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PREFACE

The objective of this book is to provide the readers with a theoretical background 
involving dynamics of confined viscous flows as well as its effect on particle diffusion and 
convection based on my research experience for the last fourteen years. Fluid dynamics is a 
branch of mechanics concerned with the relationship between dynamic motions of flows of 
fluids, substances that continuously deform under the applied shear stress, and the presented 
forces. If the length scale of the system of interest is much larger than the size of the fluid 
molecules, the fluid is viewed from a macroscopic point of view and is considered to be a  
“continuum”, a continuous mass rather than discrete molecules, and, if the fluid velocity 
is much lower than the speed of light, the study of behaviors of flows within such system 
is referred to as classical fluid dynamics, a subfield of continuum mechanics. Although not 
traditionally included in classical mechanics, one of the core courses for physics majors in 
all undergraduate and graduate-level curriculums, classical fluid dynamics is still important 
and useful as it has applications in many research areas in physics such as geophysics, plasma 
physics, and physics of biological systems in addition to various additional fields including 
biotechnology, biochemistry, and engineering.

Due to the fact that there exist a large number of books covering classical fluid  
dynamics, a question arises; how does this book differ from previously existing books?  
The first distinction is that the content of this book primarily focuses on dynamics of flows 
characterized by vanishingly small Reynolds numbers, commonly referred to as creeping  
flows or Stokes flows. A product of the system length and velocity scales divided by the 
fluid kinematic viscosity, the Reynolds number is an approximate indicator of the relative  
contribution of the inertial effect (or convection of momentum) to momentum transfer with-
in the flow and that of the effect of viscous dissipation. A very small value of the Reynolds  
number indicates that the effect of viscous dissipation on fluid pressure and velocity is dominant 
whereas the inertial effect is very small. Example of low-Reynolds-number flows or Stokes 
flows include flows in systems with small length scales such as flows in microchannels as well 
as flow in systems with small velocity scale such as glacial flows. It has been long observed 
that Stokes flows display behaviors that differ greatly from those of high-Reynolds-number 
flows often observed in our daily lives, rendering the study of their motions an interesting  
topic on its own. Another unique point of this book is that, to accommodate a growing field 
of purification and separation technology utilizing confined Stokes flows, studies of hindered 
transport of fluids and particles confined in long channels based on my research expertise are 
presented as examples of the applications of low-Reynolds-number fluid dynamics in Chapter 
5, 6 and 7.

As for the usage of this book, its main objective is to provide the necessary  
introductory theoretical background involving Stokes flows for readers who may not have  
a prior background in fluid mechanics but have a solid background in vector calculus and in 
solving differential equations. It is recommended that, to find the book comprehensible, a basic 
background including freshmen level physics, vector calculus and partial differential equations 
is required. Other mathematical concepts (such as a gradient of the fluid velocity which is a 



tensor) are explained in the book in the appendix. The brief overall introduction of Stokes  
flows is presented in Chapter 1. To make the book self-contained, Chapter 2 is devoted to  
the derivation of the Navier-Stokes equation as an analogy of Newton’s second law in a form  
applicable to linear momentum transfer in fluid flows; effects of channel geometrics on confined  
unidirectional flows are presented as examples. This is followed by an introduction of the 
Reynolds number as a criterion in determining the basic behavior of the flows (based on  
scaling analysis) in Chapter 3. Properties of Stokes flows with all their peculiarities are  
discussed in detail in Chapter 4. Discussions involving hindered transport and electrokinetic 
phenomena based on my research experience are contained within the last three chapters.  
Effects of the hydrodynamic drag (altered by the presence of the confining channels) on  
diffusion and convection of particles immersed in Stokes flows, and the application involving  
size-based separation, are presented in Chapter 5. Electrokinetic effects on behaviors of  
confined electrolytic flows are discussed in Chapter 6, whereas the combined effects of  
particle-channel hydrodynamic, electrostatic and electrokinetic interactions on convection and 
diffusion of particles suspended in particulate flows confined in long channels are presented 
in Chapter 7. Chapter 8 contains an overall summary and a conclusion. In each chapter, the 
simplest systems consisting of confined particles (with the size much larger than the fluid 
molecules) in long channels with uniform cross-sections are considered, although the same 
theoretical treatment is applicable to systems with more complex geometries. This book is 
self-contained, and even though it covers a fraction of the field of fluid dynamics (namely,  
the dynamics of Stokes flows), I truly hope it would be useful, at least to some extent, for 
researchers, students and everyone interested in fluid mechanics and related phenomena.

The content of this book has undergone a peer review as a part of a publication  
process with the reviewers being experts from multiple institutes. I am very grateful to  
Chulalongkorn University Press and to the experts who are the anonymous reviewers for  
taking the time to review this book, making it more complete. I also would like to thank  
Professor William M. Deen, my advisor, for his kindness and insight that kindled my life long 
research interest in hydrodynamics and transport phenomena. I am also grateful to Professor 
Michael P. Brenner and Professor Howards A. Stone for giving me an enormous opportunity,  
initiating me into the field of fluid mechanics and providing me with a solid theoretical  
background, Professor Patrick S. Doyle for his very interesting lectures for the course 10.50 
at MIT, and Dr. Yuttana Roongthumskul for his suggestions and inputs. I am also grateful to 
all the students enrolling in 2304520 over the years; their questions and inquiries have helped 
deepen my understanding of phenomena involving all kinds of fluid flows and not just Stokes 
flows. (One can say that they are my instructors.) Finally, I would like to thank my family 
(especially my parents) for being so understanding and supportive throughout my writing 
process, and for allowing me to allocate some of the time I should have spent with them and 
spend it in completing this book. They have done all of this with such good grace; I truly and 
deeply appreciate it.

	 Panadda Dechadilok
	 Department of Physics, Faculty of Science,
	 Chulalongkorn University
	 May 31st, 2020



TABLE OF CONTENTS

Preface	
Table of contents

Chapter 1:	 Introduction	 1
	 1.1	 Introduction	 1
	 1.2	 Flow analysis and Reynolds number	 2
	 1.3	 Applications of low-Reynolds-number fluid dynamics	 2
	 1.4	 Conclusion	 3

Chapter 2:	 Cauchy momentum equation and Navier-Stokes equation: 	 5
	 	 analysis of fully developed flows in long channels
	 2.1	 Introduction	 5
	 2.2	 Cauchy momentum equation: Newton’s second law in the form	 6
		  applicable to momentum transport in fluid flows
	 2.3	 Stresses and body forces	 7
	 2.4	 Viscous stress tensor as a function of the rate-of-strain tensor in	 9
		  Newtonian fluid flows
	 2.5	 Navier-Stokes equation: a governing equation for the velocity of	 11
		  incompressible Newtonian fluid flows
	 2.6	 Static fluids and buoyancy force	 12
	 2.7	 Generalized Newtonian fluids	 13
	 2.8	 Analysis of confined fully developed unidirectional flows 	 14
		  2.8.1	 A pressure driven power-law fluid flow between parallel plates	 14
		  2.8.2	 A pressure driven incompressible Newtonian fluid flow in	 16
			   a square duct
		  2.8.3	 Dimensionless flow resistance of long rectangular channels	 18
		  2.8.4	 A limitation of the assumption of the flow being fully developed 	 20
	 2.9	 Summary and conclusion	 21

Chapter 3:	 Incompressible Newtonian fluid flows and Reynolds number	 23
	 3.1	 Introduction	 23
	 3.2	 Scaling of variables	 23
	 3.3	 Nondimensionalization of the Navier-Stokes equation	 25
	 3.4	 Approximations based on the Reynolds number	 26
	 3.5	 Analysis : the Reynolds number and the Strouhal number characterizing	 28
		  pulsatile flows in long channels
	 3.6	 Summary and conclusion	 29



Chapter 4:	 Properties of low-Reynolds-number flows	 31
	 4.1	 Introduction	 31
	 4.2	 Mathematical implications of the linearity of Stokes’ equation	 32
	 4.3	 Physical implications of the linearity of Stokes’ equation	 33
	 4.4	 Analysis: a torque on a rotating sphere and a hydrodynamic drag 	 35
		  on a translating sphere in an unbounded fluid
		  4.4.1	 Resisting torque on a rotating sphere in a quiescent	 35
			   unbounded fluid
		  4.4.2	 Integral representations and a hydrodynamic drag on a	 37
			   sphere obstructing a uniform flow
	 4.5	 Multipole expansion of the Oseen tensor	 40
	 4.6	 Stream function, streamlines and streaklines	 41
	 4.7	 Mechanical energy dissipation in creeping flows	 44
	 4.8	 Whitehead’s and Stokes’ paradoxes	 45
	 4.9	 Summary and conclusion	 47

Chapter 5:	 Analysis of hindered transport of dilute particulate flows in 	 49
		  long uncharged channels
	 5.1	 Introduction	 49
	 5.2	 Stokes-Einstein equation for a spherical particle in an unbounded fluid	 50
	 5.3	 Hindered particle transport in a long uncharged slit channel	 50
	 5.4	 Hydrodynamic calculation of diffusive hindrance factor of	 55
		  a spherical particle in a long slit channel
	 5.5	 Convective hindrance factor	 59
	 5.6	 Transport of dilute solutions through long straight channels with 	 62
		  circular cross-sections
	 5.7	 Taylor dispersion	 65
	 5.8	 Summary and conclusion	 66

Chapter 6:	 Analysis of confined electrolytic flows	 69
	 6.1	 Introduction	 69
	 6.2	 A confined stationary electrolyte solution and the formation of 	 69
		  the electrical double layer
	 6.3	 Charge effects on confined fluid motions: electroosmosis, 	 74
		  streaming current and streaming potential
	 6.4	 Analysis of an electrolytic flow in a weakly charged slit channel	 79
	 6.5	 Analysis of an electrolytic flow in a weakly charged channel with 	 81
		  a circular cross-section
	 6.6	 Applications of electroosmosis, streaming potential and 	 84
		  streaming current: flow manipulations in microsystems
	 6.7	 Summary and conclusion	 85



Chapter 7:	 Analysis of elelectrokinetic effects on particle diffusion 	 87
		  and convection in long channels
	 7.1	 Introduction	 87
	 7.2	 Analysis of charge effects on particle diffusivities in charged slit channels	 89
 		  7.2.1	 Calculation of the electrostatic potential energy of interaction	 90
		  7.2.2	 Effect of polarization on the enhanced drag and 	 92
			   the diffusive hindrance factor
	 7.3	 Effects of channel cross-section geometries on reduction of diffusivities	 103
		  of confined particles due to polarization effect
	 7.4	 Effects of the utilization of the regular perturbation involving 	 107
		  the surface charge density
	 7.5	 Analysis of charge effects on particle convection in long channels	 109
	 7.6	 Applications of charge effects on hindered particle transport	 113
	 7.7	 Summary and conclusion	 113

Chapter 8:	 Summary and conclusion	 115
	 8.1	 Introduction	 115
	 8.2	 Content summary	 115
	 8.3	 Analysis of the current trend and possible directions of future research	 121
	 8.4	 Conclusion	 122

References			   125

Appendix: Mathematical background involving vectors and tensors	 131
	 A1	 Introduction 	 131
	 A2	 The fluid velocity gradient as a tensor	 131
	 A3	 Divergence theorem for scalar functions, vectors and tensors	 134
	 A4	 Leibniz formulas for differentiating volume integrals containing	 135
		  scalar functions, vectors and tensors
	 A5	 Proof of the absence of inertial effect if the flows are unidirectional	 135
	 A6	 Commutability of Laplacian and other operators	 136

Subject index	 	 139





C H A P T E R  1

INTRODUCTION

1.1	 Introduction

Fluid mechanics is a field in continuum mechanics devoted to analyses of phenomena 
involving liquid and gaseous flows: substances of which the “relaxation time”, the time needed 
for the materials to adjust to the applied shear stress, is very small compared to the “time of 
observation”, the time scale of the experiment. In the field of rheology, the ratio between the 
relaxation time scale and the time scale of observation is referred to as the Deborah number 
(De). Solids are substances characterized by a large value of De, whereas, viscoelastic materials 
displaying properties of both solids and fluids, are characterized by De that is of order unity. 
For fluids, De << 1. For instance, the relaxation time of water is about 10-12 s, resulting in the 
Deborah number being much less than 1. This very fast “adjustment” or a very fast material  
deformation rate makes it impossible to quantify the “strain” corresponding to the shape 
change of such material; what the applied shear stress produces is a “strain rate” (the rate at 
which the material is deformed) that increases as a function of the magnitude of the applied 
shear stress. If the length scale of the considered system is much larger than the size of the 
fluid molecules, the “continuum assumption”, the assumption that the fluids are continuum, 
is a good approximation. Flow velocity and fluid pressure are well-defined at infinitesimally 
small points and vary continuously. The relationship between the fluid macroscopic response 
to applied stress and its basic properties is the scope of the present study.

 It has been observed that behaviors of most flows observed in our daily lives  
greatly differ from those of flows where viscous dissipation dominates the momentum transfer 
process. For instance, in every day’s life, “mixing” is often seen as an irreversible process. 
If a small amount of milk is poured into a cup of coffee which is, then, stirred by a spoon in 
a clockwise direction, milk molecules are irreversibly mixed with the coffee in the cup, and 
“unmixing” is known to be impossible. Even if the spoon is, then, used in stirring the coffee 
in a counterclockwise direction, this cannot return all the diffusing milk molecules into their 
original locations. If the same process is repeated by using a more viscous fluid, however, 
“unmixing” becomes possible to achieve. As shown by G.I. Taylor in the experiment recorded  
in a film made for National Committee for Fluid Mechanic Films (1967), a color dye drop 
was gently placed in a glycerin contained between two concentric cylinders. The inner  
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cylinder was, then, rotated slowly in a clockwise direction for a few rounds, and the color dyes  
were mixed with glycerin. An equal number of rounds of the inner cylinder rotation in a  
counterclockwise direction, however, reversed the mixed color dyes back to being con-
tained within a single droplet (in an approximate sense) at its original location (Taylor, 1967;  
Dechadilok, 2017). The “unmixing” happening in a viscous fluid is, in G.I. Taylor’s own 
words, one of the “surprising situations which almost made one believe that the fluid has  
memory of its own” (Taylor, 1967). As will be discussed further in Chapter 3 and 4, this is 
due to the time scale of viscous dissipation being generally very small, and time enters the 
problem only as a parameter; the fluid velocity and pressure respond spontaneously to temporal 
changes. The content of this book is devoted to such flows where viscous dissipation plays 
a prominent role, giving rise to several strange phenomena which can be utilized in many 
different fields.

1.2	 Flow analysis and Reynolds number

Based on the discussion in Sec. 1.1, it is, therefore, not surprising that the most  
important parameter in the field of fluid dynamics is the dimensionless parameter that serves 
as a criterion in determining the relative importance of the effect of convection of momen-
tum and that of the viscous dissipation during the process of momentum transfer within fluid 
flows known as the Reynolds number (Re). Defined as the product of the fluid density (ρ) and 
the length (L) and velocity scales (U) of the system divided by the fluid shear viscosity (μ),  
Re can be viewed as the ratio between the estimated time scale for viscous dissipation,  
sometimes seen as “diffusion of momentum”, ( )2L µ ρ , and the estimated time scale of  
linear momentum convection, L/U, as will be discussed in detail in Chapter 3. If the value 
of Re characterizing the flow is high, momentum convection is much “faster” than viscous 
dissipation and is, therefore, a dominant factor in the momentum transfer process. Observed 
phenomena involving high-Reynolds-number flows are those often associated with liquid or 
gaseous flows observed in every day’s life such as eddy formation and, if Re is high enough, 
turbulence (Dechadilok, 2017). Examples of high-Reynolds-number flows include liquid 
flows generated by swimming of organisms that can be observed by naked eyes, a smoke 
flowing from a chimney, an aerodynamic air flow past an airfoil and flows generated by bird  
locomotion.

If, instead, the Reynolds number characterizing the flow is very small, viscous  
dissipation is a much “faster” process, and its effect is more prominent. Such flows are referred 
to as low-Reynolds-number flows, and, as discussed in Sec. 1.1, their behaviors are known 
to differ from high-Reynolds number flows in numerous ways. Examples of these flows are 
glacial flows observed in the mountains (characterized by small velocity scales) and flows 
of viscous fluids such as those of honey or glycerin. These fluid flows are also referred to as 
Stokes flows (in remembrance of G. G. Stokes who pioneered the early theoretical study of 
low-Reynolds-number hydrodynamics) or creeping flows (as they are often associated with 
small velocity scale in addition to small length scale and high fluid viscosity).
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1.3	 Applications of low-Reynolds-number fluid dynamics

As aforementioned, this book focuses on Stokes flows or creeping flows observed  
in systems where either the length and fluid velocity scales are very small, or the fluid  
viscosity is very large. For instance, flows produced by sedimentation of small particles (Booth, 
1954; Stigter, 1980) or microorganism swimming (Lauga and Power, 2009) are known to be 
Stokes flows. So are transcapillary fluid flows during the process of renal urine formation 
(Deen et al., 2001). The development of microfluidic devices during the past few decades  
renders on-chip chromatography and single biomolecule sensing possible; in many circumstances,  
hydrodynamic flows contained in the devices are characterized by low Reynolds numbers 
(Stone et al., 2004; Trombley and Ekiel-Jezewska, 2019) due to the small length scale of  
the devices. Manipulations of such flows require a basic knowledge of dynamics of  
low-Reynolds-number flows. Stokes flows characterized by low Reynolds numbers are,  
therefore, the primary focus of this book.

1.4	 Conclusion

The objective of this book is to provide the readers with the basic theoretical  
background for analyses of Stokes flows with applications involving confined flows and  
hindered transport in long channels. Its content begins with the equation of motions, the  
Cauchy momentum equation and the continuity equation, before shifting the focus to flows of  
incompressible Newtonian fluids governed by the Navier-Stokes equation. The Reynolds  
number is introduced and the simplification based on its value is discussed in detail. A review 
of properties of flows characterized by low Reynolds numbers is given. The content involving 
my research expertise, hindered transport and ionic solution flows, are contained in the last 
three chapters. To be presented as an example, the considered system is one of the simplest 
systems, a long channel with the uniform cross-section containing a dilute particulate flow. 
As will be subsequently discussed, the Reynolds number characterizing the confined flow is 
generally very small. For an uncharged system, the increase in the particle size relative to the 
size of the channel cross-section leads to an increase drag exerted on the particle, causing 
changes in the particle diffusivity and convection rate. The hydrodynamic interaction between 
the suspended particles and the channel walls allows experimentalists to design and utilize 
microchannels as tools for sensing and separation.

In addition, charge effects on the dynamics of the confined flows and its applications  
are extensively reviewed. When a charged solid surface is in contact with an electrolyte  
solution, a layer of oppositely charged ions is formed in the vicinity of the solid-fluid interface.  
The combination of the counterion diffuse layer and the electrical charges on the solid surface  
is known as the electrical double layer; the characteristic length scale of the diffuse layer, 
referred to as the Debye length, is inversely dependent on the ionic concentration of the 
electrolyte solution. The effect of the Debye length on the electrolytic flows confined in long 
channels are reviewed. Finally, the combined effect of the particle size and charges on the 
particle fluxes are discussed, and the opposing effects of the particle-channel electrostatic 
interaction and the electrokinetic distortion of the double layer on confined particle diffusion 
and convection are examined.





C H A P T E R  2

CAUCHY MOMENTUM EQUATION 
AND NAVIER-STOKES EQUATION: 

ANALYSIS OF FULLY DEVELOPED FLOWS 
IN LONG CHANNELS

2.1	 Introduction

The objective of this book is to provide the readers with the theoretical background  
regarding fluid mechanics of low-Reynolds-number flows where the effect of viscous  
dissipation is the dominant factor in the momentum transfer process within the flow.  
As aforementioned, all the theoretical analyses in the present and subsequent chapters are 
for the systems with the characteristic length scales much larger than the size of the fluid  
molecules such that continuum mechanics is applicable. To make the book self-contained, this 
chapter is devoted to the derivation of the governing equations for fluid velocity and pressure with  
a primary objective of laying a groundwork for subsequent analyses of confined flows,  
beginning with the governing equations for flows of all fluid types, the Cauchy momentum 
equation (that is an analogy of Newton’s second law) along with the continuity equation (based 
on the conservation of mass), in Sec. 2.2. The surface and body forces affecting the fluid 
motion are discussed in Sec. 2.3. Properties of an incompressible Newtonian fluid, and the 
governing equation for its velocity and pressure, the Navier-Stokes equation, are stated in Sec. 
2.4 and 2.5, respectively. A pressure variation in a static fluid is discussed in Sec. 2.6, whereas 
the discussion about generalized Newtonian fluids is given in Sec. 2.7. Finally, the theoretical 
analysis of fully developed fluid flows confined in long channels are presented in Sec. 2.8.
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2.2	 Cauchy momentum equation: Newton’s second law in the form ap-
plicable to momentum transport in fluid flows

By following a method introduced by Deen (1998), the derivation of the governing 
equations for fluid velocity and pressure in this book begins with one of the most well-known 
and utilized equation for physicists. According to Newton’s second law, the change of the 
linear momentum of a solid body with a constant mass is related to the exerted net force as 
follows.

	 =∑v Fi
i

dm
dt

 	 (2.1)

where m is the object mass, and v is the object velocity. ∑Fi
i

is the total force: the sum of 

all the forces exerted on the object. The objective of this section is to obtain Eq. (2.1) in the  
form applicable to fluid flows. If the change of the linear momentum in an arbitrary control 
volume (VM) with the bounding surface (SM) moving at the arbitrary velocity (vs) is considered, 
Eq. (2.1) can, then, be modified as

	
( )

( )
( )

 
  = - ⋅ -
 
 

∑∫ ∫ sv F n v v v
M M

i
iV t S t

d dV dS
dt

ρ ρ 	 (2.2)

where ρ is the fluid density, and ρv is the linear momentum per unit volume. The second term 
on the right-hand side is the convective loss of linear momentum through its flux across SM. 
The change of linear momentum accumulated in VM are caused by two factors: the convective 
loss through SM and the sum of the exerted forces. According to the Leibniz rule1 for differen-
tiating the volume intergral, the left-hand side of Eq. (2.2) can be rewritten as shown below.

 	
( )

( )
( )

( )
( )

  ∂  = + ⋅
  ∂
 
∫ ∫ ∫ s

v
v n v v

M M MV t V t S t

d dV dV dS
dt t

ρ
ρ ρ 	 (2.3)

Applying the divergence theorem2 to change the surface integral of the last terms on the  
right-hand side of Eqs. (2.2) and (2.3) into a volume integral and substituting the expression 
in Eq. (2.3) into Eq. (2.2), one obtains the following expression.

	
( ) ( )

( )

 ∂
+∇ ⋅ = ∂ 

∑∫
v

vv F
M

i
iV t

dV
t
ρ

ρ 	 (2.4)

where ρvv is a tensor discussed in Sec. A3 in the appendix. The expression on the left-hand 
side of Eq. (2.4) can be rewritten (using the chain rule) as

1	 The Leibniz rule for differentiating integrals is discussed in Sec. A4 of the appendix.
2	 The discussion involving the divergence theorem for scalar functions, vectors and tensors is presented in Sec. A3 

of the appendix. 
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( ) ( )
( )

( ) ( )
( )

( ) ( )
     ∂ ∂ ∂

+∇ ⋅ = +∇ ⋅ + + ⋅∇     ∂ ∂ ∂     
∫ ∫

M MV t V t

dV dV
t t t
ρ ρ

ρ ρ ρ
v v

vv v v v v 	 (2.5)

If the bounding surface (SM) of VM(t) is moving at the same velocity as the local fluid velocity, 
the total mass within VM(t) is constant. Conservation of mass leads to the expression as shown 
below (Batchelor, 1967).

	 ( )
( )

0∂ = +∇ ⋅ = ∂ ∫ ∫ v
M MV ( t ) V t

d dV dV
dt t

ρρ ρ 	 (2.6)

Substituting the expressions in Eqs. (2.5) and (2.6) into Eq. (2.4), one obtains the expression 
analogous to Newton’s second law that is applicable to fluid flows as follows.

	  
( ) ( )

 
  = =
 
 

∑∫ ∫
vv F

M M

i
iV t V t

d DdV dV
dt Dt

ρ ρ 	 (2.7)

where

	  
 
 
∂= + ⋅∇
∂

v v v vD
Dt t

ρρ  	 (2.8)

The differential operator in Eq. (2.8), “D/Dt”, is referred to as the material derivative or the 
substantial derivative. ( )vD Dtρ  is the rate of change of the linear momentum as seen by the 
observer that is moving at the same velocity as that of the fluid: a combination of the linear 
momentum change due to the time dependence of the fluid velocity ( )∂ ∂v tρ  and the observed 
change of the linear momentum caused by the spatial variation of the fluid velocity and the 
movement of the observer ( )⋅∇v vρ . Equation (2.7), therefore, can be viewed as Eq. (2.1) or 
Newton’s second law in the form that is applicable to fluid flows. What remains to be discussed 

is the net force 
 
  
 
∑Fi

i
.

2.3	 Stresses and body forces

The external forces contributing to the net force are often divided into two types:  
the forces that are exerted directly on the fluid mass referred to as the body forces and the 
forces that can be expressed in terms of the forces per unit area or stresses. Examples of the 
body forces include the gravitational force written in a volume integral form as shown below.

	
( )

= ∫F gg

MV t

dVρ  	 (2.9)
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Under special circumstances, there are also contributions from other physical fields. For  
instance, if the fluid is an electrolyte solution and there is an applied electric field, the force 
that an electric field exerts on small ions in the solution is also a body force that must be  
included in equations of motion. (The contribution of the electrical body force to the change 
in fluid velocity is discussed in detail in Chapter 6.) In the present chapter, if f is the force per 
volume contributed by physical fields (such as an electric field or a magnetic field), the force 
such fields exert on the mass contained in VM is simply

	
( )

= ∫V

MV t

dVF f 	 (2.10)

In addition to the body forces acted directly on the fluid mass, forces that the viscous stress 
and pressure exerted on the surface of the control volume must also be considered. If n is the 
normal unit vector on the surface SM pointing towards the surrounding fluid and s(n) is the 
force per unit area exerted by the surrounding fluid on the control volume surface, the net 
surface force on SM(t) can be written as follows.

	 ( )
( )

= ∫
M

s
S t

dSF s n 	 (2.11)

It is well established that, due to stress equilibrium on any vanishingly small volume, the total 
stress, s(n), can be calculated as a dot product between n and the stress tensor ( )σ  as shown 
below (Deen 1998).

	  ( )
 
 

= ⋅ = ⋅  
 
  

s n n n
xx yx zx

xy yy zy

xz yz zz

σ σ σ

σ σ σ

σ σ σ

σ 	 (2.12)

The element of the stress tensor is simply the force per unit area. In this book, the notation is 
chosen such that σxy is the force per unit area in the y-direction acting on a surface with the  
normal vector pointing in the x-direction; the first alphabet in the subscript indicates the  
direction of the normal vector on the surface whereas the second alphabet indicates the  
direction of the force3. The contributions to σ are often divided into the contribution from the 
pressure and that from the viscous stress tensor as follows.

	 = - +Pσ δ Π	 (2.13)

where P is the pressure and δ is the identity matrix; the pressure force is always perpendicular 
to SM. Π is the viscous stress tensor that is sometimes referred to as the deviatoric stress tensor; 
its element is the viscous force per unit area. In keeping with the notation employed for σ,  
Πxy, is the viscous force in the y-direction (per unit area) acting on a surface with the normal 

3	 It is worth noting that, in other textbooks, a slightly different notation is sometimes employed where the total 
stress, s(n), is defined as σ ∙ n with σ being a stress tensor. Its element is defined differently. For instance, σxy,  
is a force per unit surface area in the x-direction exerted on a surface with the normal unit vector pointing in the 
y-direction. For most fluids, σ is symmetric, causing both this notation and the notation employed in the present 
book to result in a similar σ.
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vector pointing in the x-direction. (The first alphabet in the subscript indicates the direction 
of the normal vector on the surface whereas the second alphabet indicates the direction of the 
viscous force.) Due to conservation of angular momentum, for most fluids, Π is found to be 
symmetric. There are exceptions where the viscous stress tensor is found to be asymmetric 
such as those of flows of fluids containing suspensions of colloidal magnetites. For majority  
of fluids in the liquid and gas phases, however, Π is generally a symmetric tensor, and  
subsequently, so is σ.

Substituting the expressions for body forces and stresses stated in Eqs. (2.9)-(2.13) 
into Eq. (2.7), one obtains the relationship between the change in linear momentum and the 
forces exerted on VM as shown below.

	  
( ) ( )

( )
( ) ( )

= + ⋅ - + +∫ ∫ ∫ ∫
M M M MV t V t S t V t

D dV dV P dS dV
Dt

ρ ρv g n fδ Π 	 (2.14)

If the divergence theorem is applied to change the surface integral in Eq. (2.14) into a volume 
integral, in the limit of an infinitesimal VM, Eq. (2.14) can be expressed as follows.

	 = -∇ +∇ ⋅ +
v g fD P

Dt
ρ ρ Π  	 (2.15)

Equation (2.15) is referred to as the Cauchy momentum equation and is the governing equation 
for pressure and velocity of fluids in the systems with length scales much larger than that of 
fluid molecules such that continuum mechanics is applicable. What remains to be discussed is 
the value of the viscous stress tensor. As discussed further below in Sec. 2.4, the viscous stress 
tensor and the “rate of deformation” or the strain rate within the fluid flow are related through 
the constitutive equation that depends on the molecular interaction between fluid molecules.

2.4	 Viscous stress tensor as a function of the rate–of-strain tensor in 
Newtonian fluid flows.

This book focuses primarily on behaviors of confined flows of incompressible  
Newtonian fluids, fluids that respond very quickly to the change in the strain rate in the 
flows. The magnitude of the element of the Newtonian fluid viscous stress tensor is linearly  
proportional to the rate of strain tensor and can be expressed as shown below.

	  ( )( )2 2 3= + ℵ- ∇ ⋅ vµ µΠ Γ δ 	  (2.16)

where μ is the fluid shear viscosity, a macroscopic manifestation of interactions between fluid 
molecules. ℵ is known as the dilational viscosity. Γ is the rate-of-strain tensor corresponding 
to the rate of deformation caused by the non-uniformity of fluid velocity expressed as follows.

	  ( )1
2

= ∇ +∇v vTΓ   	 (2.17)
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where ∇v denotes the velocity gradient written as shown below.

	

∂ ∂ ∂
 ∂ ∂ ∂ 

∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

 ∂∂ ∂
 
∂ ∂ ∂ 

v

yx z

yx z

yx z

vv v
x x x

vv v
y y y

vv v
z z z

 	 (2.18)

The velocity gradient (as a tensor) is discussed in detail in Sec. A2 of the appendix. Whereas 
the gradient of a scalar function is a vector, the gradient of a vector is a tensor; as shown in 
Eq. (2.18), the first, second and third columns of the velocity gradient are simply the gradient 
of the velocity in the x-, y- and z- directions, respectively. ∇vT appeared earlier in Eq. (2.17) 
is the transpose of ∇v. The difference between the fluid velocity at two different locations can 
be approximated as the product between the velocity gradient and the displacement between 
the two locations;

	 ( ) ( ) ( )2 1∆ = - ≈ ∆ ⋅∇v v r v r r v  	 (2.19)

where v(r1) and v(r2) are the fluid velocity at the locations r1 and r2, respectively. The rate of 
deformation can be examined from the rate of change of |Δr|2 as follows.

	  
2

2 2 2
∆

= ∆ ⋅∆ ≈ ∆ ⋅∇ ⋅∆ = ∆ ⋅ ⋅ ∆
r

v r r v r r r
d

dt
Γ 	 (2.20)

where Γ is the rate-of-strain tensor defined in Eq. (2.17). ∆ ⋅∇ ⋅∆ = ∆ ⋅ ⋅ ∆r v r r rΓ  because
( ) 0∆ ⋅ ∇ -∇ ⋅∆ =r v v rT . (The detailed proof is given in Sec. A2 of the appendix.) Worthy 

of note is the fact that Γ is a symmetric tensor. Equation (2.20) demonstrates that the rate of  
deformation (or the rate of change of the displacement between two material points) in a fluid 
flow depends only on the symmetric part of the velocity gradient4. The relationship between 
Π and Γ in Eq. (2.16) is referred to as the Newtonian hypothesis: a first-order correction to 
the theory of perfect fluids (or inviscid fluids) in the limit where all gradients are small. It is 
applicable to real fluids in the limit of small fluid velocity (Happel and Brenner, 1983). For 
non-Newtonian fluids where the slow response to the change in the rate of strain results in ei-
ther the shear viscosity dependence on the strain rate or the “memory” effect on the relationship 
between the stress and the rate of strain becoming not negligible, the behavior of fluid velocity 
and pressure is governed by the Cauchy momentum equation where the relationship between 
Π, μ and Γ must be determined from the constitutive equation. Examples of such fluids include 
flows of polymer melts and solutions containing strongly interacting particles.

4	 The velocity gradient can also be defined in a slightly different way where its element, ∇ ijv , is ∂ ∂i jv x . This results 
in slightly different expressions for Eqs. (2.19) and (2.20) as discussed in the appendix. However, both ways 

that the velocity gradient are defined result in 
2

2
∆

≈ ∆ ⋅ ⋅∆
r

r r
d

dt
Γ ; the rate of the deformation is dependent on the 

symmetric Γ only. 
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2.5	 Navier-Stokes equation: a governing equation for the pressure and 
velocity of incompressible Newtonian fluid flows

Fluids with constant densities are often called incompressible fluids due to the fact 
that it is “nearly” impossible to reduce the fluid volume if its mass is kept constant. Because 
the density of any pure fluid is dependent on pressure and temperature, incompressibility is 
an “approximation”; the term “incompressible fluids” is used in referring to fluids with mass 
per unit volume remaining unaltered in an “approximate” sense. For instance, the sixty times 
change in an air density (at room temperature) can be caused by a change in pressure from  
1 atm to 50 atm, whereas the change in water density, under the same circumstance, is less 
than 1%. Water is, therefore, classified as an incompressible fluid. Gases are, on the other hand, 
generally compressible. However, if the gas velocity is much smaller than the sound speed,  
its density at constant temperature can be approximated as being constant, and an assumption 
of incompressibility becomes a good approximation. 

If, under the circumstance of the system of interest, the fluid density, ρ, can be  
approximated as unchanging, for an infinitesimal VM, Eq. (2.6) can be rewritten as

	 0∇ ⋅ =v  	 (2.21)

Eq. (2.21) is known as the continuity equation. The fluid velocity with its divergence equaling  
zero is a particular characteristic of incompressible fluid flows; the physical interpretation  
is that the total fluid volume and mass fluxes across any closed surfaces must be zero.  
Newtonian fluids with constant densities are referred to as incompressible Newtonian fluids. 
According to Eq. (2.16), as the divergence of the fluid velocity vanishes in the case of an  
incompressible Newtonian fluid, 2= µΠ Γ, and its divergence is

	 ( ) 22∇ ⋅ = ∇ ⋅ = ∇µ µ vΠ Γ  	 (2.22)

As a result, the equation of motion stated in Eq. (2.15) can be expressed as

	 2= -∇℘+ ∇ +
v v fD

Dt
ρ µ 	 (2.23)

where ℘ is the dynamic pressure defined as

	 ∇℘=∇ - gP ρ  	 (2.24)

The spatial variation of the dynamic pressure is associated with fluid motion; if f is absent and 
the fluid is stationary, ∇℘ = 0. 

The governing equation for dynamic pressure and velocity of incompressible  
Newtonian fluids, Eq. (2.23), is referred to as the Navier-Stokes equation, due to the fact that 
it was proposed separately by L. Navier in 1822 and G.G. Stokes in 1845. The term on the 
left-hand side of the equation is simply the material derivative of the fluid linear momentum 
per unit volume, whereas the first, second and third terms on the right-hand side correspond to 
the contributions to ( )vD Dtρ  due to dynamic pressure gradient, viscous dissipation, and the 
body force due to additional fields, respectively. Applicable to incompressible and isothermal 



Low-Reynolds-Number Fluid Dynamics: 
Applications To Hindered Fluid And Particle Transport12

Newtonian fluids with constant density and shear viscosity, the Navier-Stokes equation is, 
in fact, three partial differential equations with four unknowns: the x-, y- and z- components 
of the fluid velocity (v) as well as the dynamic pressure (℘). It must, therefore, be solved 
simultaneously with the continuity equation, Eq. (2.21), being the fourth equation. In order 
to determine the velocity and dynamic pressure of an incompressible Newtonian fluid, the 
solution of the Navier-Stokes equation (Eq. 2.23) and the continuity equation (Eq. 2.21) that 
satisfies the appropriate boundary conditions must be obtained. The most commonly known 
boundary condition is the no-slip condition originated from an empirical observation that is 
verified countless numbers of times. It concerns the matching of the tangential velocity at the 
interface between two materials as follows.

	 1 2⋅ = ⋅t v t v  	 (2.25)

where t is the unit vector tangent to the interface. For instance, at an interface between a fluid 
and an immobile solid, the tangential component of v at the interface equals zero if the solid 
surface is inert and smooth. 

	In addition to the no-slip condition, sometimes other appropriate boundary condi-
tions (depending on the nature of the interface as well as those of the two materials) are also  
required. For example, v at the interface between a fluid and an impermeable solid must satisfy 
the no-penetration condition; 0⋅ =n v . The boundary condition between two fluids is relatively 
more complicated as it involves the interfacial stress balance. This book, however, focuses on 
the motion of confined flows and hindered solid particles with the boundary conditions at the 
solid-fluid interfaces being the no-slip condition and the no-penetration condition. 

2.6	 Static fluids and buoyancy force

	If the fluid is completely static (v = 0), both the Cauchy momentum equation and the 
Navier-Stokes equation become

	  0∇℘=∇ - =gP ρ 	 (2.26)

This expression indicates that the hydrostatic pressure changes only in the direction parallel to 
the gravitational acceleration (g). For an incompressible static fluid, one obtains a following 
expression for pressure by integrating once.

	 ( ) ( )= + ⋅0r r g rP P ρ  	 (2.27)

Another consequence of the fact that the hydrostatic pressure increases with depth is the net 
pressure force on a completely submerged solid object in a static fluid as shown below.

	  = - = - ∇ = -∫ ∫ ∫PF n g
S V V

P dS PdV dVρ  	 (2.28)

where V and S is the volume and surface of the solid object, respectively. As shown above, 
by applying the divergence theorem, it can be demonstrated that the upwards force on a solid 
object due to the hydrostatic pressure is the weight of a fluid of the same volume, regardless 
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of the solid object shape. This is commonly known as Archimedes’ Principle. The net force on 
the submerged object, the difference between its weight and FP, is referred to as the buoyancy 
force (FB); for a solid object with constant density (ρs), it can be expressed as shown below.

	 ( )= - = -B PF g F gs sV Vρ ρ ρ 	 (2.29)

It is worth noting that the expressions for the pressure given in Eq. (2.27) and the buoyancy  
force in Eq. (2.29) is applicable for the solid object surrounded by the static fluid only.  
If v ≠ 0, the total stress exerted on the solid object submerged in a fluid flow must be computed 
as an addition of the pressure and viscous stress obtained from the solution of either the Cauchy 
momentum equation (for any fluid with a known constitutive equation) or the Navier-Stokes 
equation (if the fluid is an incompressible Newtonian fluid). 

2.7	 Generalized Newtonian fluids 

	As aforementioned, the Navier-Stokes equation is a governing equation for the velocity 
and pressure of incompressible Newtonian fluids. Any fluid that does not obey Eq. (2.16) is 
known as a non-Newtonian fluid. To calculate its velocity and pressure, the Cauchy momentum 
equation must be solved in conjunction with the continuity equation. To illustrate the difference 
between Newtonian and non-Newtonian fluids, a special category of non-Newtonian fluids, 
the generalized Newtonian fluids, is considered. A generalized Newtonian fluid differs from 
a Newtonian fluid because the viscous stress tensor (Π) of the generalized Newtonian fluid is 
not a linear function of the rate-of-strain tensor (Γ). In other words, the fluid viscosity is not  
independent of Γ (Deen, 1998), and an empirical expression is often employed in describing 
their relationship. For example, the viscosity of many polymeric liquids is observed to be  
constant at a low shear rate but becomes dependent on the strain rate as the shear rate increases 
before reaching a plateau and becoming constant once again. These polymeric liquids behave 
like Newtonian fluids in the limit of very low and very high shear rates. At an intermediate 
shear rate, however, the empirical expression used in describing the relationship between  
μ and Γ is a power-law model as follows.

	 ( ) 12 -= nµ ϒ Γ  	 (2.30)

where ( )( ) ( )
1 2

1 21 2 : 1 2
 
 = =
 
 
∑∑

/
/

ij ji
i j

Γ Γ ΓΓ Γ . ϒ  and n are constants. Fluids that obey 

Eq. (2.30) is often called a power-law fluid. If n < 1, the fluid is referred to as the shear-thinning 
fluid or the pseudo-plastic fluid. Examples of shear thinning fluids include a hair-styling gel 
that produces little resistance as it is rubbed between fingers. Any fluid that obeys Eq. (2.30) 
but with n > 1, on the other hand, is known as the shear-thickening fluid or the dilatant fluid. If 
n = 1, the fluid behavior is that of a Newtonian fluid and ϒ  is simply μ. Equation (2.30) is not 
the only empirical expression employed in relating μ and Γ of generalized Newtonian fluids. 
For instance, a Carreau model is an expression that is equivalent to Eq. (2.30) but contains 
four instead of two constants and encompasses the Newtonian behavior at very low and very 
high shear rates and is also employed in a constitutive equation for polymeric liquids. 
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2.8	 Analysis of confined fully developed unidirectional flows

	To familiarize the readers with the Cauchy momentum equation, the Navier-Stokes 
equation and the continuity equation as governing equations for the velocity and pressure  
of incompressible fluids, a calculation of a fluid velocity of a steady fully developed  
unidirectional flow in a microchannel is first considered. Because there is only one non-zero 
velocity component, the inertial term of the Navier-Stokes equation ( )⋅∇v vρ  always vanishes  
(as proven in Sec. A5 in the appendix) resulting in the equation becomes automatically  
linearized. In addition, in the following examples, other volumetric body forces (apart from 
the gravitational force) are absent; f = 0. Examples presented in this section include an  
analytically obtained relationship between the dynamic pressure gradient and the velocity of 
a fully developed flow between parallel infinite plates as well as a relationship between the 
average fluid speed and the imposed pressure difference for a flow confined in a long channel 
with a rectangular cross-section, followed by a discussion of the limit of the assumption of 
the flow being fully developed.

2.8.1 A pressure driven power-law fluid flow between parallel plates	

To illustrate the difference between a Newtonian fluid and a generalized Newtonian 
fluid, a fully developed unidirectional steady flow of a power-law fluid between parallel square 
plates is considered. As shown in Fig. 2.1, H is the half-width of the gap between the plates. 
The flow is generated by the applied pressure gradient in the z-direction. The size of the plate 
is much larger than H such that, beyond a certain distance from the edges of the plates, the 
flow is fully developed and unidirectional; ( )=v ez zv x  with 0= =y zv v . As a result, according 
to Eq. (2.23), ∂℘ ∂y = ∂℘ ∂z = 0, and, ( )℘=℘ x . 

Figure 2.1:	 Schematic drawing of a fully developed unidirectional flow of a power-law fluid confined between 
parallel infinite plates. H is the half-width of the gap between the plates. The z-direction is the direction of the  
generated flow, whereas the x-direction is the transverse direction. v is the fluid velocity, whereas ( )℘ z  is the  
dynamic pressure with 1℘  and 2℘  being the upstream and downstream dynamic pressure, respectively. 
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As the fluid between the plates is a generalized Newtonian fluid and not a Newtonian 
fluid, the Cauchy momentum equation must be employed. The flow is assumed to be steady 
and fully developed, allowing the Cauchy momentum equation to be re-written as

	
( )

0
∂Π∂℘

= - +
∂ ∂

xz x
z x

	 (2.31)

where Πxz is the only non-zero element of the viscous stress tensor. According to the power 
law model stated in Eq. (2.30), it can be expressed as

	 Π = -
n

z
xz

dv
dx

ϒ 	 (2.32)

Substituting the expression for Πxz stated in Eq. (2.32) into Eq. (2.31), one obtains 

	
1

11 ℘ = - - 
 

/ n
/ nzdv d x

dx dzϒ
 	 (2.33)

Integrating Eq. (2.33) once and using the no-slip boundary condition at the solid surfaces
( )( )0= ± =zv x H , the fluid velocity is found to be

	  ( ) ( )
1

1 11 1
1

+
+
 

  ℘   = - -        +      
 

n
/ n n n

nz
xd nv x H

dz n Hϒ
 	 (2.34)

The fluid velocity profile is shown in Fig. 2.2 for the case of a shear-thinning fluid (n = 0.5),  
a Newtonian fluid (n = 1) and a shear-thickening fluid (n = 2), respectively. If the fluid between 
the parallel plates is a Newtonian fluid, n = 1 and ϒ  = μ, resulting in vz(x) being simply

	 ( )
22

1
2

 ℘   = - -     
z

H d xv x
dz Hµ

	 (2.35)

The Newtonian fluid flow with a parabolic velocity profile expressed in Eq. (2.35) and shown 
in Fig. 2.2 (as a line with square symbols) is referred to as a plane Poiseuille flow. 

Often, the experimentally measured quantity is not vz(x) but its average ( )zv  obtained 
from the cross-sectional average of vz(x) as follows.

	  
2

3
- ℘ =  

 
z

H dv
dzµ

 	 (2.36)

The fluid velocity of the plane Poisseuile flow can then be rewritten as

	 ( )
23 1

2

   = -     
z z

xv x v
H

	 (2.37)


