 
sets )   ซ่ึงวงศของเซตชนิดหนึ่งก็คือเซตกาํลัง ( power set )  ดังบทนยิามตอไปนี ้
 

 

 

 

 

 

 
 
ขอสังเกต   เซตดรรชนีจะเปนเซตจํากัดหรือเซตอนันตกไ็ด 
 
ตัวอยางเชน 

(1) ถา { , }A a b=  แลว ( ) { ,{ },{ }, }P A a b A= ∅  

(2) ถา {1,2,3}B =  แลว ( ) { ,{1},{2},{3},{1,2},{1,3},{2,3}, }P B B= ∅  

(3) ให {1,2, ,9}T = …  และ {0,1, , }iA i= …  สําหรับทุก i T∈   ถา F  { | }iA i T= ∈   

แลว F   เปนวงศของเซตที่มีเซต T  เปนเซตดรรชนี 
 

ขอสังเกต จากบทนิยาม 1.2.2 จะเห็นวา { , } ( )A P A∅ ⊆  เสมอ และถา x A∈  แลว { } ( )x P A∈  

นอกจากนี้ยังพบวาจํานวนสมาชิกของ ( )P A  จะมากกวาจํานวนสมาชิกของเซต A  ซ่ึงเราสามารถ

พิสูจนไดวาถา A  เปนเซตจํากดัที่มีสมาชิก n  ตัวแลว ( )P A  ก็จะเปนเซตจํากัดทีม่ีสมาชิก 2n  ตัว 
( ดังไดพิสูจนไวในตัวอยาง 2.1.2 ) 
 

สัญลักษณ  กําหนดให  T  เปนเซตดรรชนี จะไดวาการยูเนียนของเซต Aα เมื่อ α ∈ T  ซ่ึงเขียนแทน
ดวยสัญลักษณ

T
Aαα∈

∪  หรือ { | }A Tα α ∈∪   หรือ  Aα∪  จะหมายถึงเซต  

{ x  | x ∈ Aα สําหรับบาง  α ∈ T  } 
การอินเตอรเซกชันของเซต Aα เมื่อ α ∈ T  ซ่ึงเขียนแทนดวยสัญลักษณ 

T
Aαα∈

∩  หรือ 

{ | }A Tα α ∈∩   หรือ  Aα∩  จะหมายถึงเซต   

{ x  | x ∈ Aα สําหรับทุก α ∈ T  } 
เซต  { | }A Tα α ∈   ดังกลาวเรียกวามิวชัวลิดิสจอยท  ( mutually  disjoint )  ก็ตอเมื่อ  

 

บทนิยาม 1.2.2 กําหนดให A เปนเซตใด ๆ เรียกเซตที่มีสมาชิกเปนเซตยอยทั้งหมดของ A วา 
  เซตกําลัง ( power set )  ของ  A และเขียนแทนดวยสัญลักษณ  P(A)  นั่นคือ 

P(A)  =   { B | B ⊆ A } 
กําหนดให T เปนเซตโดยที่ T ≠ ∅  เรียก T วาเปนเซตดรรชนี ( index set ) 
สําหรับวงศของเซต  F  =  { }Aα   กต็อเมื่อ Aα ∈  F  สําหรับทุก α ∈ T   


